
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
GRAPHITE 2007, Perth, Western Australia, December 1–4, 2007.
© 2007 ACM 978-1-59593-912-8/07/0012 $5.00

Evaluation of real-time physics simulation systems

Adrian Boeing

School of Electrical, Electronic and Computer

Engineering

University of Western Australia

Thomas Bräunl

School of Electrical, Electronic and Computer

Engineering

University of Western Australia

Abstract

We present a qualitative evaluation of a number of free publicly
available physics engines for simulation systems and game
development. A brief overview of the aspects of a physics engine
is presented accompanied by a comparison of the capabilities of
each physics engine. Aspects that are investigated the accuracy
and computational efficiency of the integrator properties, material
properties, stacks, links, and collision detection system.

Keywords: dynamic simulation, physics engine, evaluation.

CCS Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling - Physically based modeling;
D.2.11 [Software Engineering]: Software Architectures - Data
abstraction.

1 Introduction

Recently there has been a marked increase in the number of free,
publicly available physics engines. Given the plethora of physics
engines available it can be very difficult for a developer to select
an appropriate physics engine for their application. For a game
developer many aspects come into consideration including
available features, supported platforms, ease of use, and run-time
performance. Researchers and simulation engineers are typically
more concerned with the accuracy of a physics system.

In the past it has been very difficult to compare physics engines,
however recently a number of physics engine abstraction systems
have become available such as PAL (Physics Abstraction Layer),
OPAL (Open Physics Abstraction Layer), and GangstaWrapper.
These abstraction layers allow developers to implement one
version of their physics system through a unique interface and test
their application with multiple engines. Additionally they simplify
the task of comparing physics engines directly.

OPAL is the least complete, providing only an interface to one
physics engine. The GangstaWrapper provides an interface to four
physics engines, whereas PAL provides support for ten engines
(See Section 3). GangstaWrapper is no longer maintained,
however provides a solid interface for the physics engines it
supports. PAL is still being maintained and expanded, however
does not feature as many configurations as GangstaWrapper.

An alternative approach to achieving physics engine
interoperability is the COLLADA standard. Coumans and Victor
[2007] provide a brief overview article of the COLLADA physics
standard and provide a short comparison of the capabilities of the
Bullet, Novodex (Ageia PhysX), ODE (Open Dynamics Engine)
and Havok physics engines.

Seugling and Rolin [2006] published an article comparing three
different physics engines, Newton, Novodex (Ageia PhysX), and
ODE (Open Dynamics Engine). Their evaluation focused
primarily on the performance of the systems for simulators. In this
article similar tests will be conducted and analyzed with an
additional focus on gaming technology. From their test results
they concluded that Novodex (Ageia PhysX) provided the best
results. Although most of the tests provided a quantitative
difference in performance the final evaluation was determined
from a very rough grading system. As a result the final findings
did not necessarily reflect significant performance differences in
the individual tests between physics engines.

The main task of all physics engines is to solve the forward
dynamics problem. Simply stated the forward dynamics problem
is: given the forces acting on a system, what is the motion of the
system?

There are a number of factors that influence the characteristics of
a physics engine. These range from the simulation paradigm,
collision detection and response to the type of numerical
integrator, and whether air resistance is considered. As a result
each physics engine will provide quite different results despite
stimulating the exact same system. A good overview of common
approaches to dynamic simulation is provided by Erleben [2004].

There are six essential factors that determine the overall
performance of the physics engine:
• Simulator Paradigm, determines which aspects can be

accurately simulated. This affects the accuracy in resolving
constraints. An overview of simulator paradigms is presented
in [Erleben, 2004]. Mirtich provides a comparison of
constraint–based methods and impulse based methods in
[Mirtich, 1996], and a comparison of penalty based methods
with constraint-based methods is presented by Baraff [1992].

• The integrator, determines the numerical accuracy of the
simulation. Some integration methods are discussed by
Baraff [1997], and integrator stepping methods are also
covered by Erleben [2004].

• Object representation, contributes to the efficiency and
accuracy of collisions in the simulation. Various aspects of
object representation choices are discussed in [Hadap et al.
2004] and [Ratcliff 2007].

• Collision detection and contact determination, also
contribute to the efficiency and accuracy of collisions in the
simulation. This is discussed in [Kavan, 2003] and [Hadap et
al. 2004].

281

• Material properties, determines which physical models, if
any, the simulation can approximate (eg: Coloumb friction).
Friction properties are covered by Kaufman [2005].

• Constraint implementation, determines which constraints are
supported and how accurately they can be simulated. See
[Erleben, 2004].

The most straightforward numerical integrator is Euler’s method
[Baraff, 1997]: � � � � � � � � � � � � �� � � � � 	
 �

In physics engines a Symplectic Euler integrator is often
employed due to its ease of use. The Symplectic Euler integrator
is similar to the Euler integrator, except that the updated velocity
is used before calculating the position. �� � � � � � � � �� � � � �� � � � �� � � � � � � � � � � � �� � � � � 	
 �

There are a large number of constraints that can be simulated. The
most useful constraints are ones that model the behavior of real
life systems. The three most common constraints are prismatic,
revolute, and spherical constraints. Prismatic constraints are also
referred to as slider constraints. They allow translation along a
specified axis, and no rotational movement. A revolute constraint
allows rotation only in one plane, and hence is referred to as a
hinge constraint. A spherical constraint can also be referred to as
a ball and socket constraint. It allows rotation about a point.

There are also a number of less common constraints. A universal
constraint consists of two revolute constraints connected at 90°
relative to each other; this provides a similar range of motion to a
spherical constraint, except without one axis of rotation. A fixed
constraint simply attaches one body directly to another restricting
all degrees of freedom. The distance constraint simply maintains a
certain distance between bodies. Finally, the corkscrew constraint
limits translation along one axis, and only allows rotation about
that axis.

Simulated vehicles and characters (or rag dolls) are often referred
to as constraints in the literature. These are actually containers,
including multiple specific constraints types such as springs for
simulating suspensions.

2 PAL Software Design

The physics abstraction layer (PAL) provides a set of unique
interfaces to various common properties of physics engines. There
are eight basic interface groups provided. These are the interfaces
for the core physics engine, a body, materials, geometries, links,
sensors, actuators, and terrain representations. The interfaces are
designed to be able to support varied levels of simulation
capabilities.

For example, the terrain and geometries are kept separate, as some
engines are only capable of supporting a static plane geometry, or
a static heightfield. Conversely, many physics engines are capable
of using various geometries for static or dynamic bodies
interchangeably. These physics engines are then able to support a
unique geometry implementation applicable for both static and
dynamic bodies. Taking a similar design approach to all interfaces
enables a maximum level of support for engines following
different designs.

For materials there are two interfaces provided: unique materials,
and material interactions. This allows the support for engines that

are able to specify the material properties for the interactions
between different materials.
Sensors and actuators are mostly engine independent as sensors
and actuators can interact with PAL directly through querying
bodies and geometries. PAL supports inclinometer, gyroscope,
accelerometer, position sensitive device, contact, velocimeter,
compass, GPS, and transponder sensors. A number of actuators
are also supported including direct force and impulse actuators, as
well as DC motor, servo, propeller, hydrofoil, and spring
actuators. Additionally actuators to support liquid effects such as
drag and buoyancy are included.

The supported dynamic geometries are boxes, capsules (cylinders
with capped ends), convex hulls and spheres. The bodies
supported are a geometry independent body, as well as a
compound body. These can have any geometry attached to them.
A box, capsule, convex hull and sphere body are also provided.
This allows engines that are incapable of supporting varied
geometry to directly support a box body, whereas engines that are
capable of supporting geometry independently from a body can
support the full functionality.

This design approach ensures that a large number of physics
engines can be supported and the PAL design does not restrict the
types of engines that can be supported. It also enables incremental
support of a physics engine’s features as the engine is developed.

The design concept used to facilitate an abstract extensible
architecture and provide a central repository is a versioned
pluggable factory [Culp, 1999]. A software factory class offers a
set of services for generating instances of various subclasses
without explicitly requiring the name of the class we wish to
construct. [Gamma, et al., 1995] A pluggable factory expands
this concept by allowing plug-ins to automatically extend the
applications functionality without requiring any modifications to
the application code itself.

To implement a versioned pluggable factory, the factory class
requires a registry that maintains a list of all available
components, the version of the component, and a method for
creating a component. When a component is created, the factory
can search through the registry for the desired class type,
construct it, and return it for use. Each class that needs to be
accessible via the factory requires a method that allows a copy of
itself to be created, as well as method to add its information to the
factories registry. By creating a static copy of the class the
information is automatically registered at the very beginning of
the application, before any user code is executed. Implementation
details of this approach for C++ are provided in [Culp, 1999].

3 Physics Engine Review

Most physics engines have a particular target application to which
they are optimized. This results in different performance in each
of the above categories, and often extra features are made
available specifically included for the target application. PAL
supports ten different physics engines, of which seven are tested
in this comparison. The engines supported by a PAL are AGEIA
PhysX (also referred to as Novodex), Bullet Physics Library,
Dynamechs, JigLib, Meqon, Newton Physics SDK, Open
Dynamics Engine, OpenTissue Library, Tokamak, True Axis
Physics SDK.

282

� � ! � " � � � � � � � ! � " � � � � � � � � �# $ % & # ' () * + , - . / . 0 1 2 % 3 4 # 5 6 1 1 , 5 6 1 1 7 8 9 :
 , 4 8 9 ; 2 , < + = . 2 : > ? , ' @ : , <A ; B B 1 C D E 1 9 F G B 8 = 5 6 1 1 , 5 6 1 1 7 8 9 :
 , 4 8 9 ; 2 , H I J + = . 2 : > ? , ' @ : , <K 8 L 4 8 = D E 1 9 5 6 1 1 , 5 6 1 1 7 8 9 :
 , 4 8 9 ; 2 , < < , < , <- 1 M C . 9 % 3 4 # 5 6 1 1 , 5 6 1 1 7 8 9 :
 , 4 8 9 ; 2 , H I J < , < , <D E 1 9 N) 9 I O 8 J * % 9 L 8 9 1 D E 1 9 F 4 $ ' 4 , A @ N 5 6 1 1 , 5 6 1 1 7 8 9 :
 , 4 8 9 ; 2 , H I J + = . 2 : > ? , ' @ : , ' @ 'P . Q I O I Q D E 1 9 F A @ N 5 6 1 1 , 5 6 1 1 7 8 9 :
 , 4 8 9 ; 2 , < < , < , <P 6 ; 1 # 2 8 * % 3 4 # 5 6 1 1 , R . = =) S 5 ; B B 7 8 9 :
 , 4 8 9 ; 2 , H I J + = . 2 : > ? , < , <
Table 1 – Comparison of engines license and supported platforms
 � � � � � � TUVWXYVZ[\]X̂_̀YZ a]bZc dZ̀ZV]Ye f\g hV]Xi_̂]Y jZkUlm̂Z nopZV]Y_l q̀]kZVX_l rZp]YlZs t u v s w x y z { | } ~ � ~ � � � � y y y y y y � y� � � � � � � � � y � y y � y� � � � � � y y y y � y y � y} � � � ~ � y � � y y y y y y� � � � � y � � � � � z u � � � � � � � y � y y y y �� ~ � � � � � � � � y � y y � �� � � � s � � z � � � y y y y � y
Table 2 – Comparison of engines constraints support

� � � � � � �Ub T_oXmlZ T�l]̀cZV TÙZ TÙkZb�ZXpe\�̀_i]Yg TUioUm̀c� ¡ZŶ
¢Z]£p̂¤]Zlce n̂_̂]Yg hl_̀Z nopZVZ ¥V]_̀£lZ�ZXpe n̂_̂]Ygs t u v s w x y z { | } ~ � ~ � � � y y � � y y y y y y� � � � � � y y � y y y y y y y� � � � � � y y � � � y y y y y} � � � ~ � y y y ¦ y y y � � y y� � � � � y � � � � � z u � � � � � § y y � � y y y y y� ~ � � � � � y y � � y y � � y y� � � � s � � z y y y � y y � � y y¦ } � � � ~ � z � � � ~ � � z � ¨ x � � © � � � y � � � � � �

Table 3 – Comparison of engines geometry support
 � � � � � � ª « ¬ « � ­ ® ¯ � ­ « � ° � ± � � � « � ­ ® ¯ � ­ « � ° � ² � ³ « � « ´ « � ° �s t u v s w x y z { | } ~ � ~ � � � y y y� � � � � � y � y� � � � � � y y �} � � � ~ � y y y� � � � � y � � � � � z u � � � � � y y y� ~ � � � � � y � y� � � � s � � z y � y
Table 4 – Comparison of engines material support

283

There are three engines supported by PAL that are not tested.
Dynamechs is not tested as it does not support collisions between
two dynamic bodies. It only supports collisions between dynamic
and static bodies. Meqon is not tested as it is no longer available,
and the OpenTissue Library was not included since it is not a
complete physics engine, rather a meta library and thus it is
difficult to construct a fair and general test configuration.

There are a number of aspects that are interesting to compare. As
most physics engines are used as middleware, a typical project
will already have a target platform and budget based on other
factors [Saral, et al., 2004]. A comparison matrix of the different
engines licenses, costs, and supported platforms is provided in
Table 1. The cost column indicates first the cost for
noncommercial use, then the cost for commercial use.

Table 2 indicates the types of constraints supported by each
engine. Provided an engine supports the generic six degrees of
freedom constraint, then all other constraints can be constructed.
The vehicle column in the table indicates whether vehicles are
supported natively by the engine. This does not mean that the
engine supports constraint-based vehicle models as opposed to ray
cast vehicles.

Provided the application developer has the necessary skills all
custom constraints can be constructed from the generic constraint.
However, it is uncommon for a developer to implement more than
one custom constraint for their application.

All engines provide an interface for a generic constraint. ODE has
no explicit support for a generic constraint however as it is an
open source project it can be easily modified to simulate any
custom constraint. No physics engine supported all constraints.

The different geometry supported by each engine is indicated in
Table 3. Provided an engine has support for a static triangle mesh,
then other meshes such as height fields can be easily stimulated.
However it may provide inferior performance compared to
engines that natively support height fields. Since physics engines
typically require only a basic geometry representation for
simulated objects simple geometries are usually sufficient
provided they can be combined in a compound object that
estimates the simulated object.

The material properties supported by each engine are presented in
Table 4. For gaming applications is usually sufficient if some
form of static friction and restitution is available.

The AGEIA PhysX physics engine provides a number of
additional features not indicated in the tables above. It is the most
full featured engine provided in this comparison. Since it is a
commercial engine the implementation details are unknown,
however fixed and variable time steps are possible. It provides an
additional number of joint constraints including cylindrical, point
on plane, point on line, springs, and pulleys. A number of vehicle
representations are provided, and a dynamic triangular mesh
geometry is also provided. Anisotropic friction is supported for
the materials, and the engine includes a number of advanced
features including fluids, character controllers, swept geometries,
soft bodies, cloth, as well as a serialization API and advanced
hardware support for AGEIAs own physics processing unit.
Historically the PhysX engine derives from a previous offering
named Novodex, which was then updated to include support for
AGEIA’s custom hardware, and incorporated technology obtained
from purchasing Meqon. However, the Novodex API naming

convention was retained. For this reason it is typically referred to
as Novodex.

A relative newcomer to the physics scene is the Bullet physics
library. For this reason it does not currently provide many
additional features, the only feature included not listed in the
tables above is a support for swept geometries and swept collision
detection. It is a hybrid impulse and constraint-based engine that
supports both variable and fixed time steps. It also includes a
partial graphics processing unit (GPU) physics implementation.

JigLib is a hobby physics engine developed by Danny Rowlhouse.
It is an impulse based approach that uses a Euler integrator and
fixed time stepping. It is representative of what is possible for an
in-house physics engine to achieve. It provides an additional
velocity-based constraint.

The Newton Game Dynamics physics engine is also a closed
engine and hence the implementation details are unknown. It
provides a few additional features such as buoyancy, an additional
“up-vector” constraint, an adaptive friction model, examples of
various custom constraints, and a rag doll container.

The Open Dynamics Engine is a constraint-based physics engine
that uses a Euler integrator and fixed time stepping. It provides an
additional 2D constraint, and has been ported to a large number of
platforms.

Tokamak is an impulse-based engine that uses a Euler integrator
and fixed time stepping. Additional features are a container for
animated bodies, and support for breakable joints.

True Axis is another closed engine, however provides the source
code in obfuscated form. This has both advantages and
disadvantages since it is the simulation developers responsibility
to build an optimal library. Microsoft’s Visual Studio 2005 was
used to build True Axis for this evaluation. True Axis provides a
few additional features including a line list constraint,
serialization functionality and swept collision detection.

4 Physics Engine Evaluation

Five tests were performed to assess the aspects of the physics
engines. These are integrator, material, constraint, collision and
stacking tests.

4.1 Integrator Performance

The integrator is responsible for calculating a body’s position
given the forces acting on it. The performance of the integrator
effects the accuracy of the simulation. This is not of a great
concern for gameplay, as game designers are unconcerned with
physically accurate representations. Simulation engineers
however should be concerned with the integrator performance,
especially since they are likely to layer additional environmental
effects such as air resistance or water resistance on top of the
physics engine.

To test integrator performance a very simple test is performed. A
sphere is constructed at the origin and allowed to drop from
gravitational forces. Gravity is set to -9.8m/s, and the time step is
set to 0.01. The positions presented by the physics engines are
then recorded and compared to ideal cases for various integrators.
From classical physics position of a body with no initial velocity
can be calculated from:

284

µ ¶ ·̧ ¹ º » ¼ ½ ¾
Where

µ
 is the bodies displacement

 ¹ is the bodies acceleration
and º is time.

Figure 1 and Figure 2 illustrate the accumulated position errors
due to the integrator relative to the ideal case presented above.
The errors have been normalized with respect to the Symplectic
Euler integrator. Most physics engines provide results similar to
the Symplectic Euler integrator, or 2nd order Euler. Novodex
(Ageia PhysX) provided the best results. The integrator for the
Newton physics engine provided the worst results. The results
were close to what would be expected if the physics system was
simulating air drag of an extremely smooth object (eg: an aircraft
wing [Aerodynamic Database Drag Coefficients]). However this
effect is due to forced velocity dampening by the Newton Euler
integrator.

Figure 1 – Positional error from cumulative numerical integrators
relative to the ideal case normalized to the Symplectic Euler
integrator error

Figure 2 – Positional error comparison of Symplectic Euler
integrator and Newton physics engine

4.2 Material Properties

Figure 3 – Materials
test configuration

Materials are responsible for stimulating
friction and restitution properties during
a collision. From a gaming perspective
accurate simulation of physical friction
models is not as important as simply
being able to model different behaviors
with different material properties. In
contrast, accurate friction and restitution
models are critical for simulation
engineers.

The materials restitution properties were tested by colliding a box
with a sphere. The box is placed on the ground and the sphere is
placed one meter above. The box was of dimensions 1×1×1m3,
and a mass of 1kg, the sphere had a radius of 0.5m, and a mass of
1kg. Three different values of restitution were tested, 0.1, 0.5 and
0.9. Since the box on the ground is stationary the relationship
between the dropped height and the coefficient of restitution is
given in classical physics by: ¿ À ¶ Á ÂÃ ¼ Ä ¾
Where

¿ À
 is the coefficient of restitution

Â
 is the bounce height

and
Ã

 is the drop height.

A graph of the bouncing boxes positioned over time for a
restitution coefficient of 0.5 is depicted in Figure 4. The
maximum heights obtained for the three different restitution
values are given in Figure 5. These results indicate that only
TrueAxis provides a good approximation of coefficients of
restitution. None of the engines handle low values of restitution
correctly.

Figure 4 - Bounce height for a coefficient of restitution of 0.5

Figure 5 – Maximum bounce height for varying values of
restitution.
For gaming applications an accurate restitution model is
unnecessary, more important is that there is a correlation between
an increase in restitution value and the bounce height. Bullet and
Novodex give acceptable relative increases in the bounce height,
and to a lesser extent Newton and Tokamak showed a correlation.

Figure 6 - Friction test
configuration

To test the static friction a
5×1×5m box was placed on an
inclined plane. A static friction
coefficient was assigned to the
materials of the box and the

ÅÆÇ ÅÇ ÆÈ ÅÈ ÆÉ ÅÉ ÆÊ ÅÊ ÆÆ Å
Ë Ì Í Î Ï Ð Ñ Ò Ó Ñ Ô Õ Ï Ð Ö × Ð Ø Ò Ù Ú

Û Ü Ý Þ ß à á â ã ä å ã à ß æ á ç ã è Ý Ý Ü Ý
éé ê ëìì ê ëíîïðñòóôóõ öô÷

ø ù ú û ü ý ü þ ÿ ý � � � � � û � � �
� � � é ê ì� � � é ê ë� � � é ê 	

 � �
 �

 � �
 � �� �� ! " # $ % ! & $ ' () * ' + , ' - # + " '

. / 0 1 2. / 0 1. / 0 / 2// 0 / 2/ 0 1/ 0 1 2/ 0 3/ 0 3 2/ 0 4/ 0 4 2
567 89: ; < = >

? @ A B C D E F G H @ I D A D J D A F K L M N O P Q R R S TU V W W R SX S Y T Z [X Z \ Z] S ^_ ` ab Z c d e d cb f Q S g ^ V h
i] S d R j d ^ k

285

plane, and the angle of the plane was then incrementally increased
to test the angle at which the box would first start sliding. This
process was repeated for the range of static coefficients from 0.1
to 0.7, increasing by 0.1. The angle of the plane was tested in the
range of 0 to 0.7 in increments of 0.05 radians.

The Jiglib and ODE physics engines were not included in this test
as the PAL implementation does not support resetting a bodies
orientation after construction.

The Newton physics engine provides the closest approximation of
the ideal results. Novodex also provides a good approximation,
however applies too much static friction effect. All engines
display an increase in the angle required before motion occurs,
indicating they are all suitable for game applications. For
simulation systems only Newton provides an accurate model.

Figure 7 – Angle of the plane at which the body began movement
versus the static friction coefficient

4.3 Constraint Stability

Constraint stability is one of the areas of importance for game
designers. If constraints are unstable numerical errors can cause
constrained bodies to slowly drift apart. This results in unrealistic
looking results. This is also of critical importance for simulation
engineers simulating multi-body robotic systems, the traditional
application of dynamic simulation systems.

Figure 8 –Constraint test
configuration

To test the constraints stability a
chain of spherical links connecting a
number of spheres was simulated.
The chain was attached to two boxes
as indicated in Figure 8. Each sphere
in the chain had a radius of 0.2m,
and a mass of 0.1kg. The mass of the
boxes was 400 times the number of
constraints.

The two side boxes were as high as the number of constraints, and
the supporting base measured 1x1m². The test was run for 20
seconds. Figure 9 illustrates the constraint error measured from
the accumulated difference in the distance between two links
minus relative to the initial case. The Newton physics engine is
not illustrated as it contains significantly greater error than other
physics engines, averaging 30 times the error of other engines.

Figure 9 - Constraint error

The Tokamak engine provides the best results for the constraints
solving them in the least time with the second best accuracy. ODE
provides the most accurate results but requires the most time to
solve the constraints. Novodex provides the second greatest
constraint error. This is an interesting result as Novodex is often
employed in robotic simulation systems such as the Microsoft
Robotics Studio. It should also be noted that ODE’s slower and
more accurate WorldStep integrator was employed, which is not
always used in robotic simulators.

Figure 10 – Constraint timing

4.4 Collision System

Figure 11 – Collision test
configuration

The collision system is an essential
part of the physics engine. Failure to
detect a collision during a simulation
leads to incorrect results. Similarly
gameplay becomes inconsistent if
game objects fall through the
simulated game world. To test the
collision system an inverted square
pyramid mesh is constructed.

The pyramid apex is 1m deep, and the opening of the pyramid
measures 2×2m². A 8x8 grid of spheres with a radius of 0.04m is
dropped into the open pyramid.

Penetration of the pyramid is detected by comparing all of the
spheres positions to the polygons that make up the pyramid. If any
sphere is less than its radius away from the pyramid’s polygons,
then a penetration error is accumulated. This error is depicted in
Figure 12. The engines that are not included in this graph
(Novodex, ODE and Tokomak) fail the collision detection test (ie:
spheres fall through the pyramid).

ll m nl m ol m pl m ql m rl m sl m tl m u
l l m o l m q l m svwxy z{|}z~z�~z�v�

�zy z��~� {w
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � � � �� � � ¡ ¢� ¡ £ ¡ � � ¤¥ ¡ ¦ � § � ¦¥ ¨ � � © ¤ ª «

ln l l lo l l lp l l lq l l lr l l l
n o p q r s t u ¬ n l­��{� ® ¯ ° ± � � � � � � � ² � � ³ � � � ²

´ � � µ � � � � � � ¶ � � � �
� � � � � � · ª ¸ ¸ � � � ¡ £ ¡ � � ¤ ¹ º » ¥ ¡ ¦ � § � ¦ ¥ ¨ � � © ¤ ª «

ll m rnn m roo m rpp m r
n o p q r s t u ¬ n l¼� ½z

® ¯ ° ± � � � � � � � ² � � ³ � � � ²
´ � � µ � � � � � � � � ¾ ¿ À � Á � Â � � Ã � � � � � �· ª ¸ ¸ � �� � � ¡ ¢� ¡ £ ¡ � � ¤¹ º »¥ ¡ ¦ � § � ¦¥ ¨ � � © ¤ ª «

286

At the time of the impact a large spike in the penetration error is
experienced by all engines except Jiggle. Bullet manages to
recover from the error and settles into a steady state with almost
no error. Newton and TrueAxis penetration error evens out, but
not at a low enough level to stop the motion of the spheres.

The Tokamak engine only barely fails this test with one sphere
passing through the pyramid. Novodex and ODE fail the test
completely, due to the inability of these engines to correctly
reorder and optimize the mesh structure passed to them by PAL or
bugs in the mesh collision detection routines. A different
implementation of this test may allow Novodex and ODE to pass.

For some gaming applications and integrator step of 100Hz is
unrealistic, and larger steps are common. To test this extreme, the
same test was repeated at 15Hz. The Bullet engine fails this test,
however TrueAxis performs very well, and is capable of passing
this test at just 5Hz.

Figure 12 - Collision penetration error over time

Figure 13 – Collision penetration error over time with an
integrator step of 15Hz

4.5 Stacking Test

Figure 14 - Box stacking test
configurations

Figure 15 – Realistic sphere
stacking test

A test that is important for game developers, but relatively
unimportant for most simulation engineers is the efficiency of a
physics engine in handling stacked objects. In this test a set of
1×1×1m3 , 1kg cubes are dropped in a stack on top of one another,
with a distance of 0.1m between them. Each cube is displaced by
a random amount of maximal 0.1m in both directions parallel to
the ground. Automatic body sleeping is disabled. It is not feasible
to verify what the physically correct behavior for a stack of
objects is, i.e. at which point the stack should collapse. The
results can then only be examined by visual inspection, and all the
physics engines pass this test.

A test for visually realistic results is to stack three spheres directly
on top of each other. In the real world dropping three spheres on
to one another should not result in a stack. However, every
physics engine that was tested stacked the three spheres providing
visually unrealistic results. Although the results produced by the
engines are a mathematically correct implementation of the
physics models failure to add noise to the simulation results in
visually unrealistic outcomes. Since no physics engine supports
any noise models every engine fails this test.

One metric that is possible to measure is the time taken to update
the physics engine. The computation time required to update the
physics engine for the corresponding number of stack objects is
illustrated in Figure 16.

Figure 16 - Computational effort of stacked objects

5 Conclusion

The physics abstraction layer provides a uniform, extensible
interface to the physics engines. Since physics engine’s API’s are
constantly changing, whether a response to new hardware (eg:
GPU, multi-core CPU), or new code or capabilities (eg: adding
vehicle support or new contributions from the open source
community) PAL significantly reduces the workload of an
application developer by providing a static API. This enables
developers to quickly switch between physics engines, take
advantage of specialized hardware, or target a new platform.

All of the physics engines analysed provide properties suitable for
game development. The most interesting result is that some of the
engines employed in the research and simulation community are
inappropriate choices for common problem tasks.

No one engine performed best at all tasks, and almost every test
was performed best by a different engine. This illustrates the
complexity involved in determining which physics engine a
developer should select, and the difficulty in developing a general

…
......

ÄÄ Å ÆÄ Å ÇÄ Å ÈÄ Å ÉÊÊ Å Æ
Ê Æ Ë Ç Ì È Í É Î Ê Ä Ê Ê Ê Æ Ê Ë Ê Ç Ê Ì Ê È Ê Í Ê ÉÏÐÑÒÓÔÕÔÖ Ð×ØÖ ÑÙ Ú Û Ü Ý Þ ß à á â ã ä å æ Þ ç à Ý è Þ å ã â
é ê ë ì í î ï î ð ê ñ ï ò ó ô ô ê õ î ê ô ö î ï ÷ ø ð ñ ù ú û ü ü ý þÿ � � � ü ý� ý � þ � �� � � � � ý �	 �
 � � �
	
 û ý � � � �

�� � � �� � �� � � �� � �� � � �� � �� � � ������ � � � �
� � � � ! " # $ � % ! ! $! & ' (() * +

, - . . / 01 2 3 3 . /4 / 5 0 6 78 9 - / : ; 2 <= > ? @ A B C D E F E B A G H I J K H L E M > N > M

OO P O QO P RO P R QO P SO P S QO P TO P T QO P UVWWXW Y Z [\
] ^ _ ^ ` a b ` c d _ e a a d a f g h i j k

l m n n o pq p r s t uv w x p y z m {| } ~ � } � } �

287

purpose physics engine. The tests performed in this evaluation
should provide a guide to developers as to which engine to select.

The only test which none of the simulators passed was the
realistic stacking of three spheres. None of the simulators
included any noise to improve the realism of the simulation.

Novodex (Ageia PhysX) performed the best in the integrator test.
True Axis delivered the best results for modeling restitution,
whereas Newton provided the best estimation for static friction.
Tokamak provided the excellent results for solving large chain
constraints, in terms of computational efficiency and error. It also
was the most efficient for computing stacked objects. ODE
provided the best results for constraint accuracy when configured
to use an accurate integrator. In the collision penetration test
Jiggle and Bullet performed very well, and TrueAxis performed
very well for large integrator step sizes.

Of the open source engines the Bullet engine provided the best
results overall, outperforming even some of the commercial
engines. Tokamak was the most computationally efficient, making
it a good choice for game development, however TrueAxis and
Newton performed well at low update rates. For simulation
systems the most important property of the simulation should be
determined in order to select the best engine.

The evaluation tests provided by PAL allow engine developers to
directly compare their physics engines and identify any errors in
their implementations, as well as highlight any cases where their
engine performs well. This should assist engine developers in
improving their implementations.

Acknowledgements

We would like to thank the feedback we received from all the
people in the dynamic simulation community, especially the
developers of the physics engines PAL supports, Axel Seugling
for providing permission to re-implement and publish parts of
their work, and Dirk Gregorius for his advice and feedback.

References

AERODYNAMIC DATABASE DRAG COEFFICIENTS.
http://aerodyn.org/Drag/tables.html (accessed August 2,
2007).

AGEIA PHYSX. http://www.ageia.com/ (accessed August 14,
2007).

BARAFF, D. 1992. Dynamic Simulation of Non-Penetrating
Rigid Bodies. PhD Thesis, Computer Science Department,
Cornell University.

BARAFF, D. 1997 Physically Based Modeling: Principles and
Practice. Carnegie Mellon University,

BULLET PHYSICS LIBRARY. http://bullet.sourceforge.net/
(accessed August 14, 2007).

COUMANS, E. and VICTOR, K. 2007. COLLADA physics. In
Proceedings of the twelfth international conference on 3D
web technology. 104-105.

CULP, T. 1999. Industrial Strength Pluggable Factories. In C++
Report, vol 10.

DYNAMECHS (DYNAMICS OF MECHANISMS): A
MULTIBODY DYNAMIC SIMULATION LIBRARY.
http://dynamechs.sourceforge.net/ (accessed August 14,
2007).

ERLEBEN, K. 2004 Stable, Robust, and Versatile Multibody
Dynamics Animation. PhD Thesis., Department of Computer
Science, University of Copenhagen.

GAMMA, E., HELM R.. JOHNSON, R., and VLISSIDES
J.1995 Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

HADAP, S. EBERLE, D. VOLINO, P. LIN, M. C. REDON, S.
and ERICSON, C. 2004. Collision detection and proximity
queries. ACM SIGGRAPH 2004 Course #15 Notes.

JIGLIB - RIGID BODY PHYSICS ENGINE.
http://www.rowlhouse.co.uk/jiglib/ (accessed August 14,
2007).

KAUFMAN, D. EDMUNDS T., and PAI D. 2005. Fast frictional
dynamics for rigid bodies. In Proceedings of ACM
SIGGRAPH 2005. Vol. 24 No. 5, 946-956

KAVAN, L. 2003. Rigid body collision response. In Proceedings
of the 7th Central European Seminar on Computer Graphics.

Meqon. http://meqon.com/ (accessed August 14, 2007).
MIRTICH, B. 1996. Impulse-based Dynamic Simulation of Rigid

Body Systems. PhD Thesis, University of California,
Berkeley.

NEWTON GAME DYNAMICS.
http://www.newtondynamics.com/ (accessed August 14,
2007).

OPEN DYNAMICS ENGINE. http://www.ode.org/ (accessed
August 14, 2007).

OPEN PHYSICS ABSTRACTION LAYER.
http://opal.sourceforge.net/ (accessed August 14, 2007).

OPENTISSUE LIBRARY. http://www.opentissue.org/ (accessed
August 14, 2007).

PHYSICS ABSTRACTION LAYER. http://pal.sourceforge.net/
(accessed August 14, 2007).

RATCLIFF J. 2007. Automatic Generation of Dynamics Models,
Game Developers Conference 2007 Course Notes. March.

SARAL, U. and SCHMIEDER C. 2004. Pricing Strategy
Process. Linkopings University. January 21, 2004.
http://www.continuousphysics.com/ftp/pub/test/index.php?dir
=physics/papers/&file=meqon_pricing_exjobb.pdf (accessed
August 16, 2007).

SEUGLING, A, and ROLIN M. 2006. Evaluation of Physics
Engines and Implementation of a Physics Module in a 3d-
Authoring Tool. Masters Thesis, Department of Computing
Science, Umea University.

SIMULATION OVERVIEW. Microsoft .
http://msdn2.microsoft.com/en-us/library/bb483076.aspx
(accessed August 16, 2007).

THE GANGSTA WRAPPER.
http://sourceforge.net/projects/gangsta (accessed August 14,
2007).

TOKAMAK OPEN SOURCE PHYSICS ENGINE.
http://www.tokamakphysics.com/ (accessed August 14, 2007).

TRUE AXIS. http://www.trueaxis.com/ (accessed August 14,
2007).

288

