A Glance Through the Gate
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..for geometry, you know, is the

gate of science, and the gate is
so low and small that one
can only enter it as a little child.

— William Kingdom Clifford



Preface

Clifford’s algebras are a rich subject, born in the later half of the nineteenth century, they have
been lying dormant for many years. Recently they have received much interest from both physi-
cists and computer scientists; this in turn has generated new interest in their mathematics. Pre-
sented here is an introduction to this diverse subject. It is aimed at a final year undergraduate or
first year postgraduate interested in discovering the basic notions and ideas concerned with this
area of mathematics.

We assume, for the purpose of this report, that the reader is comfortable with basic vector space,
matrix and ring theory. In particular with; basic set theory, basis and dimension of vector spaces,
divisors of zero, direct products/sums of rings and vector spaces, homomorphisms, surjections,
injections, bijections, the kernel and image of homomorphisms, ideals, generating sets, the orthog-
onal group and special orthogonal group.

Perhaps it is worthy of note that in many places this report is not as general as could be the case.
Preference throughout has been given to presenting the underlying concepts as clearly as possible.
This approach will hopefully impart to the reader an intuitive feel for algebras. As an appendix we
have included a more general definition of a Clifford algebra for the interested reader.

Section 1 presents a basic introduction to algebras. We assume that the reader is familiar with
some basic examples of vector spaces and rings and use these as our starting point. As is often the
case with new mathematics, the ratio of definitions to theorems is rather high in this section.

Section 2 gives some of the reasons for the importance of matrix algebras in studying algebras
in general, including a method for finding the regular representations of any given algebra.

Section 3 contains the main exposition of this report, here we acquaint the reader with Clifford
algebras and guide them through the basic definitions. The section continues with a discovery of
the regular representations of these algebras and examines a fascinating theorem describing the
‘periodicity’ of Clifford algebras.

Section 4 is included to give the reader an idea of which directions further study could lead.
Also offered here are some applications for this theory to other sciences.

| would especially like to thank Andy Baker for his guidance in helping me to understand the
material in this report.
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Introduction

Confusingly, mathematicians use the word ‘algebra’ in two distinct ways. On the one hand al-
gebra is a broad branch on the mathematical tree of knowledge; on the other, it is the name given
to a very precise structure. It is often the case in mathematics that where subject areas overlap,
new fertile and fascinating areas arise from their intersection. This is the case with algebras, where
vectors spaces and rings interact together in intriguing ways.

In this report we shall take the approach of expanding a vector space in such a way as to allow
multiplication of vectors.

What shall we require of this product? It would be advantageous to have it satisfy the same
axioms as the multiplication for real numbers, that is distributivity, associativity and commutivity.
How about the complex numbers? Vector®Rifican be represented by complex numbers, whose
addition and multiplication satisfies the same axioms as the real numbers. Can this be extended for
dimensions greater than two?

It turns out that there is no way to develop these axioms for larger dimensions. In 1843, consid-
ering a similar question was William Hamilton. Whilst walking along the Royal Canal in Dublin
with his wife, he had a flash of insight. In an infamous act he defaced Brougham bridge with the
guaternions defining equations
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i“=j=k=-1
succeeding in generalising the concept of the complex numbers to four dimensions. He achieved
this feat by dropping the requirement of commutivity.

Thirty years later, another William, William Kingdom Clifford desired a consistent framework
for extending these observations to higher dimensions. This is what we study in detaiChere:
ford’s algebras

On the path to investigating Clifford’s algebras we shall encounter rich theory, including matrix
algebras and their importance in understanding algebras in general. Finally, we conclude the re-
port by pointing the reader to future paths for study and research. In addition to this, we unearth
applications for Clifford algebras — revealing , amongst other things, their significance in modern
physics.



1. Algebras

Informally, an algebra is a extension of the structure of a vector space. In addition to the vector
space axioms, we define a multiplication between vectors in such a way as to form a ring.

LetF be a field throughout.

More formally then, we have the following.

Definition 1. An algebraA over[F is a set on which three operations are defined; addition, mul-
tiplication and multiplication by scalars. These must satisfy the following conditions.

(i) A is aring under addition and multiplication.
(i) A is anF-vector space under addition and multiplication by scalars.
(i) Vabe AandA € F
(Aa)b=a(Ab) = A (ab).

Condition (iii) ensures that scalar multiplication commutes among the vectors in a sensible way.

Since an algebrd is both a vector space and a ring, we use definitions and terminology estab-
lished in connection with these structures to descAbd~or example, we may refer to elements
of A as vectors; we may consider basesAgmwe may also consider what it means 1o have
divisors of zero and so on. It is in this spirit we make the following definition.

Definition 2. An algebraA is said to be oflimensiom when it isn dimensional as afi-vector
space. Whem is an infinite dimensiondf-vector space, we say that it is iofinite dimensioras
an algebra.

Examples 3. (i) As a first example, the familiar complex numbétscan be thought of as an
R-algebra of dimensio8, with basis{1,i}. Let's work through this in detail.
Any elementsa, 3 € C can be written as

o =a;l+ api B =bil+boi
with ag,ap, by, by € R. Multiplication is then,
af = (a1l+api)(bi1+boi) = agbi 1+ (arby + ashy )i 4 aghyi?
but of coursdé? = —1, so we have,
apf = (aiby —axbp)1+ (agbp + aghy)i.

The multiplication of vectors in an algebra can be described completely in terms of multiplica-
tion of basis elements. Indeed, every algebra has a unique multiplication table, with respect to a
particular basis. Below ifiable 1 we see the multiplication table f@, with this basis.



Table 1. Multiplication Table forC

(i) Next, the quaternion&l, of which we will see a lot more later, are a 4-ditralgebra, with
standard basi§l, i, j, k}, whose multiplication table is shown rable 2.

1 i j k
11 1 | K
ii -1 k —j
il -k -1 i
klk | —i -1

Table 2. Multiplication Table forH

Notice thati? = j2=k?=—1,ij = —ji =k

(i) What aboutH as aC-algebra? On inspection, we see tliats both a ring and &-vector
space. Unfortunately, the scalars (i.e. element8)afio not commute evenly among the vectors.
For example, takd =i,a= j andb = 1in condition (iii) of the definition to get

(ij)H)l=j(i1)=i(j1) ie.ij =ji
which, on checkinglable 2, is clearly false.

(iv) M), then x n matrices oveif are ann dimensionalf-algebra, these are very important
examples of algebras. For this reason we de$eteion 2 to studying their basic properties.

(v) Let G be a group. Then we may take the group elements as a basifefeator space and
form what is called thg@roup algebraoverF, sometimes denotedfiG. The group multiplication
table then becomes a multiplication table for the algebra. Although we won’t go into any more de-
tail here on this subject, it is worth noting that these algebras are very important in studying groups.

Note 4. As with finite groups, to show an isomorphism between algebras it is enough to show
that their multiplication tables are the same.

We conclude this introduction to algebras by making some definitions that will be useful in the
following sections. These should appear familiar to the reader; they are direct analogues of similar
definitions made in group, ring or module theory.
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For the remainder of this section, lét B, C be algebras over the same fi&ld

Definition 5. We say that & is asub-algebreaof A, if B is an algebra under the same operations
asA andB C A.

Example 6. For example{ is a sub-algebra difl (asR-algebras). To prove this is it enough to
show that the multiplication table @ is contained in the multiplication table féf, which can
be easily checked imables 1 and2. In fact, the multiplication table fo€ is contained more than
once. That is to say, there is more than one subalgelfetbat is isomorphic td, as an algebra.

Definition 7. Thedirect productof B andC is defined to be the sét x €= {(b,c):be B,ce C}
satisfying, for allb,b’ € B,c,c’ € CandA € F.
(i) (b,c)+(b,c)=(b+b,c+c)
(i) (b,c)(b',c’) = (bb,cc)
(iii) A(b,c)=(Ab,Ac)
Note that these conditions imply the following.
(A(b,0))(b',¢) = (b,0) (A(H,C)) = A((b,0)(H,C))

Clearly this definition can be extended, by induction, to direct products of any number of algebras.

Definition 8. A map ¢ : B — C is analgebra homomorphistii it is both a ring and a vector
space homomorphism. That is for Bl € B andA € FF, ¢ satisfies the following.

(i) ¢(b+b)=¢(b)+¢(b)

(i) ¢(bb) = ¢(b)p(b)

(iii) ¢(Ab)=A(b)
We say thatp is a monomorphisnfrespectivelyepimorphismihwhen it is injective (respectively
surjective). Whenp is both a monomorphism and an epimorphism we say that it is@nor-
phism writing B = C.

Definition 9. Let ¢ : B — C be an algebra homomorphism. Then we definekidrael of ¢,
writtenker¢, to be the set
ker¢p = {be B: ¢(b)=0}.
We also define themageof ¢, written im¢, to be the set
im¢ ={ce C:c=¢(b), forsomebc B}.

We should perhaps note that, by construction, any algebra homomorphism is simultaneously
a vector space and ring homomorphism, for which we already have definitions of the image and
kernel. It may be easily checked however that these definitions coincide.
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Theorem 10. (15'Isomorphism Theorem for Algebras)

Let¢ : B — C be an algebra homomorphism. Thiegr¢ is an ideal ofB, im¢ is a subalgebra of
¢ and

B/kerg =im¢.

This is an important theorem, essentially commenting on the possible factorisations of any given
homomorphism. Perhaps it is more readily absorbed in a pictorial form, displayed below.

B C

'

B/kergp —im¢

Hererr: B — B/ker¢ is the projection map sendirg— b+ ker¢, @ is the isomorphism of the
theorem and : im¢ — C is the inclusion mag — c. The theorem can then be stated by saying
that the above diagram commutes, thapis 1 o ¢ o 1.

In other algebraic structures, groups, modules and rings for instance, analogues of the first iso-
morphism theorem are a powerful tool in identifying isomorphisms between spaces. This power is
increased in algebras since we can bring to bear on problems dimension arguments. For example,

with ¢ as above, if we know thatim(im¢) = dimC then as ing is a subalgebr& we may con-
clude that ing = C.

Exercises. Let ¢ : B — C be an algebra homomorphism.

(i) Show that the direct product of two algebras is also an algebra.
(i) Show thatker¢ is an ideal ofB and inp is a sub-algebra a.
(i) Prove that ¢ is injective <= ker¢ =0.
(iv) Prove alsothat ¢ is surjective < im¢ = C.

(v) Find the isomorphism of heorem 10.



2. Matrix Algebras

We noted in the previous section that matrix algebras are very important in algebra theory.
Without hesitation then, we present the reason for this statement.

Theorem 11. Every algebraA overT is isomorphic to a subalgebra of the matrix algebvig(F),
for somen.

Proof (Abian; [Abn 1971])

We will prove the theorem for the case= 3, which illustrates the proof in general. Thus, we
assume thatl is a3 dimensional algebra ovét and that{l,A, B} is a basis ofA wherel is the
identity of A. Let the multiplication table ofl with respect to the basid, A, B} be given by

| | A B

| | 11+0A+0B 0l +1A+0B Ol +0A+1B
A |0 +1A+0B al+bA+cB gl+hA+kB
B|0Ol+0A+1B gl+rA+tB ul+vA+wB

Clearly, we may represehty (1,0,0), Aby (0,1,0) andB by (0,0,1) and rewrite this table as
follows.

L A B

(1,0,0) | (1,0,0) (0,1,0) (0,0,1)
(0,1,0) | (0,1,0) (ab,c) (g,h,k)
(0,0,1) | (0,0,1) (q,r,t) (u,v,w)

From the rewritten table we see that
(1,0,0).I =(1,0,0); (0,1,0).1 =(0,1,0); (0,0,1).1 =(0,0,1).

The above equalities suggest substituting
Again, from this table we see that
(1,0,0).A=(0,1,0); (0,1,0).A=(a,b,c); (0,0,1).A=(q,r,t).

The above equalities suggest substituting
0
c|.
t
Finally, we see that

(1,0,0).B=(0,0,1); (0,1,0).B=(g,h,k); (0,0,1).B= (u,v,w).
6
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0
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The above equalities suggest substituting

001
forBthematrix| g h k |.

u v w

Motivated by these substitutions, we consider the mapgifrom A into M4(IF) where for every
elementSe A with S= 51 + A+ 5B we define

¢(S =s1¢(1) +%2¢(A) +514(B)

1 00 010 001
¢(I)(O 1 0) ¢(A)(a b c) ¢(B)<g h k).
0 01 qr u v w
m

t
We claim that¢ is an algebra homomorphism and leave it as an exercise to check the three
conditions prescribed iDefinition 8 hold.

where

Finally, we see the matrices(l), ¢ (A) and¢ (B) are linearly independent. Therefdeerg = 0.
By the first isomorphism theoren feorem 10), we have that is an isomorphism frorl onto a
subalgebra oM;(F), as desired. O

This process of representing an algebra dvéay a subalgebra of the matrix algebra is some-
times referred to asegular representation

Example 12. For a concrete example dtheorem 11 we shall endeavor to discover the regular
representation of the algebta First we rewriteTable 1 as

which suggests the mappings
1 10 i 0 1
~lo1 "\ -10
0 1\° (10
-1 0/ 01

shows that we are on the right track.
Finally we see that,

and a quick check

~



Exercise. Find the regular representation fér the quaternions.
Another reason for matrix algebras importance is the following.

Proposition 13. Let A be an algebra wittfB andM,(IF) as subalgebras such that
BAM|F) ={A.1,4 : A € F}.

Suppose thaB andM(F) commute element-wise and tiaand M,(F) generateA.
Then
A = M,(B).

This is, for those readers who are familiar, ostensibly a fact from tensor productsh(ize.
MA(F) = MB)). Indeed this is the correct way to think of this result. However, since this is not
the place to introduce such theory we will give an illuminating example in place of a formal proof.

Example 14. Consider the matrix algebf&(,(C). This has subalgebrdasandM,(R), with bases

resiﬂ(vjl‘i),(é?)} o)) (2009

It is easy to see that elements of these bases commute with each other and that

CﬂMﬁR)z{(é f\’):)\ GR}.

Further, they generate an algebra with basis

{GHEDEDEDGENEY)
(5935 (a2 ) (3.42))

Which can be seen to be a basis dy(C).



3. Clifford Algebras

With our introduction to algebras finished, what follows is the main exposition of this report.
Starting with the basic definition below, we shall expand to look at the regular representations of
Clifford algebras. Culminating this section with a marvellous theor&éhedrem 22) on the ‘peri-
odicity’ of Clifford algebras.

Definition 15. Given a real vector spadé, the Clifford algebraC/,, is the associative algebra
freely generated by satisfying
2 _ 2
X =—[X
forallxeV.

We restrict our exploration of Clifford algebras here to considering only the case where
n 1/2
V=R" and |x= { inz}
i=

wherex = (X1, X2, ...,%), we denote this family of Clifford algebr&¥,. A more general defini-
tion is included in the appendix &finition 24. For a broader approach to Clifford algebras see
[Artn 1957], [Bkr 2002], [Lousto 1995] and [Prts 1995].

Example 16. Let’s get our hands dirty with some calculations.

Take an orthonormal basis &2, {e,,e,}. We wish to form all finite products of these basis
elements, subject to the condition given in the definition. Any vectdRdrcan be written as
Ae + ue, for someA, u € R. Using the definition above we require that

Ae+pe)® = —(A%+u?),
ie. A+t iulee+ee) = —A2—p?
Hence, equating coefficients, we have the relations
ef = % =-1 and ee+ee =0.

Thus any further products of basis elements is linearly dependant on the eldthents;, e e, }
(wherel denotes the empty product). Therefore, this set forms a bas¥ for

Observe that the subset of this bais, e,} of products of odd length generat®$ as a vector
space. Also that the products of even length are closed under multiplication showing that the space
spanned by{1,ee,} is a subalgebra dt/,.

The full multiplication table folC/, is shown below infable 3 below.



1 e e €6

1 1 e e €6
e e -1 66 —6
€ e -6 -1 e

€6 | 6,6 € —€ -1
Table 3. Multiplication Table forC¢,

Notice the similarity between this multiplication table afhable 2 for the quaternions. As we
remarked iMNote 4, this is sufficient to show the following.

Proposition 17.

As a corollary to this, we note that the even subalgebra mentioned above, spanfied, by}
is isomorphic to the complex numbets

Generalising the process followed in the example, by buil@ifigrom an orthonormal basis of
R", we recover the subsequent proposition.

Proposition 18. For 1 <i <n, let{e} be an orthonormal basis fdR". Then inC/, we have the
following relations.

f=-1 eg+gqa=0
for1<i,j <nwithi# j.

Remarks. In our definition of Clifford algebrasDefinition 15, we made two assertions that are
not at all transparent. Firstly, we said that a Clifford algebfeeislygenerated by the vector space;
secondly, that this algebra is unique (up to isomorphism).

The concern is that we have made choices that could apparently lead to the construction of
distinct Clifford algebras. Namely, we choose a basis of the vector spateen we multiply
elements of this basis together to get the basis for an algebra. The miraculous part is if we choose
a different basis oY and form the Clifford algebra ovéf with respect to this new basis, we get
an isomorphic Clifford algebra! For more details on this consult [Bkr 2002] or [Chvy 1997]. An
algebra with this property is often called aniversalalgebra.

3.1. Grade and Dimension.

Definition 19. We define thegrade of a basis element @/, to be the length of the product of
that element.

10



For example, the basis &%, consists of:

1 elementofgradezero 1 scalar
2 elements of grade one e, e, vectors
1 elementof grade two ee, bi-vector

In general, the basis @, consists of:

1 element of grade zero 1 scalar
n elementsofgradeone e,..., €, vectors
(5) elementsofgradetwo  ee,, ..., €6, bi-vectors
(3) elements of grade three ege;, ..., €,,6.46, tri-vectors
1 elem:ent of graden 66, -6, n-\:/ector

The grade structure of Clifford algebras follows the pattern of Pascal’s triangle, seen below.

n 2"

0 1 1

1 1 1 2

2 1 2 1 4

3 1 3 3 1 8

4 1 4 6 4 1 16
5 1 5 10 10 5 1 32
6 1 6 15 20 15 6 1 64
7 1 7 21 35 35 21 7 1 128

From vector spaces, we know that its dimension is the number of elements in its basis. Thus the
dimension of an algebra is the number of elements in the basis. The above remarks on the grade
structure of Clifford algebras give us the following proposition. Indeed, this also follows quite
naturally from the fact that we are constructing our algebras freely.

Proposition 20.
dlmcen = 2n.

11



3.2. Some Remarks.

(i) We have throughout been constructing examples of Clifford algebras from the vector space
R" with the standard inner product. Reflecting on the containment

1cCRCR?cC---CcR"1cR"c...

it follows that
ClccClycCl,c---cCl,,cCl,C---

(i) Note also that irfC/;,
(1+ee6)(1—eee;) =0,

with (1+ee63), (1—eee3) # 0.

ThusC/; has a divisor of zero.

These two remarks bring to light the following.
Proposition 21. For n > 2, C/, has divisors of zero.

3.3. Matrix Representations of Clifford Algebras. In the spirit of the previous sectidSection

2) on matrix algebras, we show here isomorphisms between the first nine Clifford algebras and
standard matrix algebras. As we will seeSection 3.4, something quite wonderful happens after
then.

We saw inExample 16 thatC/, = H and we hinted in the introduction that there exist Clifford
algebras isomorphic t& andC.

A method due to Alan Wiederhold gives us a uniform way of obtaining the representations of
C/, to C/, shown below in table 4.

R
C

H
H x H
M(H)

waHOH

Table 4. Matrix Representations &, to C/,

12



From our knowledge of matrix theory, we know that any eleneemif a field[F can be repre-

sented with the eIemerG g 2 ) € ML) . Further, we can represent an elemém, az) of

0

Using this knowledge, combined with the observations

F x I with the elemen< a C?z ) € MyF) .

RcCcCHCHxH c MyH)

Clhccl,ccl,c---cCl, ,cClyC---

we consider the following assignments.

(o %) \(é?)

wherei, j andk are defined as on Brougham bridge! Thafis- j2=k? = —1,ij = —ji = k.
The dedicated reader may check that this indeed gives the isomorphiJatgdr.

Next we would like to find a representation f@/;. The assignment of the basis vectors

1,€,,...,6 of R® shown below induces the required isomorphigfn — M,(C). Here, as usual,
i2=—1.

13



1 000

0100

0010
i 0 0 O 0 001 0O 0O O —i
0O -i 0 O 0O 0 —-i O
OO|0 0O -i 0 O
0O 0 O -1 0 0 O

/ = \

0O -10 O 00 0 -1
1 0 0 O 00 -1 0
0O 0 0 -1 01 0 O
O 0 1 O Oi O 10 0 O

i 0 O

00 O

00|0

By direct calculation, using the method described in the prodfiebrem 11 for finding a reg-
ular representation, we discover the representations shown belbvislin5.

n] Cly |
6] MuR)
7| Mg(R) x Mg(R)
8]  MdR)

Table 5. Matrix Representations @, to C/,

3.4. Periodicity of 8. The result that was alluded to at the start of the last section is the topic of
this section. Informally, it characterises all of the real Clifford algebras (with the standard inner
product) in terms of the first eight, which we have summerised beloldlife 6.

14



S

R

C

H
H x H
My(H)
M4(C)
M(R)

Mg(R) x Mg(R)

~NoO o~ WNPEFE OIS

Table 6. Matrix Representations @/, to C/,

Theorem 22. (Cartan, 1908)
C€n+8 = lﬁ(Cén)

Proof

Take an orthonormal basi®,,e;,...,€, €1, ..,6us} Of R and setd = g€,.;--- 6,5 fOr i =
1,2,...,n. Then the subsdie,, €, ..., €} of C/, s generates a subalgebra isomorphi€ta The
subalgebra generated by, . . ., €, iS isomorphic taCl; = M,¢R). These two subalgebras com-
mute with each other element-wise and generate &Y of. Finally, Proposition 13 in Section 2
gives us the result. O

Example 23. To illuminate the above theorem, we shall work through the proof for thercask

First, take an orthonormal basisk?, {e,6,...,6}. We sete = e6,- - and observe that

(e(>2: (elez...eg>(e1e2...e9) =...= (elezeg)(egesel) =...=-1L
Hencee = g6, - - - & € Cl, generates the subalgelffee C/,.

Next, it is clear thafe,, e;, ..., &} is a basis foR® and so the subalgebra generated by @js
by construction.

To show that these two algebras commute element-wise we are required to sh&e that
g€ ie. (ee6 &g =g(e66;-6) (2<i<9), which follows from the properties of
Proposition 18.

It remains to show thaf€, e,, e;,...,6} generates all oE/s, this is achieved by noticing that
can be recovered from on post-multiplication by the elementeyg; - - - €,.
Putting this together we have

Cly = MydCly) 2 M(C).

15



4. Further Theory and Applications of Clifford Algebras

We conclude this report by looking at the directions in which further study of Clifford algebras
may lead, both in developing additional theory and exploring applications to other sciences.

4.1. Division Algebras. The alert reader may have noticed that although in our introduction to
Clifford algebras we promised to generalise the complex and quaternion algebras into higher di-
mensions we have had to drop one of their nice properties: division.

Roughly speaking (and perhaps dangerously close to sounding patronisiingsi@n algebra
is an algebra where division is possible. We have defined our algebras to be associative. If we fur-
ther assume that they are of finite dimension, then being a division algebra is equivalent to having
no divisors of zero. Alternatively, every non-zero element has a multiplicative inverse, that is to
say, every non-zero element is a unit.

There is nothing to stop us however, from defining this concept for a non-associative algebra.
We say that a non-associative algebra (®@n-associative) division algebithe operations of
left and right multiplication by any non-zero element are invertible.

Remarkably, it turns out that there exist, up to isomorphism, only four real division algebras.
Three of these are associative, they are the familiar real, complex and quaternion aRy&bras
andH, respectively. The octonions are our fourth division algebra. They are eight dimensional
overR and non-associative, although they do satisfy a weaker condition, edikedative

Albert, in his book [Albt 1939], states that the study of linear algebras ‘reached its zenith when
the solution was found for the problem of determining all rational division algebras’. The standard
construction of these four algebras is named after the mathematicians Cayley and Dickson. For a
detailed account of this and the relation to Clifford’s algebras we direct the reader to [Bz 2001], an
excellent paper entitled ‘The Octonions’.

4.2. Spinors. Let us look now at the concept ofSpinor(pronounced spin-or). The mathematics

of these objects is central to the understanding of the quantum physics of basic particles — like
protons, neutrons and electrons. Indeed, as Penrose states in [Pnrse 2004], ‘ordinary solid matter
could not exist without its consequences’.

Essentially, a spinor is an object that, on completion of a rotation through an ari@jte toirns
into its negative. This may seem counterintuitive to our everyday experience, absurd even. In place
of a formal definition, we will describe spinors by analogy.

16



Picture a book lying on a table in front of you. We want to keep track of the rotations of the
book, so let’s open it and place a belt in between the pages. Next, fix the buckle end of the belt
(under another pile of books, say). This set-up is shown in Figure 7 (a). Now, rotating the book
through2r puts a twist in the belt, which cannot be undone without further rotation (as shown in
(b)). But something curious happens if we rotate the book through arshéne twist in the belt
can be undone by looping the belt over the book (shown in (c)).

(a) (®) ©

Figure 7. Spinorial Book

Thus, the belt keeps track of the parity of the numbe2mfotations. That is to say, if the book
is rotated through an even numberaif rotations the twist in the belt can be removed without
further rotations of the book, whereas an odd numbérofotations leaves an inevitable twist in
the belt. This holds true for any combination of rotations through any axes.

Spinors are connected with Clifford algebras in a very fundamental way, which we will illumi-
nate at the end of the following section.

4.3. Embedding C/, in C/,,. As we noted inSection 3.2 (i), there is a canonical embedding of
Ct, in C/,,., given by the containmer®R" c R,

A less obvious embedding can be found by considering
R" — Cl,., X = X€e1.

It turns out that this can be extended to an algebra isomorphism
Clh— Clf € — &6
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(1 <i<n+1), whereC/f is the subalgebra d@/, generated by a subset of the basis@r
consisting entirely of products of even length. For example,has basiq1,ee,} and similarly,
Cl4 has basiq1, e e, e.6;, 665}

Returning to the concept of spinors, we shall make a couple of definitions to aid our explanation
of the connections between these and Clifford algebras.

A closely related concept is that pfnors. Let Pin, be the group of pinors sitting insid&/,,,
consisting of all the products of unit vectorslif.

Consider now the following homomorphism between,Rind the orthogonal grouf,. For a
unit vectorx € R", we map bothtv to the element of),, representing the reflection in the hyper-
plane perpendicular ta. Since every element @, is composed by reflections, it is easily seen
that this homomorphism is surjective.

Moreover, PiR is a double cover fof),, that is to say every element of the orthogonal group
is represented by two opposite pinors. Another way of expressing this is to say that the kernel of
this mapping consists of just two elements, namely The concept of double covers should be
familiar to the reader — you need look only as far as the hands on your wrist-watch! As each hand
position corresponds to two positions of the sun.

Now, let Spin, be the group consisting of all the products of an even number of unit vectors in
R". This group, a subgroup of Rjnis the group of spinors as describeduttion 4.2.

An element ofOy, is also an element &f0,, the special orthogonal group, precisely when it is
the product of an even number of reflections. Thus, just gsi®@mdouble cover od,, Spim, is a
double cover o80y.

As we know, every rotation ifR" can be represented by an elemen86f,. The trouble is
that elements 080, don’t so much as represent rotations, but represent the final result of such a
rotation — the sense of the rotation has been lost. This is wherg &piiers and the veil shrouding
its importance is lifted, as with one element of this group we can truly represent a rotation, its
magnitude and sense.

Intriguingly, the epimorphism above from Rito Oy, also tells us that pinors in dimensions
are spinors im+ 1 dimensions!
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4.4. More Applications in Physics and Computing. Next, a brief glance at some other appli-
cations of Clifford algebras. 141928 the Dirac electron equation provided a turning point for
physics. Dirac himself, unaware of Clifford and Hamilton’s earlier work, was driven to reinvent
parts of Clifford algebra in an attempt to understand the physical spin of the fundamental particles
of nature.

To conclude the report let us take a brief look at some recent developments in computing. Here,
Clifford algebras are presently being groomed for use in modelling geometries. These are in turn
used in complex computer graphics. The current methods for modelling geometries, according to
Dorst [Drst 2001], are fragmented at best.

...In every application a bit of linear algebra, a bit of differential geometry, a bit
of vector calculus, each sensible used,dmlihocin their connections. .

He goes on to say that this approach leads to unnatural splits in the program — rather than a di-
vision of tasks matching the nature of the problem. The solution he offers is a single ‘Clifford’
toolbox. Allowing calculations to be performed in a single framework, free from coordinates.
Claiming also, that generalisation of programs to higher dimensions becomes intuitive under these
constructions. Altogether, it seems as if he and his colleagues are trying to start a Clifford algebra
revolution in computing!
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5. Appendix

For the interested reader, here is the more general definition for a Clifford algebra that was
promised in the preface.

Definition 24. Given an inner product spac¥, (-|-)) and associated quadratic fof@ix) = (x|X),
there is &Clifford algebraC¢, (Q) which contains/ as a subspace and satisfies

X% = —Q(x)1
forallxeV.
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