IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

1117

Solving Difficult Instances of Boolean Satisfiability
In the Presence of Symmetry

Fadi A. Aloul, Student Member, IEERArathi Ramani,

Abstract—Research in algorithms for Boolean satisfiability
(SAT) and their implementations (Goldberg and Novikoy2002),
(Moskewicz et al.2001), GSilva and Sakallah 1999) has recently
outpaced benchmarking efforts. Most of the classic DIMACS
benchmarks ftp:dimacs.rutgers.edu/pub/challenge/sat/bench
marks/cnf) can now be solved in seconds on commaodity PCs. More
recent benchmarks {/elev and Bryant 2001) take longer to solve
due to their large size, but are still solved in minutes. Yet, relatively
small and difficult SAT instances must exist if P # NP. To
this end, our paper articulates SAT instances that are unusually
difficult for their size, including satisfiable instances derived
from very large scale integration (VLSI) routing problems. With
an efficient implementation to solve the graph automorphism
problem (McKay, 1990), Soicher, 1993), Spitznagel 1994), we
show that in structured SAT instances, difficulty may be associated
with large numbers of symmetries. We point out that a previously
published symmetry extraction mechanism Crawford et al, 1996)
based on a reduction to the graph automorphism problem often
produces many spurious symmetries. Our paper contributes
two new reductions to graph automorphism, which extract all
correct symmetries found previously Crawford et al, 1996) as
well as phase-shift symmetries not found earlier. The correctness
of our reductions is rigorously proven, and they are evaluated
empirically. We also formulate an improved construction of
symmetry-breaking clauses in terms of permutation cycles and

Igor L. Markov, and Karem A. Sakalld&ellow, IEEE

gate array (FPGA) layout [46]. A one million dollar prize is
offered by the Clay Institute for Mathematical Sciences for a
complete, polynomial-time SAT solver or a proof that such an
algorithm does not exist (the P-versus-NP problem). Addition-
ally, industrial applications motivate intensive research in SAT
algorithms that quickly solve real-life instances. The funda-
mental framework for state-of-the-art SAT algorithms was laid
out in the 1960s, but a number of recent improvements in al-
gorithms and implementation techniques [45], [50] have led to
performance breakthroughs. Most DIMACS challenge bench-
marks [22] from the early 1990s are now solved in seconds on
commodity PCs. Recently posted SAT benchmarks [60] take
somewhat longer to solve (minutes), but that is primarily due to
their enormous size (50 MB+ files, etc.). With the exception of
artificially constructed families of benchmarks, it appears that
SAT can be solved in polynomial time “for practical purposes.”
It is well known that the dominant backtrack solvers, such as
GRASP [50], CHAFF [45], and BerkMin [11] do not perform
well on randomly created 3-SAT instances with4.3 clauses

per variable [52]. However, such instances are not common in
practical applications because they have little structure. The

propose to use only generators of symmetries in this process. Theserelative ease of structured instances from certain applications

ideas are implemented in a fully automated flow that first extracts
symmetries from a given SAT instance, preprocesses it by adding
symmetry-breaking clauses, and then calls a state-of-the-art
backtrack SAT solver. Significant speed-ups are shown on many
benchmarks versus direct application of the solver. In an attempt
to further improve the practicality of our approach, we propose
a scheme for fast “opportunistic” symmetry extraction and also
show that considerations of symmetry may lead to more efficient
reductions to SAT in the VLSI routing domain.

Index Terms—Backtrack search, clause learning, conjunctive
normal form (CNF), graph automorphism, logic simplification,
satisfiability (SAT), symmetries.

. INTRODUCTION

OOLEAN satisfiability (SAT) is a pivotal problem in
computer science with numerous applications that ran

B

was explained [9], [47], and generic ways to exploit certain
types of structure were proposed [2].

A. Difficult SAT Benchmarks

Our paper addresses both benchmarking and algorithmic
aspects of SAT research. Given the excellent performance of
existing SAT solvers, there is no room for improvement on
easy benchmarks, and we focus instead on difficult instances.
Since the work of Haken and Urquhart [58] on lower bounds
for resolution and backtracking algorithms for SAT, several
instance families have been known to require exponential
time for Davis—Putnam [20] and Davis—Logemann-Loveland
[21] (DP/DLL) solvers and their derivatives. For example, a
recent lower bound for the pigeonhole problenfig™/2°)[7]
giaeren is the number of holes. The pigeonhole problem can

from microprocessor verification [60] to field programmablée quickly solved by induction, but the proof system behind

backtrack solvers (resolution) is rather restrictive and does

Manuscript received September 6, 2002; revised December 11, 2002. Thist allow polynomial-sized proofs for pigeonhole instances.

work was supported in part by the DARPA/MARCO Gigascale Silicon Resear:
Center, in part by an Agere Systems/SRC Research fellowship, and in par

ort proofs without induction exist if the use of symmetry

a fellowship from the ACM/IEEE Design Automation Conference. This papds allowed [32], [59]. Another family of difficult instances
was previously presented at the ACM/IEEE Design Automation Conferenggas constructed by Tseitin and Urquhart in terms of expander

New Orleans, LA, in June 2002. This paper was recommended by Associate

Editor J. H. Kukula.

graphs and, unlike the pigeonhole instances, can accommodate

The authors are with the Department of Electrical Engineering and Compuesnsiderable randomness [57], [58]. Solving these instances

Science, University of Michigan, Ann Arbor, Ml 48109-2122 USA (e-mail:

faloul@eecs.umich.edu; ramania@eecs.umich.edu; imarkov@eecs.umich.
karem@eecs.umich.edu).
Digital Object Identifier 10.1109/TCAD.2003.816218

0278-0070/03$17

t%k_es a long time using modern SAT solvers such as CHAFF
and BerkMin (see Tables IV and V), but their relevance to

application domains (e.g., electronic design automation (EDA)

.00 © 2003 IEEE

1118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

and software verification) is not clear. While lower bounds fo€. Empirical Efficiency Challenges
SAT are often proven for unsatisfiable instances, it remains to
be seen whether practical satisfiable instances can be difficul
for the best solvers. To this end, the work in [1] contribut;‘;
constructions of artificial randomly generated difficult SatiSﬁE:onvincing empirical results at all. For example, Crawfetd
able instances. _ al. suggest in [19] that symmetry-based techniques allow the
Our paper demonstrates EDA-related SAT instances, bQjfyeonhole instances to be solved in polynomial time, but their
satisfiable and unsatisfiable, that are very difficult for their siz@mpirical data [19, Fig. 3] do not support this suggestion. In the
Observe that an easy instance of any size can be made diffi¢¢jtirse of more recent work [35], [54], specific families of CNF
by adding a small difficult instance to it and connecting the tWgrmulas with extremely high numbers of symmetries were suc-

ost prior work on symmetries in SAT predates recent break-
oughs in SAT solvers and typically uses several carefully con-
ructed instances to illustrate their approaches or do not show

by inconsequential clauses to defeat partitioning. cessfully attacked. Yet, it remains unclear whether the perfor-
i mance of leading edge SAT solvers can be improved, via the
B. Relevance of Graph Automorphism to SAT use of symmetries, on large CNF families of practical signif-

Over many years, empirical algorithms research in many dgance. In principle, the overhead due to symmetry extraction
mains identified a number of fundamental problem formul@nd usage may outweigh the benefits, and it remains to be seen
tions, such as Boolean satisfiability, and mustered significant &hether useful CNF formulas have many symmetries. Polya
forts to solve them efficiently. State of the art is gauged by op§1937), Erdds, and Rényi (1963) proved that a random graph on
mized solver implementations (“engines”). Performance bredkVertices hasio symmetriewith probabilityl — (5) 2" ~%(1+
throughs are often due to novel algorithmic ideas, leaner iffcl)) [5, p- 1461]. This claim can be extended to CNF formulas,
plementations, or the ability to apply a highly optimized engin*é“t structured real-world instances may havg richer symmetries.
in a novel way. In this paper, we observe that graph automé’?—deed' Boolean functions arising in the design of hardware sys-
phism engines can be applied to the satisfiability problem in c4fMS often have many symmetries [10], [30], and the overall

tain cases. Additionally, we think that there may be significar’?tumber of functions of. vanahles with nonirivial symmeries

room for future improvement given that: 1) the graph automo%ri?r\:v Z)?Oounbeli,tigﬁpomngztlasllyh?nrle:::gsOt?re{nhaPod’ez)rli?:iiluncnon
phism problem is not thought to be NP-complete, thus, potenl— pone y y sy tying plicitly use
all symmetries may defeat the purpose of speeding up search

yally easier than SAT and 2) ’.““Ch less new resparch was d TS]. Despite these pitfalls, symmetry-based approaches have
n re_cent years on the analy3|§ and design of _h|gh—performa n useful in model checking [16], [24], [28], nonstandard SAT
engines for graph auf[omqrpmsm (such yvork mclqdes [40] MBjvers [25], hardware verification [40], software verification
[44]). To be_ precise, in this paper, we W|II be dealing with thgﬁi], logic synthesis [10], [31] and DSP algorithms [23]. Some
colored variant of the graph automorphism problem that can Researchers limited the notion of symmetry to swaps of variables
easily extended to hypergraphs. . ~ [23] or subsets of variables [31] to achieve efficiency. Other au-
Besides complexity-theoretic connections between variatigys [10], [48] limited the notion of symmetry to negations of
of Boolean satisfiability, symmetries, and the hypergraph autgingle variables or subsets of variables and referred to those re-

morphism problem [4], [38], several pre-2000 publications sugtricted classes amitosymmetriesr phase-shift symmetries
gested that “breaking symmetries” in conjunctive normal form
(CNF) formulas can speed up SAT solvers [8], [13], [14], [18 __—
[19], [40]. Symmetries of a CNF formula include]CI:[:lus?e—[pré?' Our Contributions
serving permutations of variables. Such permutations may in-In this paper, we study and fully automate a flow that starts
volve arbitrarily many variables at once, e.g., a complete cycldth a CNF formula in the DIMACS format and finds all of its
shift. In this paper, we do not address permutations that charyenmetries within a very general class, including all permuta-
the CNF formula but leave unchanged the Boolean functiontional symmetries, variable negations, and their compositions.
represents. However, if such symmetries are found by otheln this flow, all symmetries are first captured implicitly, in terms
techniques [30], our proposed methods can process them inafigrredundant group generators, which always guarantees ex-
same way as symmetries of the CNF formula. Similarly, mamonential compression. The CNF formula is then preprocessed
of the publications we cite do not deal with symmetry extrady adding symmetry-breaking clauses that do not affect satisfi-
tion, but rather assume that symmetries of the Boolean functiability. A black-box SAT solver is subsequently applied to the
are given. Using this assumption, two main directions were gareprocessed CNF instance to produce the final answer; any sat-
plored: 1) preprocessing the original CNF formula by addingfying assignment to this instance is (or corresponds to) a sat-
symmetry-breaking clauses that do not affect satisfiability bisfying assignment of the original instance, and if the prepro-
speed up search [19] and 2) extending SAT solvers, particulacgssed instance is unsatisfiable then so is the original instance.
those based on backtracking, to dynamically use symmetriBse flow is illustrated in Fig. 1.
during the search process [6], [14], [35], [48]. In this paper, we We propose new techniques for symmetry extraction and em-
pursue the preprocessing approach due to its simplicity, but wlkically compare them with previously proposed constructions.
outline how our techniques can be applied within a backtrackivge also propose a novel construction of symmetry-breaking
solver for increased efficiency. clauses, which is much more economical than that in [19]. Also,
L _ . - o it directly applies to the compressed representation of all sym-
Such permutations can be called “semantic” symmetries, in contrast with . . .

etries in the format produced by graph-automorphism soft-

the narrower class of “syntactic” symmetries that leave the CNF formula uf?
changed. ware [42], [43], [55], [56].

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1119

function it represents are unaffected by this transformation. The

[ONF formula} 9“f°°“5‘m°t_i°“3- : l—:ICo,md graph ' discrete objects considered in our paper have only finitely many

= (omission found in [19]) ‘= . symmetries. Unlike previous work in the field, we consider,
NAUTY/GRAPE/GAP | [42, 43, 55, 56] extract, represent, and use several types of symmetries and

_ their compositions, including permutational symmetries and

_ [Graph Symmetr165| ' variable negations in CNF formulas, sometimes called “phase

. changes” or “autosymmetries.”
Theorem 2.3.4
@m@ . A. Representing and Manipulating Symmetries

_ Every discrete object has at least one symmetry—the
Our construction, or | Crawfordetal. [19]] “do-nothing” permutation. It is easy to see that composition
' ¥ of two symmetries is a symmetry, and that composition with
| Symmetry-breaking predicates | the do-nothing permutation does not change a symmetry.
The composition of symmetries is associative, and every
symmetry has an inverse. However, the composition operation
R is often not commutative. An example is given by the six
’M@I permutational symmetries of an equilateral triangle: 1) the
Soledty | bakimeksclrer do-n_othing symmetry; 2) t_hree vertex swaps; and 3) two cyclic
: : rotations—counterclockwise and clockwise.

Definition 2.1.1 (From Abstract Algebra)A groupd is a set
with a binary operation (“multiplication”) defined on it that has
the following three properties:

« the operation is associative, i.&q,b,c € G (aob)oc =

ao (boc);

* there is aunit element € G such thatve € Gaoe =

eoa = a,

Concatenated to | original formula

| Solution of original instancel

Fig. 1. Preprocessing-based flow for symmetry breaking studied in this paper. o f G th . L _1 G h
Our construction of symmetry-breaking predicates improves upon that from or everya € there Is a uniquenversea € suc
[19]. thataoa™' =a loa =ce.
A subgroups a subset of a group that is closed under the group
Our empirical results show significant overall performanc‘@-'o::e;"‘r‘t:;)Xnagr‘?nl?a Iﬁhtzereergo;ir:] gm:gl;tsivlfi)tﬁ respect to the ad
improvements on CNF instances arising in EDA applicationg,. . pie, integ N a group pe .
?itlon operation (0 is the unit element) and positive rationals

as well as on highly randomized, provgply difficult Urquharo m a group with respect to the multiplication operator (1/1
benchmarks [58] that are related to Tseitin formulas [57] us%{the unit element). Group Theory [26] is a major branch of

to prove lower boundsdon the S|dze of resolution proofs'. Twooeﬁbstract algebra [27] and its development in the nineteenth cen-
tensions are proposed to speed up symmetry extraction. nﬁjl’?/ was motivated by groups of symmetries. Such diverse areas

opportunistic symmetry extraction, where only some symmeg e Galois theory describing solvability of polynomial equa-

tries are found. The other extension pursues domain-Specifig,s; the periodic table of chemical elements, and Special Rel-

symmetries and leads to improvements of SAT formulationgiyity involve analyses of groups of symmetries. In this paper,
by adding domain-specific symmetry-breaking clauses. Thyge will only deal with groups of symmetries whose elements
generic symmetry extraction is avoided by creating symmetryan be thought of as permutations of finite sets. This obviously
less SAT instances that can be solved quickly. restricts us to finite groups. A permutation can be represented
The remaining material is organized as follows. Symmetgy cycles, e.g., (23)(567) represents a permutation on a set of at
extraction is described in Section Il and symmetry-breaking isast seven marks (elements). This permutation swaps marks 2
Section lll. Section IV discusses constructions of SAT benclnd 3, cyclically permutes marks 5, 6, and 7 in that order, and
marks. Our empirical results are presented in Section V and flgaves unchanged all other marks, e.g., 1 and 4.
ther extensions in Section VI. Section VII concludes our paper Computational group theory (CGT), which started around

and discusses our future directions. 1911, is one of the oldest and most developed branches of com-
putational algebra [53]. The flourishing of CGT began in the
Il. SYMMETRY EXTRACTION 1960s and great strides were made in the 1990s with the devel-

opment of the GAP package (“Groups, Algebra and Program-

In general, a symmetry of a discrete object is a reversibiging”) [56]. A major source of efficiency in CGT comes from
transformation of its components that leaves the object Wpe notion ofirredundant sets of generatocs a group.
changed. This can be taken as an informal definition, and morepefinition 2.1.2: A set of generatorsonsists of group ele-
rigorous definitions will be given below for specific structuresments such that any other group element can be composed of
Examples include permutations of graph vertices that mgenerators and their inverses. A generatorédundantf it can
edges into edges, rotations of a spatial solid, e.g., a cylindeg expressed in terms of other generators.ik@dundant set
that preserve its shape, as well as the negation of the variablgyeneratorshy definition, does not contain redundant gener-
a in the Boolean formulda + a’)b, since the formula and the ators.

1120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

(Lagrange) Theorem 2.1.3 (from Elementary Group Theori. Colored Automorphism Problems
[26], [27]: The size of any subgroufl of any finite groupG

must divide the size @f. Combinatorial objects are commonly represented by graphs.

. Therefore, we study symmetries of graphs first.
Corollary 2.1.4: For any groufgs with N > 1 elements, any Definition 2.2.1: Given two graphs, aisomorphismis a

irredundant set of generators contaiasmostiog, /N elements. .
Proof: Observe that any proper subgroup must be at Ieal:s{o 1 mapping between the vertex sets of the two graphs that

twice as small compared to the group. Given a set mfedun- Maps edges to edges. Given a grapsymmetry(also called an

dant generators,, ..., z,, consider a chain of subgroups, ?utc:jmorpTlsth a perr?t(j?atmindof its \;]ertmgs tha? m?a.s edges t
for k — 1...n, whereGy, is generated by , . . ., z.. By con- 0 edges. In the case of directed graphs, edge orientations mus

struction, G, is a proper subgroup .1, and as such must P& Preserved. _
be at least twice as small. Therefore, the siz&pf= G must ~ Definition 2.2.2: In the graptautomorphisnproblem, one
be at leasp”.] seeks all symmetr|§§ of a given gra_ph, e.g., in terms of group
For example, thé! permutations ork marks can be gener- 9enerators. Theie.u.smn versmrof_ this problem tests for the
ated by(12) and(12..k) or by (12), (23), ..., (k — 1 k). Thus, Presence of nontrivial automorphisms.
representing groups by sets of irredundant generativays It is known that all graphs, except for an exponentially
ensures exponential compressi@GT provides efficient algo- small family, haveno symmetrieg5, p. 1461]. No general
rithms (due to Sims, Knuth, Babai, and others) for manipulatingorst-case polynomial-time algorithms are known for this
groups represented by sets of generators, without decompigrieblem, but it is commonly believed not to be NP-complete
sion. Therefore, an intelligent algorithm for symmetry extrad33]. Polynomial-time algorithms are available in many special
tion may return a small set of generators rather than list all syigases [5, p. 1511], in particular for graphs of bounded degrees
metries. [37], [3]. Observe that graphs of bounded degree arise in
Definition 2.1.5: A mappingf: G1 — G2 between two many practical applications because the objects involved (logic
groups is ahomomorphisnif and only if for anye € G1 and gates in VLSI chips, facts stored in knowledge bases, etc.)
b € Gi, we havef(a e b) = f(a) o f(b), wheree ando are are interconnected sparsely. In contrast, Boolean Satisfiability
group operations irt; and G+, respectively. A homomorphisminstances of bounded degree, e.g., 3-SAT, are known to be
for which an inverse mapping exists that is also a homomaxtp-complete and 3-SAT instances may be quite difficult in
phism, is called anisomorphism.If an isomorphism exists practice even if every literal participates in only several clauses
betweer(7; and G;, the two groups are calleomorphicAn [52]. Generic algorithms for the graph automorphism problem
isomorphism of a group with itself is calleitomorphismof [42] are based on linear-time partition refinement passes,
that group and can be thought of as a symmetry of the groupsgiowed by backtrack search. A simple version of partition
Automorphisms can be composed, and form a group Unqgfinement completes in three passes and does not require
this operation. - . 1 follow-up backtracking for all but an exponentially small
Itis easy to see that if is a homomorphism, thefi{a™") = family of graphs [5, p. 1513]. However, exponential worst cases

N1 . . : i
fla)~". An |somorph|sm cannot map two dn‘ferent.group .elehave been constructed even for very sophisticated versions
ments to one. Additionally, the notion of isomorphism defin 2], both theoretically and empirically [44]

an equivalence relation and is useful to compare groups form Iy_I_he ranh automorbhism problem mav be constrained b
defined over different sets. In simple terms, isomorphic groups grap P P y y

have “the same structure.” Therefore, when looking for a gro rtex labels—symmetries must map each vertex ir_1to a vertex
of symmetries of some objects, it may be convenient to find th the same label. Label constra|r_1ts are computatlonglly easy
isomorphic group instead. Since groups are often described@3f! €an be formally reduced to plain graph automorphism. La-

sets of generators, it is important to know that isomorphisn§!S are often expressed by integers and called colors (no re-
preserve such descriptions. lation to graph coloring. Another extension is to colorduy-

Theorem 2.1.6: Any group isomorphism maps sets of genBffgraphs—symmetries must map hyperedges to hyperedges
ators to sets of generators, and maps irredundant sets of genéit the same cardinality because no two vertices can map to
ators to irredundant sets of generators. one). The colored hypergraph automorphism problem reduces

Proof: If any element: € G, can be written as a productto the colored graph automorphism via the bipartite graph of the
of elements of a generating set or their inverses ¢, o g, « hypergraph. This graph contains a vertex for each hypergraph
--- 8 g,, then a homomorphisif: G; — G will preserve such vertex and hyperedge, and connects them with edges according
expressions itGi2: f(h) = f(g1) o f(g2) o---o f(gn). Since tothe hypergraph’sincidence relation. Graph vertices in the hy-
every isomorphism has an inverse, any elenlerg G5 can peredge part are painted with a new color, and other vertices
be mapped back t@';, where its preimage can be decomposeetain their original colors.
into a product and then mapped backdg. This constructs a Brendan McKay implemented a practical algorithm for graph
decomposition of: into a product of the images of elements ofutomorphism [42] in a software package called NAUTY [43],

a generating set iv; and their inverses. which has been continually improved for the last 20 yéars.
Now, consider a pair of sets of generators that are mappedaUTY has been integrated into the CGT system GAP [56]
each other by an isomorphism, they must have the same cagimeans of the GRAPE package [55]. This integration enables
nality. Assume that one of them has a redundant element t@gicient group-theoretic operations on the results returned by

can be expressed in terms of remaining elements. Since SUCR@UTY and facilitates some of our proposed algorithms. In
expression is preserved by an isomorphism, the image of this

element must be redundant in the other set of generatorsl 2NAUTY version 2.0 was released in 2001.

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1121

1998, Mankuet al.[40] claimed speed-ups over a pre-2.0 vetinearly in terms of the number of vertices, more economical
sion of NAUTY in the context of hardware verification. How-constructions (see below) can significantly reduce run-time.
ever, their code is not generic (built into a larger system) andDespite being impractical, the construction from [18] was ap-
is no longer supported. Finally, we observe that the run-time pérently the first to introduce fundamental elements, now used
existing graph automorphism programs, e.g., NAUTY, typicallpy more competitive constructions, including ours. We empha-
increases with growing numbers of vertices and symmetry gesize as particularly important:

erators found, but may decrease with growing numbers of vertex « the modeling of variables by pairs of positive-literal and

colors and, sometimes, graph edges. negative-literal vertices;
¢ the modeling of each clause by a vertex connected to re-
C. CNF Symmetries via Graph Automorphism spective literal vertices by edges;

) . .+ connecting positive- and negative-literal vertices to en-
The problem of extracting symmetries of a CNF formulais ¢5,ce Boolean consistency.

reduced to the colored graph automorphism problem. The main, ygitional useful elements were introduced in [19, p. 7]:
idea behind such reductions is to find a colored graph whose
symmetry group is isomorphic to the symmetry group of the
CNF formula. Related constructions are described in [18] and
[19] for permutational symmetries, and we draw upon them in
our work. Consider a CNF formula with™ variables and” .) ; . g .
; . . this graph: vertices representing positive literals, those
clauses, of which(; are binary and”,, have two or more lit- . . . :
. : representing negative literals, and those representing
erals (clauses with fewer than two literals can be removed by

. . u . clauses. Graph automorphisms are constrained to always
preprocessing). In quotations, the word “theories” refers to CNF
formulas. From [18, p. 3]: map nodes to other nodes of the same color. We also add

edges from each literal to each clause that it appears in.
Now consider reducing symmetry extraction to graph These edges (together with the node colorings) guarantee
isomorphism. We show the mapping for propositional the- that automorphisms of the graph are the symmetries of the
ories (...). First note that we can “type” the nodes in the theory. Footnote 5 For efficiency we special-case binary
graphs, and only allow isomorphisms which preserve type clauses by representing A y with a link directly from
(..), without increasing the difficulty of the isomorphism ;- o 4 (instead of creating a node for the binary clause
problem. We use five types of nodes: nodes for positive lit- gpg linking = and y to it). This is important because
erals, nodes for negative literalayersenodes, nodes for some of the instances we consider have a huge number of
clauses angjoal nodes. We first link (the node for) each pjnary clauses and some of the algorithms that follow are
literal p to an inverse node and then link this inverse node guadratic, or worse, in the number of nodes.
to (the node forj-p. These links ensure that any graph iso- The reference [Crawford, 1992] in this quotation is the same
morphism preserves negation. We then create a node fops reference [18] in our paper, but the construction appears dif-
each clause and linkitto the literals appearing in the clause ferent from that cited abovieIn fact, this formulation seems
These links force graph isomorphisms to map clauses toyg omit the enforcement of Boolean consistency. This leads to
clauses. Finally, recall that we are required to firtehich ~ the generation of many spurious symmetries. For example, the
mapsp to ¢. To force this we create two copies of the graph formula (@ + b) has two symmetries: 1) the do-nothing sym-
for the theory. Inthe first we give the typegoaland inthe metry and 2) the transpositiont(). The graph built by the above
second we givg the typegoal. This typing forces any iso- procedure has two positive-literal vertices, two negative-literal
morphism between the two graphs to maip g. One can vertices and one clausal vertex connected to the positive-literal
then show that an isomorphism between the graphs existgertices by two edges. Since no negative literals are used, the
if and only if the theory contains a simple symmetry map- respective vertices are disconnected and can be mapped to each
ping p to g. other even if positive-literal vertices are fixed. There are four
The author then concludes that thecision versiorof the symmetries. One of them is the swap (transpositiors) afidb
CNF symmetry detection problem is polynomial-time solvablgith ¢ andb fixed. It violates Boolean consistency. Notably, in
ifthe length of the longest clause and the number of occurrenges, this construction is described in Section VII on empirical
of the most common literal are bounded by a constant. Thatr&uh:s' next to a discussion of pigeonh0|e ap[qheens bench-
because the degree of graph vertices is bounded by that consiaagks. However, it produces spurious symmetries even when
in which case, the graph automorphism problem is poly-timgplied to pigeonhole benchmarks, starting with hole-2.
solvable [5], [37]. If applied literally, the proposed construction On the positive side, this construction produces a graph with
only addresses symmetries that mejo ¢ for particularp and 2 4+ ', vertices—a marked improvement over [18]. We also
g, rather than arbitrary symmetries. In order to find even a singieund very useful in practice the idea to model each binary
nontrivial symmetry, one may need to traverse all pairs. Thugause by one edge rather than by one vertex and two edges.

no isomorphism of symmetry groups is claimed in [18], angihe proposed construction can be corrected by adding, for each
no empirical results are reported. Additionally, we observe that

for a formula withV variables and” clauses, this construction .)
3Both papers [18] and [19] are downloadable [Online] from http://cite-

produces a graph V_’itBV + C vertices. Given that run-time seer.nj.nec.com/cs and also from http://www.cirl.uoregon.edu/crawford/pa-
of graph automorphism programs, e.g., NAUTY, grows supégers/papers.html .

The input theory is converted into a graph such that the
automorphisms of the graph are exactly the symmetries
of the theory. This is done using the construction in
[Crawford, 1992]. There are three “colors” of vertices in

1122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

variable, a vertex of color 4 and connecting it to the positive- Clauses:

and negative-literal vertices for the same variable (these nodesg((ll i; I;’))
were calledinversenodes in [18]). We implemented this cor- ¢ (343
rected version, and report empirical results for it. Similar to [18],

the reduction from [19] and its corrected version cannot find

phase-shift symmetries because it colors positive and negativeSymmetry:
literals with different colors. (ID@3)(23)(AB)

In this paper, we propose several reductions of CNF sym-
metry extraction to graph automorphism, all of which allow
extracting phase-shift symmetries and their compositions with
permutational symmetries. One of our constructions produde$ 2. CNF formula with three clausest B, andC,—and three variables

. . . . IS converted into a bicolored graph for symmetry extraction purposes. The
2V + C vertices and never finds spurious symmetries, but I&io-literal clauseC is represented by one edge (double-line) while larger
quires double edges that are not supported by the graph audtasesA and B are represented, each, by a vertex and three edges. Any
morphism software NAUTY [43] used in our experiments. Ansymmetry must mag. +— C, and therefore, this instance has only one
other proposed construction produ@és+ Cy + min{Cs, V'} nontrivial symmetry(11)(23)(23)(AB).
vertices and never finds spurious symmetries. The third con-
struction producegV + Cy vertices, is implementable with edge into two edges by an added vertex of color 3 (one per
NAUTY, produces no spurious symmetries on our benchmarksjge). Alternatively, we can split binary-clause edges, which
and allows a trivial check for spurious symmetries in generah some cases may be a better option. In fact, we can split
Since this construction is often the fastest in practice, we chéine less numerous of the two types of edges, which yields
acterize CNF formulas on which it produces spurious symmeV + Cy + min{Cs, V'} vertices. Because three colors are
tries and show how spurious symmetries can be removed. used, this construction is referred to as MIN3C.

We first preprocess a given CNF formula to remove any A far less obvious solution isot to make an explicit distinc-
clauses with fewer than two literals. If there is an empty clausion between the two types of edges, but represent both Boolean
the formula is immediately declared unsatisfiable and thlmnsistency and binary clauses by single edges. Since we first
search for the symmetries of the formula becomes pointlessd#scribed this construction at the 2002 Design Automation Con-
there are one-literal clauses, they can be eliminated in lindarence, we refer to it as DAC’'02. Fig. 2 shows an example. In
time by repeatedly 1) recording implied truth assignmentgeneral, there ar&l” + C' vertices, but the analysis of this con-
[clause(a) impliesa = 1, clause(a) impliesa = 0]; 2) struction is far more complex than that of the constructions de-
eliminating the one-literal clauses; 3) substituting the impliestribed above. However, our efforts are justified by the often-su-
values of relevant variables, thus eliminating the variables; apdrior empirical performance of this construction. Before we
4) simplifying each affected clause independently. This procgs®ceed with formal results, let us articulate the correspondence
will either prove the original formula satisfiable/unsatisfiableyetween 1) the variables and clauses in a given CNF formula and
or result in a smaller formula where every clause has at le@3tthe vertices and edges of the bicolored graph we build. Every
two literals. variable corresponds to exactly two vertices of color 2. Every

Given a CNF formula where every clause contains at least twertex of color 2 corresponds to a variable, and every vertex of
literals, we represent every variable by two vertices that correslor 1 corresponds to a clause. Every clause with more than two
spond to its positive and negative literals. We represent evditgrals corresponds to a vertex of color 1, and every two-literal
nonbinary clause by a single vertex, and connect that vertexclause corresponds to an edge between two vertices of color 2.
the vertices representing literals in that clause. Binary clausHsere are no edges connecting vertices of color 1, but every
are represented by double edges connecting their respectivevitrtex of color 2 is connected to that of its complement literal
erals. Clausal vertices are painted color 1 and literal vertickg an edge, and there can be edges connecting pairs of vertices
with color 2. Since vertices representing positive and negatigédifferent colors.
literals in our graph are of the same color, we need to ensureDefinition 2.3.1: A circular chain of implicationover the
Boolean consistency and mate vertices of opposite literals Wgriablesz, x», ...,z isaset ofV binary clauses equivalent
single edges. Observe that no symmetry can map a single edgetq;; = v2)(v2 = vs3) ... (yn—1 = yn~)(yn = y1), where
a double edge, thus, there is no risk of mapping a Boolean cdor eachk from1..N, y, = zy, O yp = T.
sistency edge to a binary-clause edge. This construction result®bserve that the claugg;. + yx+1) is equivalent tdy, =
in a graph witl2V + C vertices. It corrects the reduction fromy;. ;) and also tdgx+1 = k). In terms of specific values, we
[19] without increasing vertex counts and has the added advéwave(y, = 1) = (yr+1 = 1) and(yr+1 = 0) = (yx = 0).
tage of extracting phase-shift symmetries (subsets of negakext eachk, one of the two possible values ¢f triggers an
variables, e.g.¢ — @) and their compositions with permuta-implication sequence, and, thus, unambiguously determines the
tional symmetries. We refer to this construction asEDGES. values of all literals involved. In the remaining case, none of

Unfortunately, the graph automorphism program NAUT Yhe variables assume the value that triggers an implication in the
[43] used in our experiments cannot represent double edgescular chain. Therefore, a circular chain of implications allows
Therefore, we must seek another mechanism to distinguishly two satisfying solutions.

Boolean consistency edges from binary-clause edges. ATheorem 2.3.2: Assume that a given CNF formula does not
straightforward solution is to split every Boolean consistengontain a circular chain of implications over any subset of its

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1123

variables. Then, with respect to the proposed construction ibfand only if 1) vertices are mapped to vertices of the same
the colored graph from a CNF formula, the symmetries of tlelor and 2) edges are mapped to edges. This is consistent with
formula correspond one-to-one to the symmetries of the gragbNF symmetries’ mapping variables to variables and clauses

The practicality of the assumption is discussed after Corollawith more than two literals to such clauses. However, it is more
2.3.4 as follows. difficult to prove Boolean consistency, i.&.,a,b (a — b) =

Proof: It is not hard to see that every permutational sym — b), wherea andb areliterals. This is easy in the absence of

metry of the initial formula (i.e., a permutation of variables tha-literal clauses because all edges connecting vertices of color
maps clauses to clauses) corresponds to a colored symmetrg afe Boolean consistency edges of the faam Since every
the bicolored graph we built. Such a graph symmetry will maguch edge can only map to another such edge,> b) leave
vertices to vertices of the same color and edges to edgesninchoice foraa but to map tobb becauseb is the only edge
particular, ifa maps tob, thena maps tob and the edgea that connect$ to another vertex of color 2. This simple proof
maps to the edgkh. Edges between vertices of color 2 will al-also applies if the two-literal clauses are represented by vertices,
ways map to edges between vertices of color 2, and the sarather than by edges as in Fig. 2.
can be said about edges between vertices of different colorsThe difficulty in the general case is due to our modeling of
Phase-shift symmetries of the original formula also correspotwlo-literal clauses by edges that connect vertices of color 2.
to colored graph symmetries. For examples> a willinduce a Such edges may potentially map to Boolean consistency edges,
swap between the verticesanda, leaving the edgea in place and our task is to prove such a mapping impossible.
and swapping any existing edgesandac for a clausal vertex We first present the following lemma.
c. An immediate consequence is that every composition of per-Lemma 2.3.3:Let M = (V, R) be a perfect matching on
mutational and phase-shift symmetries of the original formukafinite vertex seti” and let its edged? be colored red. Let
correspond to a colored graph symmetry. For example,i$f F = (V,G) be some graph ol. Let its edges7 be colored
symmetric tob, thena — b anda +— b so that the edgeb maps green, whereR NG = () . LetT’ = (V, R, G) be the graph on
to ab. V formed by taking the disjoint union of edge sé&andd. In

Our next observation is that given a colored graph symther words]' = (V, E), whereE = RU G.
metry that corresponds to some CNF symmetry, we canlf I' has no cycles with edges of alternating colors, teegry
always uniquely reconstruct the CNF symmetry as long asitomorphism of' mustpreserve the color of every edge.
the correspondence between variables and vertices of color 2 Proof: Supposes is an automorphism of under which,
is available. This is also shown by first considering purelw.l.o.g., a red edge, maps to a green edgg. Since the red
permutational symmetries, then phase-shift symmetries, agdpges form a perfect matching, the green eglgenust share
then their compositions. A graph symmetry that correspondach of its end points with exactly one red edge. Let these be
to a permutational CNF symmetry must map positive-literaindr’, respectively. Since, maps tay, there must be two dis-
vertices to other such. Therefore, we can restrict the graphct edges, each of which shamsactlyone end point withrg,
symmetry to this subset of vertices, thus producing a permuta-map intor; andr,” undero. Furthermore, these two edges
tion of CNF variables. A graph symmetry that corresponds toaust be green edges, since red edges cannot share end points
phase-shift CNF symmetry must either preserve a given litewith other red edges. Call these edgesindg,’. We now have
vertex or map it to the complement-literal vertex, preservirig/o paths of alternating colorg, and 1. An edge inP is the
the edge between them. Therefore, a list of positive-literatimage (of opposite color) of the corresponding edgé&in
vertices that are not preserved uniquely identifies a phase-shift
CNF symmetry. To reconstruct a CNF symmetry that is a Py =(91",70,91) and Pr = (11, 90,7m1).
composition of permutations and phase-shifts, we distinguish, . :
1) positive-literal vertices that map to positive-literal vertice! andg mustshare their other end p0|/nts (that are not shared
from 2) positive-literal vertices that map to negative-literal verY ith 7o) V,V'th two red edges, say, andr% I turr_1, Images of
tices. In each case, a given CNF variable is mapped to anothipfd72 Must be green edges andy,” extending from the
variable, possibly with a follow-up negation. By ignoring théermlnals of the pattiy . In effect, we have extended patfi
follow-up negations, we reconstruct the purely permutationgpdlD 1 10
component of the CNF symmetry. The phase-shift component,,
i.e., variables to be negated before the permutation is applied, 0

can be reconstructed by listing positive-literal vertices that M@ peating the foregoing argument ferandgs,’ and continuing

= (ro', 91,10, 91,7m2) and Pi = (g2',71', 90,71, 92)-

to negative-literal vertices. in this manner, we can “grow” paths of alternating colors
Perhaps, the least trivial property of the proposed reduction
to graph automorphism is that every colored symmetry of the Po=1(...,93,m2,91,70,91,72, 93, - .)

graph corresponds to a symmetry of the original formula. To

prove this, we show that the reconstruction procedure from thad

previous paragraph can be successfully applied to any colored

graph symmetry. A vertex permutation is a colored symmetry Py=(....r3', 92", 71", 90,11, 92,73, . .).

4f one should perform negatiorafter the permutation is applied, then the By the finiteness of’, one of the pqths must eventually close
negative-literal vertices that map to positive-literal vertices should be listed. on itself (when the two edges extending the current path turn out

1124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Spurious
symmetries:

to be the same). This will give us a cycle of alternating colors, Correct
thus contradicting the hypothesis. O symmetries:

The proof of Theorem 2.3.2 is concluded as follows. Consider () (abbcca)
the graph representati@i of a CNF formula that includesnly EZCZ;EZ?Z% Ezgfffg)(ba)
the vertices representing literals, Boolean consistency edges,(aﬁ)(c—)(éb) (ab)(ac)
and edges representing binary clauses. (We do not consider Ver (pp)(ac)(ac) (ac)(be)
tices representing nonbinary clauses and edges connecting lit-(c¢)(ba)(ba) (be)(ba)

eral vertices to them since we have already shown that they do
not produce spurious symmetries). In this graph, Boolean cdrg- 3- IIIust(atlon of spurious symmetries: A C_NF formula anq its grgph.

. d d to the red edges in Lemma 2.2.3 Boolean consistency edges are shown by double lines, but are |nd|$t|ngU|shabIe
S'_Stencye ges corresponato the g i other edges by graph automorphism software NAUTY which cannot
binary clause edges correspond to the green edges. Itis clearithadle double-edges. Therefore, the graph has 12 symmetries: 6 rotations
the Boolean consistency edges form a perfect matching, siffed 6 axial flips. Only 6 of them—3 rotations an(_j 3 flips—preserve Boolean
h I . d h . db nsistency edges and correspond to symmetries of the CNF formula. The
they cover all vertices, and each vertex Is covere y exa aining 6 symmetries are spurious (the first three spurious symmetries
one edge. shown are rotations and the remaining three are axial flips).

Finally, we observe that a cycle of alternating edges in the
above graplti corresponds to a circular chain of implications combinational circuits because combinational circuits are
in the CNF formula. A cycle of alternating edges is equivalent directed acyclic graphs.

to the following clauses: « The presence of circular chains of implications does not
invalidate our construction. As can be seen from the proof
(z1+x2) (22 +72) (T2 +3) (23 +3) . . . (4 + 1) (71 +21). of Theorem 2.3.2, the only potential problem is spurious
graph symmetries that do not correspond to any CNF sym-
Since any clause of the forfa + a) is true, we can eliminate all metries. Since any application of Theorem 2.3.2 must con-
such clauses, and the resulting formula is the following circular vert symmetry generators returned by a graph automor-
chain of implications: phism problem into CNF symmetries, any spurious sym-
metry generators can be identified with minimal compu-
(21 = m2) (22 = @3) (73 = 24) ... (¥0 = 21). tational effort and minimal programming overhead.

_ _ « If some, but not all, symmetry generators are spurious,
We have, thus, proved that a spurious symmetry (mapping a the nonspurious generators are still useful for symmetry

clausal edge to a Boolean consistency edge) is possiatel breaking, while spurious generators can be discarded (this
only if a circular chain of implications exists. This is a contra- approach may not be ideal because spurious symmetries
diction. 0 can generate nonspurious ones).

The 2x EDGES reduction avoids spurious symmetries alto- « Since the product of nonspurious symmetries cannot be
gether by connecting positive-literal vertices to negative-literal spurious, there can be no spurious symmetries at all if none

vertices with double edges. . of the symmetry generators are spurious. In other words,
Theorem 2.3.4: Under the assumption of Theorem 2.3.2, the if SpriOUS Symmetries exist, at least one generator must

symmetry groups of the CNF formula and the bicolored graph pe spurious.

are isomorphic. + Once a spurious symmetry generator is found, a circular
Since a one-to-one homomorphism must be an isomor- chain of implications can be identified in linear time along

phism, one only needs to verify that the one-to-one mapping the lines of analysis in the proof of Theorem 2.3.2. Since

constructed in the proof of Theorem 2.3.2 is a homomorphism. every circular chain of implications implies two sets of
Corollary 2.3.5: Under the assumption of Theorem 2.3.2, values for variables involved, circular chains of implica-

sets of symmetry generators of the bicolored graph correspond tions can beemovedy introducing one Boolean variable

one-to-one to sets of symmetry generators of the CNF formula. o represent the two sets of values (old variables get elim-
In terms of practicality, we observe that failure of the assump- inated).

tion in Theorems 2.3.2 and 2.3.4 implies that in every satisfying « |n app"cations where many SpriOUS symmetries are ex-

assignment, the variables involved in the circular chain of impli- pected and can slow down symmetry extraction, circular
cations can assume one of two different sets of values (models). chains of implications can be identified in linear titne-
We illustrate this by using the CNF formula+b)(b+¢)(c+a), fore symmetry extractigmising depth-first search on a di-

which allows only two models (000 and 111) but has six sym- rected graph of binary clauses.

metries (do-nothing, two three-cycles, and three variable swapsyhile the correctness of representing binary clauses with
combined with negation of all variables). Yet, the graph predges (Theorem 2.3.2) appears much harder to prove compared
duced by our construction is a hexagon having 12 symmetrigsthe correctness of graph reductions proposed earlier, our
(the so-calleddihedral groupDs[26], [27]). Half of those are construction reduces the number of vertices in the graph by the
spurious as explained in Fig. 3. number of binary clauses in the CNF instance. Application-de-
From the practical standpoint, we note the following. rived CNF instances typically have a significant proportion of
« Circular chains of implications do not arise in standardinary clauses, and our construction DAC’02 leads to nontrivial
SAT models from many application domains. For exrun-time savings in practice. Table | summarizes the main
ample, they do not appear in equivalence checking pfoperties of various reductions of CNF symmetry extraction

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1125

TABLE |
COMPARING REDUCTIONS OFCNF SYMMETRY EXTRACTION TO GRAPH AUTOMORPHISM V' IS THE NUMBER OF VARIABLES IN THE ORIGINAL CNF INSTANCE, C'
Is THE NUMBER OF CLAUSES, C5 IS THE NUMBER OF BINARY CLAUSES, C'y = C — C5. THE 2 x EDGES REDUCTION IS NOT PRACTICAL WITH
NAUTY BECAUSE NAUTY D OESNOT SUPPORTDOUBLE EDGES IN GRAPHS CNF INSTANCES FORWHICH THE DAC’02 REDUCTION
FINDS SPURIOUS SYMMETRIES ARE CHARACTERIZED IN THEOREM 2.3.2

Reduction || #Colors #Vertices Detects Finds spurious || Practical with
type phase-shifts? | symmetries ? || NAUTY[43]?
[18] 5 6V+C No No No
[19] 3 2V 4+ Cx No Many+often No

2xEDGES 2 2V +Cy Yes No No

MIN3C 3 2V +Cy Yes No Yes
+min{C,,V}
DACO02 2 2V +Cy Yes In rare cases + Yes
trivial check 3

to graph automorphism. Additionally, we empirically comparties in hole-n benchmarksid(n + 1)! because the symmetry
MIN3C, DAC’02, the reduction from [19], and a correctedyroup is the Cartesian product 8f, (holes can be permuted
version of that reduction. In the corrected version, to ensuaebitrarily) andS,, 1 (pigeons can be permuted arbitrarily). For
Boolean consistency, we add one extra node of color 4 for each= 7, this yields 203 212 800, which rounds offZ@®3e8. Fur-
variable and two edges connecting that node to the positive gahdrmore, we make the following observations.
negative literals of that variable.

Our testbed includes five sets of difficult benchmarks with
nontrivial symmetries:

« Except for the second (Urq) and the last (microprocessor
verification) benchmark sets, the reduction from [19] pro-

) o duces more symmetries than other reductions. This is be-
1) the hole-n benchmark set, available within the DIMACS cause it does not enforce Boolean consistency, and finds

collection [22]; spurious symmetries. Urq benchmarks do not have permu-
2) randomized benchmarks Urq proposed by Urquhart [S8], tational symmetries, as checked by the corrected version

based on parity checks and expander graphs; _ of [19]. The reduction from [19] cannot extract phase-shift
3) randomized benchmarks grout derived in this paperinthe symmetries.

context of global grld—bgsed'rout'lng for VLSE, » Except for the second and the last benchmark sets, the
4) benchmarks FPGA derived in this paper in the contextof reductions MIN3C, DAC'02, and corrected [19] find the

detailed routing for field-programmable gate arrays; same numbers of symmetries. In particular, those three
5) recent benchmarks from the microprocessor verification yeductions produce correct numbers of symmetries for

domain [60]. hole-n instances. This is consistent with the reduction

Descriptions of all benchmark sets except for the Urq and mi- from [19] being erroneous, as it discovers many spurious
croprocessor verification sets are given in Section IV. Our im- ~ symmetries. In fact, the uncorrected [19] does not finish
plementation of symmetry extraction uses the program NAUTY within the specified time limit on the FPGA instances,
[43] version 2.0, shipped with the GAP package [56] version 4, probably because it detects large numbers of spurious
release 3. Table Il compares sizes of graphs produced by four symmetries.

constructions. We make the following observations. * Except for the second (Urg) benchmark set, the run-times
of MIN3C and corrected [19] are comparable. This is ex-

pected because they generate equal numbers of vertices
and edges, differing only in the number of colors. The run-
times for Urg benchmarks are different because MIN3C
leads to the discovery of more symmetries.

« DAC'02 is generally the fastest reduction. No other reduc-
tion generates fewer vertices, and DAC’02 does not dis-
cover any spurious symmetries on given benchmarks as
its results always agree with MIN3C.

» Because all of our benchmarks contain more binary
clauses than variables, MIN3C generates exactly as many
vertices and edges as the corrected version of the reduc-
tion from [19]. However, MIN3C produces one color less
and extracts phase-shift symmetries.

» Graphs produced by MIN3C always have more vertices
than those produced by DAC'02.

» DAC’02 and [19] produce graphs with the same numbers
of vertices, but DAC’02 generates more edges because it
ensures Boolean consistency. We explicitly verified that the symmetries discovered by

Table Ill compares symmetry extraction run-time and thlIN3C and DAC’02, but not by the two versions of [19],
rounded number of symmetries (sizes of symmetry groupsle phase-shift symmetries and their compositions with per-
discovered with each reduction. All run-times are recorded @Autational symmetries. An implementation of the DAC’02
a Linux workstation with a 1.2-GHz AMD Athlon and 1 GB ofreduction is available in our software package Shatter that tar-
DDR RAM. gets symmetry extraction and symmetry breaking for SAT. This

Several entries of the table with sizes of symmetry groups cpackage can be downloaded from http://gigascale.org/book-
be verified independently. For example, the number of symmahelf/Slots/shatter/ .

1126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

TABLE I
COMPARISON OFREDUCTIONS IN TERMS OF SIZES OF GRAPHS PRODUCED
Instance vari- | clau- Previous work Our work
ables ses [19] [19] corrected MIN3C DACO02

#vert | #edges | #vert | #edges || #vert | #edges | #vert | #edges
hole07 56 204 120 252 164 364 164 364 120 308
hole08 72 297 153 360 225 504 225 504 153 431
hole09 90 415 190 465 280 675 280 675 190 585
holel0 110 561 231 660 341 880 341 880 231 770
holel1 132 738 276 858 408 1122 408 1122 276 990
holel2 156 949 325 1092 | 481 1404 481 1404 325 1248

Urq3.5 | 46 | 470 || 560 | 2910 | 606 | 3002 | 606 | 3002 | 560 | 2956
Urq4_5 74 | 674 || 840 | 4270 | 914 | 4418 | 914 | 4418 | 840 | 4434
Urg5.S | 121 | 1210 || 1450 | 7546 | 1571 | 7788 | 1571 | 7788 | 1450 | 7667
Urg6.5 | 180 | 1756 | 2122 | 10772 | 2292 | 11132 | 2292 | 11132 | 2112 | 10952
Urq7.5 | 240 | 2194 || 2672 | 13194 | 2912 | 13674 || 2912 | 13674 | 2672 | 13434
grou3.3-01 | 864 | 7592 || 2306 | 9024 | 3170 | 10752 [3170 | 10752 | 2306 | 9888
grout3.3-03 | 960 | 9156 || 2558 | 10740 | 3518 | 12660 | 3518 | 12660 | 2558 | 11700
grout3.3-04 | 912 | 8356 || 2432 | 9864 | 3344 | 11688 | 3344 | 11688 | 2432 | 10776
grout3.3-08 | 912 | 8356 | 2432 | 9864 | 3344 | 11688 | 3344 | 11688 | 2432 | 10776
grout3.3-10 | 1056 | 10.8k || 2796 | 12564 | 3852 | 14676 || 3852 | 14676 | 2796 | 13620
fpga23.21 | 725 | 6610 || 1954 | 12154 | 2679 | 13604 || 2679 | 13604 | 1954 | 12879
fpga23.22 | 759 | 7172 | 2046 | 13222 | 2805 | 14740 | 2805 | 14740 | 2046 | 13981
fpga24.22 | 792 | 7546 | 2134 | 13860 | 2926 | 15444 | 2926 | 15444 | 2134 | 14652
fpga24.23 | 828 | 8165 [2231 | 15042 | 3059 | 16698 | 3059 | 16698 | 2231 | 15870
2pipe_looo | 834 | 7026 || 3851 | 14925 | 4685 | 16593 || 4685 | 16593 | 3851 | 15759
2pipe2.000 | 925 | 8212 || 4133 | 17231 | 5058 | 19081 || 5058 | 19081 | 4133 | 18156
2pipe 861 | 6695 || 2621 | 12841 | 3482 | 14563 || 3482 | 14563 | 2621 | 13702
3pipe | 2392 | 27533 || 7428 | 53620 | 9820 | 58404 | 9820 | 58404 | 7428 | 56012

[ll. SYMMETRY BREAKING LL(7) = /\ C(m,i) (2

. . . 1<i<
Symmetries induce equivalence classes on the set of truth as- ==

signments (in group theory, they are caltedits). Specifically, . i .

given a satisfying (unsatisfying) truth assignment, all other truth C(m,i) = /\ (xj = 7)) | = (z; < 7). ©)
assignments to which it can be mapped by symmetries, must lsi<i

also be satisfying (unsatisfying). Therefore, for a complete SAT Example: Consider the formuléa+¢)(b+¢)(a+b+c)(a+
solver it suffices to reason about one representative from egghfrom [19]. This formula has two symmetriegb) and the

such class. This restriction can be implemented by selectigg-nothing symmetry. We computeL(x) for = = (ab) ac-
unique representatives from every equivalence class and addigHing to the equations above.

clauses that are only satisfied by those representatives. Aleor; = 1 in (3), the null predicatg/\,.._,(z; = z7)] is
earlier construction of such symmetry-breaking clauses [19]tigie. Also, sincer(a) = b, we haveC(, 1jJ:<7’(a <b) !
based on a given ordering of variables. Its main ideas are 1) tq=or; = 2, C(r,2) = [(a = b) = (b < a)].

order all elements from the solution space lexicographically For; — 3, O(m3)=[la=bAb=a)= (c<c).
and 2) to select the lexicographically smallest element from C(w,2) and C(r,3) are tautologies, therefore, we have

each equivalence class as its representative. LL(G) = (a < b) as the symmetry-breaking predicate for this
formula. Computing these predicates for the do-nothing for-
A. Previous Work mula also results in a set of tautologies which can be removed

QM simplification. However, we note here thab general
simplification procedurés discussed in [19], so any lex-leader
et dicates derived from the equations above would have to be
explicitly pruned to resolve tautologies. The constructions we
propose require no simplification and use fewer clauses than
the construction from [19] without simplification.

Theorem 3.1.1 [19]: For a grougr acting on truth assign-
ments, the truth assignments that saticly(G) are the lexi-
cographically smallest representatives from each class of truth
LL(G) = /\ LL(r) (1) ?ssig(r;ments that can be mapped to each other by symmetries

romG.

The lex-leader symmetry-breaking predicates describ
by Crawford et al. in [19] are built for a given group of
permutational symmetries. Such predicates are conjuncti
of smaller predicates for individual symmetries. Below, rlet
be the number of variables afd.(G) be the lex-leader sym-
metry-breaking predicate for the grodp. Boolean variables
x}, are traversed according to the original ordering

TeG

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1127

TABLE Il
COMPARISON OFREDUCTIONS IN TERMS OF SYMMETRY EXTRACTION RUNTIME AND ROUNDED NUMBERS OF DISCOVERED
SYMMETRIES. RUNTIMES ARE IN SECONDS ON A1.2-GHz AMD A THLON WITH LINUX

Instance vari- | clau- Previous work Our work

ables | ses [19] [19] corrected MIN3C DACO02
time | #symm | time | #symm || time | #symm | time | #symm
hole07 56 204 0.25 | 1.47e70 0.0 2.03e8 0.0 | 2.03e8 0.0 2.03e8
hole08 72 297 035 | 1.24e77 | 0.47 | 1.46el0 0.1 1.46e10 0.0 1.46e10
hole09 90 415 0.73 | 5.6977 | 0.23 | 1.32e12 0.0 | 1.32e12 | 0.05 | 1.32e12
hole10 110 | 561 2.0 4.06e77 | 0.12 | 1.45¢14 || 0.15 | 1.45e14 | 0.08 | 1.45e14
holel1 132 | 738 338 | 1.53¢78 | 0.32 | 191el6 || 0.19 | 1.91el6 | 0.12 | 1.91el6
hole12 156 | 949 6.66 | 1.61e78 | 0.24 | 2.98e18 || 0.39 | 2.98¢18 | 0.13 | 2.98el18

Urq3.5 46 470 0.05 1 0.21 1 0.51 | 5.37e8 0.39 5.37e8
Urg4_5 74 674 0.0 1 0.15 1 1.56 | 8.8el12 1.6 8.8e12
Urg5-5 121 | 1210 0.12 1 0.15 1 14.16 | 4.72e21 | 13.73 | 4.72e21
Urq6-5 180 | 1756 0.53 1 1.2 1 70.29 | 6.49e32 | 63.37 | 6.49e32
Urq7-5 240 | 2194 1.06 1 1.62 1 189.0 | 1.12e43 | 175.99 | 1.12e43

grout3.3-01 | 864 | 7592 | 109.1 | 8.28e77 | 16.36 | 8.71e9 | 15.44 | 8.71e9 4.86 8.71e9
grout3.3-03 | 960 | 9156 || 173.1 | 4.67¢77 | 32.2 | 6.97e10 || 28.02 | 6.97e10 | 9.07 | 6.97¢10
grout3.3-04 | 912 | 8356 || 143.5 | 1.10e78 | 21.85 | 2.61e10 || 19.65 | 2.61e10 | 7.01 | 2.61el0
grout3.3-08 | 912 | 8356 || 143.6 | 1.80e78 | 26.04 | 3.48e10 || 22.23 | 3.48¢10 | 7.09 | 3.48¢e10
grout3.3-10 | 1056 | 10.8k || 263.6 | 1.03e78 | 42.54 | 3.48e10 || 33.03 | 3.48¢10 | 10.73 | 3.48e10

fpga23.21 | 725 | 6610 || >1000 | — 105 | 1.42¢50 || 106 | 1.42e50 | 40.9 | 1.42e50
fpga23.22 | 759 | 7172 | >1000 | — 123 | 3.40e52 || 126 |3.40e52 | 49.2 | 3.40e52
fpga24.22 | 792 | 7546 | >1000 | — 170 | 8.20e53 || 173 | 8.20e53 | 58.3 | 8.20e53
fpga24.23 | 828 | 8165 || >1000 | — 170 | 1.13e56 || 171 | 1.13e56 | 67 | 1.13e56
2pipe_l.oco | 834 | 7026 || 9.61 2 13.19 2 15.95 3 9.14 3
2pipe2.000 | 925 | 8212 || 12.26 2 21.59 2 2017 | 32 11.15 32
2pipe 861 | 6695 || 3.19 32 7.6 8 728 | 128 321 128
3pipe | 2392 | 27.5k || 72.09 32 | 165.75 8 1632 | 512 | 7095 | 512

EachC(w,1) is then expressed in the CNF form using 1 [39] is not practical and is rather used for an existence proof.

auxiliary variables; = (z; = z7) Also, it does not address non-Abelian groups.
C(n,i) =(eres... i1 = (v < zT)) B. Using Symmetry Generators
=(&1+ e+ +&_1+3 +aT). (4) In this paper, we explore partial symmetry breaking, i.e., we

do not require that symmetry-breaking predicates be satisfied

Due to clauses of growing size, CNF expressions for eablf lex-leaders only (but we do require that all lex-leaders satisfy
LL(7) have®(n?) literals, which may be prohibitively expen- Symmetry-breaking predicates). Like other authors, we compute
sive even for one permutatian with say, 9000 variables (seeSymmetry-breaking clauses on a per-symmetry basis, but con-
Table IV). Also, LL(r) for differentw may contain redundant sider only irredundant sets of symmetry generators (returned by
clauses. To prune redundant clauses, the authors proposedfi@@h automorphism programs), and not the entire symmetry
concept of a symmetry tree, but it does not always prevent @0UpG. This ideawas used in [19] in the context of pigeonhole
dundant clauses and is itself not always prunable to polynomi@stances. By breaking generator symmetries only, one does
size [19]5 not necessarily break all symmetries. However, one can often

The need for more efficient, and also partial symachieve significant pruning because an irredundant set of gener-
metry-breaking has been understood for some time [19], [3f0rs contains “maximally independent” symmetries—none of
[41], but no satisfactory generic approaches have been propoti&in can be expressed in terms of others. The following ex-
that can be fully automated. In a recent paper [39], Luks anple suggested to us by Eugene Goldberg of Cadence Berkeley
Roy show that, even for an Abelian (commutative) symmethabs shows that symmetry-breaking by generators is not com-
group and a given ordering of variables, full lex-leader synilete in some cases.
metry-breaking predicates can be exponentially large. ThisConsider a formula with four Boolean variables, -, 3,
drawback can be avoided by reordering variables, which allo@8dz4 that can be permuted arbitrarily, e.@ei + 22 +x3+4).
polynomial-sized full lex-leader symmetry-breaking predicatede symmetry group$s, can be given by the two generators

for Abelian symmetry groups. However, the construction ifn = (12) andg. = (1234). Assume that, in each equiva-
lence class of truth assignments under those symmetries, we se-

Sin the special case of the symmetry grosip, according to [19], the lect the lexicographically smallest element with respect to the

symmetry-breaking predicate produced using a symmetry tree ha@gizg. Original order of variables, i.ez; is the most significant bit.
Techniques proposed in our paper generate a linear-sized predicate. The Boolean cube is split into five equivalence classes by the

1128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

TABLE IV
CHAFF RUN-TIME ON ORIGINAL SAT INSTANCESIS COMPARED TO THECOMBINED RUN-TIME OF SYMMETRY EXTRACTION AND CHAFF ON INSTANCES WITH
SYMMETRY -BREAKING CLAUSES ADDED. THE RIGHTMOST COLUMN ALSO SHOWS PURE SEARCH SPEED-UP (THAT DOESNOT TAKE SYMMETRY EXTRACTION
INTO ACCOUNT). THE FULL NAME OF BENCHMARK 2DLX_CA_MC IS 2DLX_CA_MC_EX_BP_F. THE NUMBERS OF SYMMETRY GENERATORS AND
MAX CYCLES USED PER GENERATOR (10 OR ALL) ARE SHOWN. THE BENCHMARKS WE GENERATED FOR THESE EXPERIMENTS
ARE AVAILABLE AT HTTP ://GIGASCALE.ORGBOOKSHELHSLOTS/SATBENCH

Instance || Satis- #vars Plain | Time Symmetries Speed-up:
fiable? and CHAFF -out || Extraction | Number | #generators | CHAFF total /

#clauses sec % sec of | cycles \ sec search only
hole07 || UNS 56;204 0.37 0% 0.1 2.03e8 all | 13 0.01 3.32; 36.50
hole08 || UNS 72;297 1.27 0% 0.07 | 1.46e10 all | 15 0.01 || 15.22;94.15
hole09 || UNS 90;415 3.79 0% 0.1 | 1.32e12 all | 17 0.02 || 32.0;204.97
holel0 || UNS 110;561 22.44 0% 0.15 | 1.45e14 all | 19 0.02 132; 1122
holel1 UNS 132,738 212.73 0% 0.18 | 1.91el6 all | 21 0.03 || 1.23k; 7.09k
hole12 || UNS 156;949 >1000 | 100% 0.24 | 2.98e18 all | 23 0.04 —
Urq3.5 || UNS | 46:470 | >1000 | 100% || 0.48 | 5.37e8 | all \ 29 | 1.05 H e
grout3.3-01 SAT 864;7592 19.01 0% 479 | 8.71e9 10 | 26 0.67 3.48; 28.37
grout3.3-03 SAT 960;9156 44.35 0% 8.94 | 6.97e10 10 | 29 0.40 4.75;110.9
grout3.3-04 SAT 912;8356 19.36 0% 6.81 | 2.61el0 10 | 27 0.36 2.70; 53.79
grout3.3-08 SAT 912;8356 21.30 0% 7.14 | 3.48e10 10 | 28 0.67 2.73;31.80
grout3.3-10 SAT | 1056;10.8k 28.18 0% 10.65 | 3.48e10 10 | 28 0.85 2.45;33.15
chnl10x11 || UNS 220;1122 22.17 0% 0.45 | 4.20e28 all | 39 0.11 || 39.91; 210.1
chnl10x12 || UNS 240;1344 81.88 0% 0.61 | 6.04e30 all | 41 0.12 || 111.6;663.0
chnl10x13 || UNS 300;2130 657.61 | 25% 1.28 | 4.50e37 all | 47 0.17 || 454.8; 3.96k
chnll1x12 || UNS 264;1476 207.37 0% 0.75 | 7.31e32 all | 43 0.15 || 231.3; 1.41k
chnll1x13 || UNS 2861742 788.32 | 20% 1.08 | 1.24e35 all | 45 0.16 || 633.5;4.79k
chnl11x20 || UNS 440;4220 >1000 | 100% 4.4 | 1.89e52 all | 59 0.31 — =
fpgal0.08 SAT 120;448 7.56 0% 0.63 | 6.00e71 all | 62 0.05 || 11.15;157.6
fpgal0.09 SAT 135;549 3.80 0% 0.88 | 6.33e77 all | 68 0.03 4.16;113.4
fpgal2.11 SAT 198;968 694.00 | 50% 3.76 | 7.18e77 all | 95 0.06 || 181.6;11.3k
fpgal2.12 SAT 216;1128 80.20 0% 5.31 | 7.44e77 all | 104 0.13 || 14.74;616.9
fpgal2.08 SAT 144560 246.70 | 10% 1.23 | 8.41e77 all | 72 0.08 || 188.4; 3.10k
fpgal2.09 SAT 162;684 885.00 | 80% 1.7 | 2.25e77 all | 79 0.05 || 504.6; 16.4k
fpgal3.09 SAT 176,759 550.00 | 85% 2.57 | 2.56e77 all | 84 0.06 || 208.8; 8594
fpgal3.10 SAT 195;905 >1000 | 100% 4.04 | 5.76e77 all | 93 0.08 - =
fpgal3.12 SAT 234;1242 >1000 | 100% 6.9 | 8.85¢77 all | 110 0.08 — -
2dlx_ca_mc* || UNS | 3250;24.6k 6.54 0% 38.36 4 10 2 6.30 0.15; 1.04
2pipe || UNS 892; 6695 2.08 0% 10.74 128 10 7 1.56 0.17; 1.33
2pipe_1_ooo || UNS 834; 7026 2.55 0% 9.37 8 10 3 1.80 0.23; 1.41
2pipe_2_000 || UNS | 925;8213 3.43 0% 11.14 32 10 5 2.82 0.25;1.22
3pipe || UNS | 2468;27.5k 36.44 0% 463.57 512 10 9 19.65 0.08; 1.85
4pipe || UNS | 5237;80.2k | 337.61 0% >1000 — — — — - —
Spipe || UNS | 9471;195k | 325.92 0% >1000 — — — — — =

action of S, because the number of 1's in truth assignmenexample. They produce the following set of three generators:
is invariant under permutational symmetries. In particular, th{&2), (23), and (34). Our construction proposed below generates
equivalence class of the truth assignment 0101 has six elemetits, symmetry-breaking clausés; < z»), (z2 < z3), and
and the smallest element is 0011. However, if we build symiz3 < xz4), which admit only five truth assignments: 0000,
metry-breaking predicates usigg andg, only, 0101 will sat- 0001, 0011, 0111, and 1111—one from each equivalence class
isfy them because; (0101) = 1001 > 0101 andg-(0101) = underS,. This analysis shows that the particular choice of irre-
1010 > 0101. Thus, such symmetry-breaking predicates selegtindant generating sets is important for symmetry-breaking. In
more than one representative from some equivalence classes.experience, GAP/GRAPE/NAUTY often produce “lucky”
Moreover, conjoining symmetry-breaking predicategfmwers sets of generators that lead to fuller symmetry breaking. Our
of generators does not help in this case becaijse= (-), future research will attempt to explain why that is happening.
g3 = (+), g5(0101) = 0101, andg3(0101) = 1010 > 0101. As shown by our experiments in Section V below, symmetry
Interestingly, for the symmetry grouf,, GAP/GRAPE/ breaking by generators offers an attractive tradeoff between
NAUTY do not produce the two generators used in the aboeffective pruning and small overhead. However, we would

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1129

like to articulate an important pitfall in this direction. Firstly, Multiple Cycles: While single-literal symmetry-breaking
adding symmetry-breaking predicates should not change ttlauses are most efficient (they reduce the solution space by
satisfiability of the original CNF instance. This is ensured b§0%), they are associated with variables whose values do
the fact that symmetry-breaking predicates are satisfied bgt affect satisfiability. After such variables are found and
at least one truth assignment from each class of symmetelominated, other symmetries may remain. Indeed, we can
truth assignments. The lex-leader predicates described abpraduce symmetry-breaking clauses from any one two cycle or
are satisfied by lexicographically smallest truth assignmeritwee-cycle of any symmetry. Yet, clauses of the fgamt- b)
because allLL(7) are. The pitfall lies in the possibility to achieve no pruning when= b. A key idea in that case, similar
conjoin symmetry-breaking predicates that are satisfied bythat in [19], is to process another cycle, but only: it= 5.
nonlex-leader representatives of classes of symmetric trdithfact, this is similar to (3), except that we now operate on
assignments. A conjunction of such predicates may be unsateles and do not need to invohedl variables, which can
isfiable and, thus, unusable as a symmetry-breaking predicateamatically reduce the size of symmetry-breaking clauses.
Therefore, in this paper, we adhere to lex-leader predicates. Specifically, when building a symmetry-breaking predicate
for the symmetry(ab)(cd)(ef) ..., we first add(a + b), then
(a=0b)= (c<d),then((a =b)(c=d)) = (e < f), etc. In
the spirit of (4), we introduce one additional variable per cycle
Our construction is formulated in terms of cycles of a permyg indicate the equality of all variables in the cycle. A sample
tation. This is convenient because the output of graph automglause with new variables looks iK& e + Teeqg + €+ f).
phism programs is expressed in cycle notation. We observe tiiis construction is given only for permutations with two and
in overwhelmingly many instances all generators have two cree cycles.
cles only. Eveninrare cases when three cycles were present, twgoth (3) and our construction essentially perform a lexico-
cycles dominated by far. Another important observation abogitaphic comparison between the tested truth assignment and its
the output of graph automorphism programs is that collectiosgmmetric image. The former operates on bits; the latter on cy-
of two cycles returned on the output are sorted according to ttles. In practice, this often leads to very large reductions in the
given variable ordering. Therefore, we can apply the Crawfortimber of generated clauses. As a result of the bitwise compar-
construction in (2) and (3) to individual cycles and further optison, lexicographically smallest truth assignments are identified
mize it for two cycles. In particular, for the variable swag) if single-bit comparisons are performed according to the global
the construction in [19] produces one additional variable and sixdering of variables. However, in the context of cyclewise com-
symmetry-breaking clauses. Our construction below produgesrison, the situation is more complex. We only assert that a
only one clause. lexicographic comparison is performed when 1) each cycle is a
Single Cycles:First, observe that if the cycl@b) is a sym- two cycle; 2) each cycle is ordered according to the global or-
metry, whenever there is a satisfying assignment wits 0, dering of variables; and 3) cycles are ordered lexicographically
b = 1, there should be a symmetric (equivalent) satisfying a@vhich is equivalent to ordering them by the first element since
signment withae = 1, b = 0 and other variables unchanged. Tahey must be disjoint). Any chain of two cycles can be brought
allow only the first assignment, we add the symmetry-breakirng this form by sorting.
clause(a + b), which can also be interpreted @s< b). Simi- Theorem 3.3.1: Consider an arbitrary single permutation
larly, to “break” a cycle of length thre:bc), we add@+b)(b+ consisting of two cycles only. Apply the proposed construction
¢),i.e.,(a < b)(b < ¢). To make sure that the lexicographicallyof symmetry-breaking predicates, including the sorting of cy-
smallest representatives of symmetric truth assignments satigf§s and elements within each cycle. All resulting CNF clauses
our predicates, one has to choose an ordering of all variabfé§ satisfied by lexicographically smallest representatives of
at the beginning, and always use thesign consistently with classes of truth assignments that are symmetric under the given
that ordering. Whem = b, we get the cycléaa) and it can permutation. No other truth assignments satisfy all of those

be broken in two ways. In terms of the original CNF instanc&/aUses.

the value ofz can be fixed arbitrarily, and this can be expressebd kP roofc:j (Ij\lo_te thalt vgriableshnot involvgd in afny tcy::rI‘es can
by a single one-literal symmetry-breaking clau&e) or (a). € SKipped during a lexicographic comparison ot a truth assign-

The construction in [19] does not address such phase-shift s mgnt toits image under the given permutation. Our cor)struct]on
skips such variables. The rest of the proof employs induction

metries and never results in one-literal clauses. Our paper ad- e number.. of cycles. In the base case = 0, the lex-
C . - L)

g;?rsneestr?ég'trary compositions of phase-shift and permmat'of}%lgraphic comparison always returns true, and no clauses are

, generated. For an added cy¢ié) wherea precede$, we note

In general, longer cycles require more complt_ax symmetnfiat the clauséa +b), also known aga < b), lexicographically
breaking clauses, but apparently one can always improve on thgnnares the partial assignmeatsandba. In other words, the
construction from [19]. A particular difficulty with cycles of test(g + b) checks that the value afin the current truth assign-
length> 3 is that they cannot, in general, be ordered accordifgent is< to the value ob in the symmetric assignment. If the
to a given ordering of variables. For example, the cycle (132¢3|ues are different, the overall comparison is finished. Other-
can be written as (3241), (2413), or (4132), but none of theggse, the comparison shifts to the least variable unseen before
representations are ordered. Therefore, we are not conside(ingich may be ordered before or aftgrand its image under
longer cycles in this paper (and they do not appear useful fible permutation. This corresponds to considering the next two
symmetry breaking on our benchmarks). cycle. We would like to articulate that our construction does not

C. Using Cycles of Permutations

1130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

variable ordering. %

require variables in two cycles to be pairwise-adjacent in tt @abjc/d 13 figh 1

—o

X
|

Since the square of the permutation is the identity, the class 2 é 1 é
of symmetric truth assignments consist of one or two elemer L
only. The clauses we consider are satisfied by a given assig.
ment if and only if (by construction) the image of this assign- @ (b)
ment is not lexicographically smaller than the assignment itseifg. 4. Construction of difficult SAT instances. (a) Two switchboxes in
Therefore, all clauses are satisfied by 1) one-element classes@munon FPGA architectures and (b) simifdrby-M switchboxes are used to
2) the smaller elements of all two-element classes [] build hard satisfiable instances. Four connections are sought betwéen,

. ’ ndd ande, f, g, andh in (a). Crosses correspond to input connections mated

In Ol_JI’ experiments, mc_>st generators returned by graph a Channels, and every solid dot indicates the absence of a link.
morphism software consist of two cycles only. For rare bench-
marks, some generators have small numbers of cycles of other]]
lengths, typically three-cycles. It turns out that three-cycles cH} Same hole and 2) every pigeon must be assigned to one hole.
be ignored without violating the correctness of the symmetryl1€se constraints can be expressed in termgof-1) Boolean
breaking procedure. variablesz;; is interpreted as the indicator of assignment of pi-

Theorem 3.3.2: Consider a single permutation having 1) c§€0n; to holei. The first family of clauses consists of (n +
cles of length two, 2) cycles of odd lengths, and no other cycléd/2 mutual exclusions;, + Ti;,), j1_# j2. The second
If the proposed construction of symmetry-breaking clauses/&Mnily consists of + 1 n-literal clauses} ;" z;;)—one for
applied to two cycles only, the resulting clauses must be saf€'y pigeory. The pigeonhole principle then asserts that those
fied by all lex-leader truth assignments, and potentially othdo families of clauses cannot be satisfied simultaneously. How-
truth assignments. ever, its easy proof by induction is beyond the capabilities of

Proof: Consider the product (or the least common mulacktrack SAT-solvers that typically operate within the resolu-
tiple) p of all odd cycle lengths. Theth power of the given per- tion proof system. _
mutation has the same two cycles, but no other cycles. Sincd e Pigeonhole instances hole-n described above are prov-
lex-leader truth assignment with respect to the original perm@?d empirically difficult for the leading-edge implementation
tation (i.e., cannot be improved by applying the permutation &HAFF as shown in Table IV. However, they are often treated

its powers) is also a lex-leader with respect tozittepower.]~ as artificial in the EDA literature. Below, we derive equivalent
instanceshnl[N] x [N 4 1] from the domain of detailed routing

for FPGAs and generalize them in two wastsi1[N] x [M] (un-

satisfiable) an@PGA[N] - [M] (satisfiable). We also give random-
In practice, the run-time for constructing symmetry-breakinged constructions of difficult global routing instances grout.

clauses is often dwarfed by symmetry extraction run-time.

Yet, with every cycle processed, we add larger and largar FPGA Routing Instances

clauses. Largtt'-z clau?eg At_pat ?0 not affect Sat'?f'ab'lll'tyI_rar_flyThe pigeonhole principle is directly related to routing because
IMprove run-time o solvers, so we optionally Imi; -on pe interpreted as the impossibility of routing 1 connec-

symmetry-breaking clauses to the first ten cycles of evepy o throughk channels. As one can imagine, trying to make

symmetry. For the price of incomplete symmetry extraction, connections through channels is typical for FPGA routing,
this technique considerably reduces the overhead of sy in some cases > k. We encode such instances in terms of
metryTbreaklng clquses. Based on Theorem 3.3.1, we make the, 1. EPGA switchboxes that mate input connections té
following observation. channels. A switchbox can connect any given input to any one
Observation 3.4.1: Consider a variant of the proposed coghannel, but no two inputs can be connected to the same channel,
struction of symmetry-breaking predicates (SBPs) for permgnd every input must be connected to some channel. The state of
tations with two cycles only. After cycles are sorted, only théh FPGA switchbox is described by anx k& matrix of binary
first k cycles are considered and the remaining cycles ignoregariables and, similar to the encoding of the pigeonhole prin-
The clauses produced by this reduced construction are all sattsple above, is subject to two families of constraints. These con-
fied by lex-leader truth assignments, but other truth assignmestsaints are violated if and only if there are fewer channels than
may satisfy those clauses. Choosing two cycles at random nrgyuts. We put twan x k£ switchboxes on both sides of a batch of
lead to inconsistent SBPs. k channels, which producesnk variables (see [46] for details
The reduced construction achieves less pruning than the flISAT formulations). Fig. 4(a), which illustrates our construc-
construction using all cycles, but its overhead is smaller. In otien, shows two 4 3 FPGA switchboxes connected to three
experiments, the reduced construction performed better. To fgrizontal channels. Four connections are sought between 1)
ther reduce overhead, a backtrack SAT solver can dynamicdily:: andd on the left and 2}, f, g, andh on the right. Crosses
check for conditions of the forf(a = b)(c = d) ... (u = v)). T€presentinputconnections mated to channels, gnd every dotin-
However, this paper discusses only preprocessing methods.dicates the absence of a link. Empirical results in Table IV are
shown for six routing configurations (chnl) in which one tries
to route (a) 11, 12, or 13 connections through ten tracks, and
(b) 12, 13, or 20 connections through 11 tracks. These instances
Thepigeonhole principlasserts that + 1 pigeons cannot be are extremely difficult for the leading-edge SAT solver CHAFF
assigned ta holes as long as 1) two pigeons are not assigned[#b] and also have many symmetries. They can appear as subin-

D. Further Improvements

IV. DIFFICULT SAT INSTANCES

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1131

TABLE V
RUN-TIME OF THE BERKMIN (VERSION56), SATZ, AND JERUSAT SOLVERS [11], [34], [29], ON SAMPLE SAT INSTANCES ORIGINAL AND WITH
SYMMETRY -BREAKING PREDICATES ADDED

BerkMin Satz JeruSAT
Instance orig. with SBPs orig. with SBPs orig. with SBPs
hole10 110.00 0.01 | 41.70 0.03 | 312.00 0.01
Urq3.5 >1000 0.29 | >1000 2.56 | 201.00 0.95
groute3.3-03 5.50 0.60 | >1000 46.10 | 10.20 0.83
chnl10_11 110.00 0.02 | 224.00 0.05 | 315.00 0.01
fpga24 23 | 252.00 0.20 | >1000 27.50 | >1000 4.27
3pipe 2.70 0.30 | >1000 >1000 | 357.00 198.00
stances in larger routing instances, and such subinstances | 1 2 3 . h 1 2 3
be difficult to find. 1] S0 Lt ’ (= Tracks
From the benchmarking point of view, it is natural to expec b ! Vi),
unsatisfiableinstances among the most difficult to solve. In(a) 2 - T (b) 2
deed, randomized restarts used by CHAFF [45] typically allo L B
it to avoid difficult regions of the search space and to quickl 3 T2 T 3

find satisfying solutions if they exist. However, our second
construction is designed to create difficaditisfiableinstances Fig. 5. Construction of difficult SAT instances (global routing).
that trap even the best solvers in hopeless regions of their

solution space for a long time before a satisfying solution can _.. . - o
be found. The main idea is to create a satisfiable instance wififo" of switchboxes in Fig. 4(b) can be further modified to

a large number of hard-to-avoid unsatisfiable subinstancesgffner‘rjlte more difficult benchmarks. $peC|f|caIIy: one can a}dd
the number of unsatisfiable branches is much larger than gee new switchboxes on t'he left which are copies of.eX|st|.ng
number of satisfiable branches, then random restart will ke ce swﬂchboxeg on the right. The ove_rall coqf|gurat|on will
on jumping from one unsatisfiable branch to another for a Ioﬁ en be symmetric a_bout the_ ve_r'ucal axis passing through the
time. Solvers without random restarts also will need to pro rrently leftmost switchbox in Fig. 4(b).
the unsatisfiability of many branches. .

Our second construction produces routing a number of wirBs Global Routing Instances
through four FPGA switchboxes of the type used in the first We propose a new construction of difficult randomizedis-
construction. The rightmost switchbox in the configuration ifiable instances unrelated to pigeonholes. They express routing
Fig. 4(b) has several redundant outgoing tracks that are divideg-pin connections in a grid with edge-capacity constraints.
into two channels. Each channel is connected to a smaller ensure that an instance is satisfiable but difficult, we use
switchbox with an insufficient number of outgoing tracks. Theandomized floodingNamely, we create a routing configura-
two groups of tracks that leave the smaller switchboxes afen by adding shortest possible routes while unused routing re-
connected to the leftmost switchbox. When routing conneseurces (edge capacities) remain. Shortest routes are created by
tions through tracks right to left, connections must be splireadth-first-search between pairs of randomly chosen grid cells
between switchboxes subject to the throughput constraintsaof if that fails, by finding a maximal shortest route starting at
switchboxes. However, to an SAT solver, the throughput coa-given grid cell with unused routing resources. After a routing
straints are obscured by the pigeonhole principle. SAT solvaranfiguration is created, routes are erased and their end-points
first partition the connections between the two channels aate used to formulate an SAT instance.
backtrack from every partition that does not lead to a satisfyingOur SAT encoding of routing instances has two components.
assignment. If the capacities of the two channels leading @me deals withroute definitionand captures possible ways to
the smaller switchboxes are greater than the throughputrofite each connection. The other addresagsicity constraints
those switchboxes, an overwhelming majority of partitions wilkind restricts the number of connections that can be routed across
lead to unsatisfiable pigeonhole instances. On average, at leagtid cell boundary.
several such instances must be solved before a good partition iRoute Definition ConstraintsRoutes are specified in terms
found. Empirical results for these satisfiable instances (FPG#f edges across cell boundaries in a grid. For each connection,
in Table IV show that they are difficult for CHAFF. We observave consider routing tracks across each cell boundary on the
that these instances become harder when the difference betwgréh In the SAT formulation, each track (for a given connec-
the throughput of the small switchboxes and the capacitiesta) is treated as a variable. Fig. 5(a) illustrates routing tracks
the channels that lead to them is increased. This is consistiena 3 x 3 grid. Consider a two-terminal connection frafrto
with our observations for the unsatisfiabénl instances. E. Horizontal tracks for connectianare labeled:;, ,, wherer
Conceivably, some SAT-solvers may order variables relatedandc are the row and column indices of the cell whose boundary
the leftmost switchbox first and find satisfying assignmente track crosses. Vertical tracks are labelgd . In Fig. 5(a),
faster than CHAFF. This is consistent with our empirical dafet the points marked andF be the terminals of some two-ter-
for the BerkMin solver [11] in Table V. However, the config-minal connectiori. The SAT formulation proceeds as follows.

1132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

For every connection, we add groups of clauses correspondingapacity Constraints:Each edge of a grid cell boundary has

to individual grid cells. a capacity associated with it to restrict the number of connec-
For each of the two terminals, we add a clause consistingtafns that can be routed through it. The capacity limits are in-

positive literals of variables of all tracks to which the terminaiended to prevent routing congestiondfis the capacity limit

can connect. For example, we add the claise, + v;, ,) for for an edge of a grid cell, we includ@ variables per edge for

the terminal marked in Fig. 5(a) because any route for thissach connection. In other words, each connection can be routed

connection must pass through , orwv;, ,. Inthe general case, through one of th&' tracks across a cell boundary as shown in

we also need to add [binary] mutual exclusion clauses ensuririg. 5(b).

that only one of the incident tracks is actually taken. For the Consider two connectionsand;. Consider horizontal tracks

terminalS, this produces only one clauék;, , +7;,). Forthe for each connectioh; _, andh;, . for some rowr and column

terminal E, this produces three clausés;, , + v;,,)(hi, , + ¢ Lelirc Jire,, - brc. ANAJrc s Jrcys - - - Jrc. DEThEC EXtra

@)(m + m) variables introduced in the SAT formulation for the horizontal
We now consider every grid cell other than the terminals. Erack in question. Then clearly, for any., ,1 < k& < C,

ther noneor two of its boundary edges must be selected. This,c, = hi, ., and alsow;, . = (irc, + - +irc.). Clauses of

is enforced as follows. Observe that a given cell may have twibjs form are added to the SAT instance. Another restriction is

three, or four boundaries with tracks passing through them. Orifiat a route cannot pass through two tracks in the same channel

two track variables, label themy, andz, are involved when (the edge of a grid cell), i.e., if forsomg 1 < k£ < C,| if

“corner” grid cells are considered. In this case, we add clauges, is true, thenforall, 1 <1 < C,1 # k, (irc, = irc,)-

(x1 + T2)(T1 + 22). In the case of three or four track variabled hese clauses are also added. Finally, two connections cannot

(“border” grid cells or “internal” grid cells, respectively), webe routed through the same track, i.e., foriglll < k£ < C,

add two types of clauses. First, for every variablewe add (irc, = Jjrc,) forall j # i, where;j represents another con-

the constrainz; = Z#i z;), which can be captured by onenection. _ _ _ _

clause(z; + Zj;éi ;) and says that if one boundary edge is se- We creatgd ten. roufung conﬂggratlons k_Jy randomly floodlng

lected, then another must be selected as well. The second t§pex 3 routing grid with connections subject to edge capacity

of clauses prohibits selecting three or four boundary edges.d@nstraints of 3. Then we applied the SAT encoding above. The

the case of three variables, =, andzs, we add Z1+ 73 +73). difficulty of these randomly generated benchmarks varies, and

For four variables:y, 25, 23, andz,4, we add we only report empirical results for the five most difficult in-

stances (grout in Table 1V).

(T1 + T2 + T3) (71 + T2 + 73) (71 + T3 + 73) (T2 + T3 + 73).

As an illustration, we apply this procedure to the grid cell V. EFFECT OFBREAKING SYMMETRIES

(1,2) in Fig. 5(a) and produce Our computational experiments were performed on PCs with
N N _____ 1.2-GHz AMD Athlon processors and 1 GB of RAM. All codes
(Riy s+ Py o 403) (his o hi 03 0) (B 4 iy +7305) - were compiled with g++ 2.95.4 -03 and ran on Debian Linux.
(hiyy +hiy, + 75, ,)- The SAT solver used was CHAFF (MCHAFF version) [45].
In addition to the instances described in Section ¢¥nl and
The correctness of the general construction can be provendyGA) and (grout), Table IV lists six standard pigeonhole in-
the following argument. First, any given connection, interpretedances (hole), five families of artificially constructed random-
as atruth assignment, satisfies those constraints. Now assumg &8 urquhart benchmarks (Urq) [58], and seven recent bench-
arbitrary satisfying assignment and show that, topologically, {{5ks from the microprocessor verification domain [60].
is a valid connection. Start at a terminal. Exactly one track MUSt-HAFE run-times in Table IV are averages of 20 independent

be taken toward a neighboring grid cell. If that cellis a term'naé’tarts because CHAFF uses randomization internally and results

we are done. Else, exactly one track must be ta_ken to a cell rd%ifferent runs may vary significantly. All runs not completed
visited before. The same argument shows that if a partial I’Olilr(le

. . X 1000 s were aborted and did not contribute to averages. The

is not completed, it can be extended by one track. Since there IS .) .
- ; rcent of time-outs is shown for each instance.

only a finite number of grid cells, the route must be complet . .

sooner or later To extract symmetries from a CNF formula, we convert it

When the layout is naibstructedthe above construction caninto a colored graph as outlined in Section II. Those graphs
be applied to all grid cells in an arbitrary order. However, if som@ € Subsequently processed by the NAUTY program [42], [43].
tracks are removed or if certain grid cells are not available f6°" €ach run, the result is a list of permutation generators of
routing, some grid cells may be unreachable from the terminall@€ group of symmetries, specified by their cycles. For each
Since no routes can pass through unreachable grid cells, tf&f instance, Table IV lists NAUTY run-time in seconds ex-
can be ignored when an SAT instance is constructed. We peiding I/O, the total number of symmetries and the number
form this optimization by traversing grid cells by a breadth-firf permutation generators. Those symmetry-extraction imple-
search. Once a terminal is enqueued, our algorithm enter§ @ntations are deterministic and are not affected by reordering
loop that dequeues one grid cell, marks it visited, adds releva@ftvertices in the input graph. For some benchmarks, we built
clauses, and enqueues unvisited adjacent grid cells. The algggnmetry-breaking clauses for only ten cycles per symmetry.
rithm finishes when the queue is empty. If the other termindhe first ten cycles typically capture most of the speed-up pro-
was not visited in the process, no routes connect the two termided by “breaking” a given symmetry. After new clauses were
nals. added, the preprocessed CNF instance was solved with CHAFF.

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1133

10000 1
"Gap" —— "Chaff, ——
J
1000 |
@
£
100 | S 0.1 F / :
2 % [
£ 5 d
5 10 | S /
g =
5] S F
(@]
1t ® 0.01 |
|_
<
[4p]
0.1
0.01 0.001
10 100 10 100
Holes # Holes

(@) (b)

Fig. 6. Plots of symmetry extraction time agaif4t- »” and Chaff run-time against, - n3- for pigeonhole instances (whereis the number of holes).

Table IV lists CHAFF run-times for each instance. Becaushown in Table V where solver run-times are compared with
CHAFF run-time on a given instance fluctuates from run to ruand without symmetry-breaking predicates added. BerkMin
we report the averages of 20 independent runs for each instarstdves the grout, FPGA, and microprocessor verification
Preprocessed CNFs never timed out in our experiments. benchmark sets faster than CHAFF, but other benchmark sets
The last column in Table IV shows the relative speed-wgre harder for BerkMin. JeruSAT solves the Urg benchmarks
ratios due to the use of symmetry-breaking clauses. For a giiaster than both BerkMin and CHAFF, and is also faster
CNF instance, the first number is the ratio of 1) the CHAFthan CHAFF on the grout instances. Satz is slower than all
run-time on original instance and 2) the total run-time of synthree other solvers on these benchmarks. Symmetry-breaking
metry extraction and CHAFF on preprocessed instances. THe€luces run-time in most cases, for all solvers. In similar
second number is produced similarly, except that symmeteyperiments with GRASP [50], all of our benchmarks are
extraction run-time is ignored. This is the maximal possibleolved faster with the help of symmetry-breaking predicates,
speed-up if symmetries are found instantaneously or providexen if symmetry-extraction time is charged for.
as domain-specific knowledge. We make the following obser- Additionally, to support our claim that some families of SAT
vations. instances can be solved in polynomial time with symmetry
1) The proposed SAT instances are only a fraction of the siReeaking, we present the data in Fig. 6, which shows run-times
of recent microprocessor verification benchmarks [60fr symmetry extraction (GAP) and SAT solving (CHAFF) on
but are more difficult to solve. instances of the pigeonhole problem, plotted against a polyno-
2) Some difficult SAT instances have astronomical nuninial function of the number of holes (scaled by a constant).
bers of symmetries; this includes the randomized Urq afdg. 6(a) shows GAP run-times (solid line) agair@t - n”
grout benchmarks. (dashed line), for some constafit. Fig. 6(b) shows CHAFF

3) Symmetry-breaking clauses often speed-up the best avéiin-times (solid line) againgt, - n*2. (dashed line), where
able SAT solver CHAFF [45]. is the number of holes in a particular instance of the pigeonhole
4) Symmetry-breaking clauses typically do not slow dowRroblem. The figure ind_icates that both symm_etry-extract_ion
CHAFF and often speed it up, even when few symmetri@fd SAT solving run-times appear to exhibit polynomial

are present. growth.
5) Either CHAFF or symmetry extraction may be a bottle-
neck. VI. OPPORTUNISTICSYMMETRY EXTRACTION

6) Among thechnl instances, the hardest to solve was the
routing of 20 connections through 11 tracks. Adding The use of symmetry-breaking clauses does not require ex-
extra unrouted connections consistently increased diffractingall symmetries. In fact, an algorithm that does not guar-
culty. That is somewhat counterintuitive. antee extracting all symmetries may finish sooner. Some sym-
Not to limit our results to a single SAT-solver (CHAFF), wemetries may be found using domain-specific knowledge, and
ran similar experiments with the BerkMin (version 56), Satzhen symmetry-breaking clauses can be added during the cre-
and Jerusat solvers [11], [29], [34]. Representative results atioon of SAT instances.

1134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

Clanses: _) Symmetry: b) Symmetries of/" form a subgroup in the group of sym-
A(14+3+5),B (5+8+10) (67)(67) . ~
C(5+6+7),D (5+6+7) metriesG; .
¢) The choice of new (unique) colors does not affect the sym-
metry groupGE.

While reducing the number of symmetries can, in principle,
be consistent with smaller symmetry extraction run-times, most
graph automorphism programs are most sensitive to the number
of vertices in the input graph rather than to the number of sym-
metries. The following lemma shows how to reduce the vertex
set of the graph in the context of Lemma 6.1.2.

Lemma 6.1.3: Given a colored graph, consider an arbi-
trary recoloring of an arbitrarily-chosen subset of its vertices.
Call the recolored graptG*. Consider a nonempty subdgét
of recolored vertices such that each of them is adjacent to recol-
ored vertices only (if such a subset exists). Remove all vertices in

R . Lo)
Fig. 7. Window-based opportunistic symmetry extraction for a CNF instang/g fromG tOgether with all incident edges' Then, the symme

with ten variables and four clauses. Vertical dashed lines capture the window#§S Of the remaining colored graﬂﬁ% are in one-to-one cor-
which search for symmetries is limited. Each clause that includes literals framspondence with the symmetrieﬂﬁ, in fact the two groups
both within and beyond the window are represented by vertices of unique Co'i?fsymmetries are isomorphic

(dashed boxes). Symmetries are only allowed to permute vertices within the) : R

current window, therefore, vertices and edges beyond the current window are Proof: Every symmetry ot maps every vertex frod’

not included in the graph for window-based symmetry extraction. This redudgs itself by Lemma 6.1.2(a). Therefore, every such symmetry
the size of graph automorphism problems. gives rise to a symmetry af'Z.. Vice versa, every symmetry
of GE. can be unambiguously extended to a symmetrg 6f

by mapping every vertex fro to itself. This construction

.) restores every symmetry 6 mapped to a symmetry 6.
We observed that a variable would sometimes be symmetriq_ emma 6.1.3 reduces the number of vertices under the as-

to anc_Jther variable connected by a clause (_on_e hop) or thro%ption that seti’ exists—the largetV/, the greater the re-

a chain of two clauses (two hops). When this is not true for gj{,ion. Constructively finding¥’ remains an open problem.
symmetries of a CNF formula, many symmetries may be COM-| emma 6.1.4: Given a colored gragh and an arbitrary
posable from permutation generators of that kind. We, therggge_ct in it, pick one of the partitions and recolor all vertices
fore, focus on *local” symmetries that permute small subsets gifit Then the set of vertices in that partition that are notincident
variables and fix all other variablésWe define the subsets by any edges in the cut can play the role ofi§ein Lemma 6.1.3.
sliding a window of fixed size along a given linear ordering of p<arve that colored gragk?, from Lemma 6.1.3 may stil
the variables—either th_e_original variable orderir_lg of the CNEyntain a large number of recolored vertices. This may be unde-
formula or the connectivity-based MINCE ordering [2]. For &irapje hecause the total number of vertice§'h is limited by
window, we consider the left and right cuts, as in Fig. 7. Tofind,e gcaapility of available symmetry extraction software, and
symmetries local to a given window, the standard constructiqyrivia| symmetries of. do not involve recolored vertices.

of colored graphis applied to clauses and literals that are entirgliyeeq recolored vertices are included into the vertex set of

inside the window. Eacbut clausds represented by a vertex ofG{%, thus, potentially slowing down symmetry extraction pro-

a unique color that is connected to literals inside the Windo\f{rams or atleast increasing memory usagaerefore, this con-
Vertices beyond the current window are ignored. To argue that,,ction can be improved by minimizing the number of vertices
the proposed construction is correct, i.e., does not add spurigii§yent to cut edges, e.g., by minimizing the size of the cut it-
symmetries, we consider the followimgcoloringprocess. self.
_ Definition 6.1.1: Given a colored graph and a subset of apgher concern about restricting symmetry extraction along
its vertices, change the color of each vertex into a UniGyge jines of Lemmas 6.1.2-6.1.4 is that one should apply it sev-
color—one new color per vertex. This process is calletbl- ¢ times, with different sets of vertices recolored. This way
oring of a given set of ver'uces'l?he_ following lemma shows more symmetries can be extracted. Indeed, if the sizebf
how to restrict the set of symmetries of a colored graph. ThiS|imited by a constant, then the number of calls to symmetry
can be done, e.g., with the purpose of accelerating symmefy,action software should grow at least linearly so that every
extraction for the price of losing some symmet_rles. _ vertexinG be “given an opportunity” to map elsewhere.

Lemma 6'.1'2: Given a co!ored grayih conS|der. an aft?" The concerns mentioned above can be addressed in the con-
trary recolorm_g of an arb};tranly—chosen supset of_ its verticeSayt of window-based symmetry extraction. We first order CNF
Call the resulting graptG™. Then the following claims hold. - iobies by representing the CNF as a hypergraph (clauses

a) Every symmetry af"* is a symmetry of7, and must map correspond to hyperedges) and heuristically finding a min-cut
each recolored vertex to itself;

A. Window-Based Symmetry Extraction

"This subgroup is thetabilizer[26], [27] of the set of recolored vertices in

6The complexity of such a restricted version of the graph automorphisie symmetry group ofy.
problem was studied in [36]. 8NAUTY maintains the input graph in a dense adjacency matrix.

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY 1135

TABLE VI
RESULTS FORWINDOW-BASED SYMMETRY EXTRACTION. LABELING IS IDENTICAL TO THAT OF TABLE IV. TYPICALLY ALL OR A LARGE
FRACTION OF ALL SYMMETRIES ARE DISCOVEREDR COMPARED TODATA IN TABLE IV

Instance || Satis- | #variables Plain | Time . Symmetries Speed-up:
fiable? and CHAFF | -out || Extraction # | #generators | CHAFF || total/
#clauses sec % sec of | cycles l sec || search only
WINDOW-BASED SYMMETRY FINDING (1000 variables per window)

2dlx_camc* || UNS [3250;24.6K 6.54 0% 3.17 1 -1 0 6.54 0.67; 1.00
2pipe || UNS 892; 6695 2.08 0% 10.47 | 128 10| 7 1.30 0.18; 1.63
2pipe_1_ooo || UNS 834;7026 2.55 0% 9.02 8 10| 3 1.80 0.24; 1.41
2pipe 2000 || UNS 925; 8213 3.43 0% 11.09 | 32 10| 5 2.80 0.25;1.23
3pipe || UNS | 2468;27.5K 36.44 0% 3.63 4 10| 2 36.20 0.91; 1.01

4pipe || UNS | 5237;80.2K | 337.61 0% 9.32 2 10] 1 334.0 0.98;1.01

Spipe || UNS | 9471;195K | 325.92 0% 29.42 2 10| 1 325 0.92; 1.00

linear arrangement of those vertices using recursive balanatauses that preserve the relative order of tracks taken by every
bisection [2]. We then consider cuts along the resulting variakpair of connections routed through the same two edges of a
ordering, and those cuts are relatively small by constructiogrid cell. In other words, if one connection is routed through
Note that cuts in Lemma 6.1.4 correspond to pairs of cuts rack 2 when entering the cell, and another connection is routed
a given variable ordering as shown by vertical dashed linesthirough track 3 when entering the cell, then the connections
Fig. 7. Furthermore, in window-based symmetry extracticare allowed to leave the cell through tracks 2 and 3, respec-
only clausal vertices can be recolored, therefore, min-cut lingarely, 1 and 2 respectively, or 1 and 3 respectively. Such con-
arrangement naturally minimizes the number of recolorestraints speed-up CHAFF: each grout instance is now solved
vertices. in 0.50-0.80 s versus 19-45 [glore dramatic speed-ups are
We concatenate lists of permutation generators producachieved for groutinstances built with larger routing grids. Even
for different windows, consider the group generated by aflwe apply symmetry extraction to modified instances, it com-
those and use GAP [56] to produce an irredundant list pfetes much faster than on original instances because no symme-
generators of this “global” group. Symmetry-breaking claus#ses are found. It may also be possible to add domain-specific
are constructed from those generators. Observe that wisgmmetry-breaking clauses to SAT instances from [60] and im-
applying symmetry extraction to a given window, we can onlgrove CHAFF run-time according to results in Table IV.
find symmetries that permute variables in that window only.
Therefore, potentially more symmetries can be found if win-
dows are allowed to overlap. On the other hand, if overlaps are
allowed some symmetries may be found in multiple windows. Our paper addresses solving difficult instances of Boolean
Thus, producing symmetry-breaking clauses independentyNF) satisfiability that exhibit structural symmetries. While
from each window and concatenating them may cause congige utility of our approach on easy instances is not clear at this
erable redundancy. This is why we call GAP if windows armoment, the difficulty of domain-specific classes of CNF-SAT
allowed to overlap. The tradeoff between run-time, incompleiestances is often known, and adequate SAT algorithms can be
symmetry extraction and redundancy among windows deperii®sen. Otherwise, several SAT solvers can be executed in par-
on their overlap. Similarly, the window size affects the tradeo#filel until one of them finishes. On a single processor, this may
between run time and incomplete symmetry extraction. Wiy exponential speed-ups at the cost of a constant-factor slow-
observe good empirical performance with windows of sizgown. Therefore, our focus on difficult instances is well justi-
1000. Results in Table VI show that our window-based techied. Additionally, our experiments identify a number of difficult
nique found all or a significant portion of all symmetries foinstances whose difficulty is apparently due to symmetries and
the microprocessor verification benchmarks [60] in a fractiothe redundant search caused by them.
of the run time spent by complete symmetry extraction If a We describe an automated flow that finds symmetries in
randomized variable ordering is used, one could combine logien CNF instances and uses them to speed up the SAT

VIlI. CONCLUSION

permutation generators found for different orderings. search. This flow includes symmetry extraction, preprocessing
)) of given CNF instances, and an application of an existing
B. Improving SAT Formulations state-of-art SAT solver. When compared to the SAT solver

One way to reduce the run-time of symmetry extraction is mlone, applied to given CNF instances without preprocessing,
learn how to extract (or predict) symmetries from domain-speur flow dramatically speeds up the solution of two well-known
cific knowledge. Given the well-understood structure and symrovably difficult benchmark families—pigeonhole problems
metries of the holegchnl, and FPGA benchmarks, we evaluand Urquhart benchmarks. Notably, methods proposed in a
ated this approach on (randomized) grout benchmarks. We poevious work [19] cannot find any nontrivial symmetries in
ticed that permuted variables in many cases correspond to neighgquhart (Urg) benchmarks.
boring tracks, e.g., if two connections are routed in parallel We offer constructions of realistic satisfiable and unsatisfi-
through several grid cells, there is considerable freedom (syable SAT instances, arising in routing applications, that are un-
metry) in track assignment. To break this symmetry, we addadually difficult for their size. Unlike most existing SAT bench-

1136

marks, our benchmark families enable studies of the asymptotigs]
performance of SAT solvers.

Since symmetry extraction is a bottleneck, we speed it Up[g
using opportunistic approaches. In one, we only look for sym-
metries that permute small groups of variables, determined bHO]
sliding a fixed-sized window along a given variable ordering.
The second approach attempts to improve the construction of
SAT instances by identifying symmetries in domain-specificl11]
terms. We find astronomically many symmetries in randomizeqlz]
Urg and grout benchmarks. This refutes a conventional-wisdom
argument claiming that significant randomization destroys sym-
metries. We explain symmetries in grout benchmarks and bree}ﬁ]
them using domain-specific knowledge.

Our proposed flow does not require source code modiﬁca[—14
tions in SAT solvers and should work with most backtrack SAT
solvers. We successfully validated our flow with CHAFF [45],
BerkMin [11], Satz [34] and JeruSAT [29] solvers. Experiments{lS]
performed with publicly available versions of WalkSAT [51]
indicate that symmetry-breaking clauses do not improve runge]
times, and even make them worse. This was observed by others
and is the focus of ongoing work by Preswitch [49] as well asy7]
Kautz and Selman.

We stress that the proposed flow may not be useful on SAT
benchmarks that 1) are easy or 2) do not have symmetries. Mar[%]
difficult SAT instances do not have symmetries [17]. On the
other hand, many DIMACS benchmarks [22] have large num-
bers of symmetries, but are easy and can be solved faster th%r%]
their symmetries can be found by existing methods.

Our ongoing research seeks: 1) faster symmetry extraction20
e.g., via incomplete algorithms; 2) finding [some] semantic[]
symmetries that are not necessarily syntactic; 3) more efficierjg1]
constructions of symmetry-breaking clauses; and 4) the use iZfZ]
partial/conditional symmetries. The latter were already show
useful in BDD-based model checking [24], SAT-solvers baseq?3]
on backtracking [14], [35] and more general constraint-satis-
faction solvers [6]. [24]

]

ACKNOWLEDGMENT

The authors wish to thank S. V. Lokam of the Electrical[25]
Engineering and Computer Science Department, University %6]
Michigan, Ann Arbor, for Lemma 2.3.3. [27]

REFERENCES [28]

[1] D. Achlioptas, C. P. Gomes, H. A. Kautz, and B. Selman, “Generating[2°]
satisfiable problem instances,” Rroc. AAA| 2000, pp. 256-261.

[2] E.Aloul, I. Markov, and K. Sakallah, “Faster SAT and smaller BDD's via [30]

common structure,” ifProc. Int. Conf. Computer-Aided DesigP001,

pp. 443-448. [31]

L. Babaiand E. M. Luks, “Canonical labeling of graphs,’Hroc. Symp.

Theory Compu}t.1983, pp. 171-183. [32]

L. Babai, R. Beals, and P. Takacsi-Nagy, “Symmetry and complexity,”

in Proc. Symp. Theory Comp.992, pp. 438-449. [33

L. Babai, “Automorphism groups, isomorphism, reconstruction,” in

Handbook of Combinatori¢gsR. L. Graham, M. Grétschel, and L.

(3]
(4]

2 [34]

Lovasz, Eds. Cambridge, MA: MIT Press, 1995, vol. 2, ch. 27, pp.
1447-1541.
[6] R. Backofen and S. Will, “Excluding symmetries in constraint-based [35]

search,” inProc. Int. Conf. Principles and Practice Constraint Pro-
gram, vol. 1713, Lecture Notes in Computer Science, 1999, pp. 73-87.

P. Beame, R. Karp, T. Pitassi, and M. Saks, “The efficiency of resolution[36]
and Davis-Putnam procedure,” SIAM J. Comput., vol. 31, no. 4, pp.
1048-1075, to be published.

(7]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2003

B. Benhamou and L. Sais, “Tractability through symmetries in propo-
sitional calculus,’J. Automation Reasoningol. 12, no. 1, pp. 89-102,
1994.

C. Berman, “Circuit width, register allocation, and ordered binary de-
cision diagrams,lEEE Trans. Computer-Aided Desigwol. 10, pp.
1059-1066, Aug. 1991.

A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Fast three-level logic
minimization based on autosymmetry,” Proc. Design Automation
Conf, 2002, pp. 425-430.

E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT solver,”
in Proc. Design, Automation Test Eu2002, pp. 142-149.

D. Boshacki, D. Dams, and L. Holenderski, “A heuristic for symmetry
reductions with scalarsets,” Proc. Int. Symp. Formal Methods for In-
creasing Software Productivityecture Notes in Computer Science,
2001, pp. 518-533.

L. Brisoux, E. Gregoire, and L. Sais, “Improving backtrack search for
SAT by means of redundancy,” iroc. Int. Symp. Foundations Intell.
Syst, Warsaw, Poland, 1999, pp. 301-309.

C. A. Brown, L. Finkelstein, and P. W. Purdom, “Backtrack searching
in the presence of symmetry,” iProc. 6th Int. Conf. Applied Algebra,
Algebraic Algorithms and Error Correcting CodeB Mora, Ed., 1988,
pp. 99-110.

V. Chvatal and E. Szemeredi, “Many hard examples for resolutidn,”
ACM, vol. 35, no. 4, pp. 759-768, 1988.

E. M. Clarkeet al,, “Symmetry reductions in model checking,”Rroc.

Int. Conf. Computer-Aided Verificatioi\. J. Hu and M. Y. Vardi, Eds.,
1998, pp. 159-171.

S. A. Cook and D. G. Mitchell, “Finding hard instances of the satisfi-
ability problem: A survey,” inSatisfiability Problem: Theory and Ap-
plications 1997, vol. 25, DIMACS Series in Discr. Math. and Theor.
Comp. Sci, pp. 1-17.

J. Crawford, “A theoretical analysis of reasoning by symmetry in first-
order logic,” in Proc. AAAI Workshop Tractable Reasoning, 10th Nat.
Conf. Artif. Intell., San Jose, CA, 1992.

J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Symmetry-breaking
predicates for search problems,” Froc. 5th Int. Conf. Principles
Knowledge Representation Reasonir@ambridge, MA, 1996, pp.
148-159.

M. Davis and H. Putnam, “A computing procedure for quantification
theory,”J. ACM vol. 7, no. 3, pp. 201-215, 1960.

M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,'d. ACM vol. 7, no. 5, pp. 394-397, 1962.

DIMACS Boolean Satisfiability Challenge Benchmarks [Online]. Avail-
able: ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf

C. A. J. van Eijk, E. T. A. F. Jacobs, B. Mesman, and A. H. Timmer,
“Identification and exploration of symmetries in DSP algorithms,” in
Proc. Design Automation Test in Euiar. 1999, pp. 602—608.

E. A. Emerson and R. J. Trefler, “From asymmetry to full symmetry:
New techniques for symmetry reduction in model checking,Piof.
Conf. Correct Hardware Design and Verification Methpdasl. 1703,
Lecture Notes on Comp. Sci., 1999, pp. 142-156.

E. Goldberg, “Testing satisfiability of CNF formulas by computing a
stable set of points,” in Proc. CADE, July 2002, pp. 161-180.

M. Hall Jr., The Theory of Groups New York: Macmillan, 1959.

T. W. Hungerford, “Algebra,” irlGraduate Texts in Mathematics New
York: Springer-Verlag, 1973, vol. 73.

C. N. Ip and D. L. Dill, “Better verification through symmetryProc.
Formal Methods Syst. Desigwol. 9, no. 1-2, pp. 41-75, 1996.

A. Nadel. JeruSAT Satisfiability Solver. [Online]. Available:
http://www.geocities.com/alikn78/

V. Kravets and K. Sakallah, “Generalized symmetries of boolean func-
tions,” in Proc. Int. Conf. Computer-Aided Desig?000, pp. 526-532.
——, “Constructive library-aware synthesis using symmetriesPrioc.

Int. Conf. Design Automation Test Eu2001, pp. 208—-213.

B. Krishnamurthy, “Short proofs for tricky formulasicta Informatica
vol. 22, pp. 327-337, 1985.

] J. Kobler, U. Schoning, and J. Toran, “Graph isomorphism is low for

PP,” Computat. Complexvol. 2, no. 4, pp. 301-330, 1992.

C. M. Liand Anbulagan, “Look-ahead versus look-back for satisfiability
problems,” inProc. 3rd Int. Conf. Principles Practice Constraint Pro-
gram, LNCS 1330, Schloss Hagenberg, Austria, 1997, pp. 342—-356.
C. M. Li, B. Jurkowiak, and P. W. Purdom, “Integrating symmetry
breaking into a DLL procedure,” imtl. Symp. on Boolean Satisfiability
(SAT) Cincinnatti, OH, 2002, pp. 149-155.

A. Lozano and V. Raghavan, “On the Complexity of Moving Vertices
in a Graph,” Univ. Politéchnica de Catalunya, Barcelona, Spain, LSI-
98-30-R, 1998.

ALOUL et al: SOLVING DIFFICULT INSTANCES OF BOOLEAN SATISFIABILITY

[37]

(38]
(39]

[40]

[41]
[42]
[43]
[44]

[45]

[46]

E. Luks, “Isomorphism of graphs of bounded valence can be tested
polynomial time,” Proc. IEEE Symp. Foundations Comput. Spp.
42-49, 1980.

—, “Hypergraph isomorphism and structural equivalence of boole¢
functions,” inProc. Symp. Theory Comput999, pp. 652-658.

E. Luks and A. Roy, “Symmetry breaking in constraint satisfaction,” it
Proc. Int. Conf. Artif. Intell. Math., Ft. Lauderdale, Florida, Jan 2-4
2002.

G. S. Manku, R. Hojati, and R. Brayton, “Structural symmetry an
model checking,” inProc. Int. Conf. Computer-Aided Verificatipn
1998, pp. 159-171.

I. McDonald and B. Smith,
APES-49-2002, 2002.

B. D. McKay, “Practical graph isomorphism,” Proc. Congressus Nu-
merantium vol. 30, 1981, pp. 45-87.

—, “Nauty User’s Guide,” Comput. Sci. Dept., Australian Nat. Univ.,
Canberra, TR-CS-90-02, 1.5 ed., 1990.

T. Miyazaki, “The complexity of Mckay’'s canonical labeling algo-
rithm,” in Proc. Groups Computat. Il , Workshop Groups Computat.
DIMACS Series on Discrete Math. Theor. Comput. Sci., L. Finkelstein
and W. M. Kantor, Eds., 1996.
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “CHAFF:
Engineering an efficient SAT solver,” ifroc. Design Automation Conf.
2001, pp. 530-535.

“Partial Symmetry Breaking,”,

of two boolean formulations of FPGA detailed routing constraints,” i
Proc. Int. Conf. Physical Desigr2001, pp. 222-227.

1137

Arathi Ramani received the B.S. degree in
computer engineering, from Thadomal Shahani
Engineering College, affiliated with the University
of Mumbai, India, in 1999 and the M.S. degree in
computer engineering in 2002 from the University
of Michigan, Ann Arbor, where she is currently
persuing the Ph.D. degree.

Her interests are in algorithms for combinatorial
optimization and their applications to electronic de-
sign automation.

Igor L. Markov received the M.S. degree in mathe-
matics and the Ph.D. degree in computer science from
the University of California, Los Angeles (UCLA).

He is an Assistant Professor of Electrical Engi-
neering and Computer Science at the University of
Michigan, Ann Arbor. His interests are in quantum
computing and in combinatorial optimization

[47] M. Prasad, P. Chong, and K. Keutzer, “Why is ATPG easy?Piioc. with applications to the design and verification of
Design Automation Conf1999, pp. 22-28.) integrated circuits. His contributions include the
[48] M. Prasad, E. Goldberg, and R. Brayton, “Using problem symmetry Capo circuit placer and quantum circuit simulator

[49]

search based satisfiabiliy problems,”Pnoc. Design Automation Test

Eur, 2002, pp. 134-142. publications.

QuIiDDPro. He has co-authored more than 50

S. Preswitch, “Supersymmetric modeling for local search,” in Proc. prof. Markov is serving on the technical program committees at the these fora:

SymCon, Sept. 2002.) _ Design, Automation, and Test in Europe Conference, the International Sym-
J.P. M. Silva and K. A. Sakallah, "GRASP: A new search algorithm foposjym on Physical Design, the International Conference on Computer-Aided
satisfiability,” IEEE Trans. Computvol. 48, pp. 506-521, May 1999. ' pegjgn the Great Lakes Symposium on Very Large Scale Integration, the Inter-
E)Icilelsg:rnc‘hﬂ" iﬁgiuﬁé?rgoaf %H?Tﬁtgff’fgegitrﬁtggé?{o; 4'3mpr°"'nﬂational Workshop on System-Level Interconnect Prediction, the International
B. Selman, D. Mitchéll, and H. I_.evesdue, “éenerétiné hard sati.sfiabilit\P/hvork.Sh(.)p on Logic and Synthesis, and the International Workshop on Sym-
problems,"Artif. Intell., vol. 81, no. 1-2, pp. 17-29, 1996. etries in Contraint-Satisfaction Problems in 2003. He received the Best Ph.D.

Student Award from the Department of Computer Science, UCLA in 2000.

[50]
[51]
[52]

(53]
(54]

[55]

[56]
[57]

(58]

[59]
[60]

A. Seress, “An introduction to computational group theotygtices
Amer. Math. Sog¢vol. 44, no. 6, pp. 671-679, 1997.

B. M. Smith, K. E. Petrie, and I. P. Gent, “Models and Symmetry
Breaking for Peaceable Armies of Queens,”, APES-50-2002, 2002.
L. H. Soicher, “"GRAPE: A system for computing with graphs and
groups,” inGroups and Computatigi.. Finkelstein and W. M. Kantor,
Eds., 1993, vol. 11, DIMACS Ser. in Discr. Math. Theor. Comp. Sci.,
pp. 287-291.

E. L. Spitznagel, “Review of mathematical software, GARgtices
Amer. Math. Sog¢vol. 41, no. 7, pp. 780782, 1994.

G. S. Tseitin, “On the complexity of derivation in propositional cal
culus,” inStudies in Constructive Mathematics and Mathematical Logig
Part 2. New York-London: Consultants Bureau, 1968, pp. 115-125
A. Urguhart, “Hard examples for resolution]’ ACM vol. 24, no. 1, pp.
209-219, 1987.

——, The Symmetry Rule in Propositional Logi®96.

M. N. Velev and R. E. Bryant, “Effective use of boolean satisfiabilit
procedures in the formal verification of superscalar and VLIW micro
processors,” ifProc. Design Automation ConR001, pp. 226—-231.

Karem A. Sakallah (S'76—-M'81-SM'92—F'98) re-
ceived the B.E. degree in electrical engineering from
the American University of Beirut, Beirut, Lebanon,
and the M.S.E.E. and Ph.D. degrees in electrical and
computer engineering from Carnegie Mellon Univer-
sity, Pittsburgh, PA, in 1975, 1977, and 1981, respec-
tively.

In 1981, he was a Visiting Assistant Professor in
the Department of Electrical Engineering, Carnegie
Mellon University. From 1982 to 1988, he was with

the Semiconductor Engineering Computer-Aided
Design Group at Digital Equipment Corporation, Hudson, MA, where he

Fadi A. Aloul (S'02) received the B.S. degree in headed the Analysis and Simulation Advanced Development Team. Since
electrical engineeringsgmma cum laudefrom September 1988, he has been a Professor of Electrical Engineering and
Lawrence Technological University, Southfield, MI, Computer Science at the University of Michigan, Ann Arbor. From September
in 1997 and the M.S. and Ph.D. degrees in computef994 to March 1995, he was with the Cadence Berkeley Laboratory, Berkeley,
science and engineering from the University ofCA, on a six-month sabbatical leave. He has authored or co-authored more
Michigan, Ann Arbor, in 1999 and 2003, respec-than 150 papers and has presented seminars and tutorials at many professional
tively. meetings and various industrial sites. His research interests include the area of

He is currently a Post-Doc Research Fellow at théomputer-aided design with emphasis on simulation, timing verification and
University of Michigan. His research interests are irPptimal clocking, logic and layout synthesis, Boolean satisfiability, and design
the areas of computer-aided design, verification, anderification.
Boolean satisfiability. Dr. Sakallah was an Associate Editor of the |IEERAKNSACTIONS ON

Dr. Aloul is currently the AV Chair of the 2003 International Workshop orCOMPUTERAIDED DESIGN OFINTEGRATED CIRCUITS AND SySTEMS from 1995
Logic Synthesis (IWLS). He is also serving on the technical committee of tf@ 1997, and has served on the Program Committees of the International Con-
International Workshop on Logic Synthesis, the International Conference ffence on Computer-Aided Design, Design Automation Conference, and the
Theory and Applications of Satisfiability Testing, and the International Worknternational Conference of Computer Design as well as and numerous other
shop on Soft Constraints. He has received a number of awards, including ¥rkshops. He is currently an Associate Editor of the IEEEANSACTIONS

Agere/SRC research fellowship, GANN fellowship, and the LTU presidenti@N COMPUTERS He i_S a Member of the Associate of Computing Machinery
scholarship. (ACM) and Sigma Xi.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

