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Abstract

A new parameterization technique for the systematic characterization of human walking gait in diverse
external conditions is proposed in this work. By parameterization we mean a quantitative expression of cer-
tain gait descriptors as the function of an external parameter, such as the ground slope. The mathematical
quantities derived from the geometric features of the hip-knee cyclograms are the main gait descriptors con-
sidered in this study. We demonstrate that these descriptors, expressed in a general setting as the geometric
moments of the cyclogram contours, can meaningfully reflect the evolution of the gait kinematics on different
slopes. We provide a new interpretation of the cyclogram perimeter and discover two potential invariants of
slope-walking gait. Experimental slope-walking data obtained at �� interval within the range of���� to ����

(������) on a variable-inclination treadmill was used in this study.
The parameterization procedure presented here is general in nature and may be employed without restric-

tion to any closed curve such as the phase diagram, the moment-angle diagram, and the velocity-velocity
curves of human gait. The technique may be utilized for the quantitative characterization of normal gait,
global comparison of two different gaits, clinical identification of pathological conditions and for the tracking
of progress of patients under rehabilitation program.
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1 Introduction
Motivation Characterization of human gait in a quantitative and objective manner has many potential ben-
efits in clinical diagnosis and rehabilitation as well as in the enhancement of our basic understanding of the
complicated gait mechanism. In spite of the impressive sophistication of our present day data collection sys-
tems, communicable descriptions of certain gait conditions remain surprisingly difficult. Consider describing
the progress of a patient’s knee joint under rehabilitation care after a knee replacement surgery. A verbal de-
scription of the joint’s kinematic behavior during a complete gait cycle will be either long or imprecise. What
is needed is a comprehensive global picture or an objective capture of information[40] which may be subjected
to quantitative analysis.

A second example, which we address in this article, is the evolution of the walking gait in response to a
change in the ground slope. In the gait study literature this is known as slope-walking, grade-walking and
ramp-walking. Inclined surfaces are frequently encountered in the everyday life but their effect on the gait is
relatively under-studied. Ground slope modifies the influence of gravity on the human body, which is known
to have a profound effect on the mechanism of locomotion. A visual study of human locomotion, as can be
seen in the simplified sketch of Fig. 1, reveals that our gait patterns change considerably, more than is necessary
to merely satisfy the kinematic constraints associated with a slope change. Imagine an ideal situation where
we have a compact mathematical description which assigns a gait pattern number, say G���, for the gait on
slope �. As the ground slope changes, this number also changes reflecting the adaptation of the gait. Such a
powerful tool would have several practical uses such as the objective characterization of normal gait, global
comparison of two different gaits, clinical identification of pathological conditions and the tracking of progress
of patients under rehabilitation programs.

Work has already been done in this direction. At the beginning of the last decade [44, 51] used the so-called
chain-encoding method[17], a computerized processing technique of line drawings, to correlate the shapes
of two cyclograms or two velocity-velocity curves of human locomotion. The geometric congruity of any
two shape patterns was consistently reflected by their cross-correlation coefficients. Although the chain-code
representation of contours is efficient for computer processing and useful for determining the cross-correlation
coefficients, they are, however, abstract numbers and do not give any physical insight into the actual shape of
the patterns under study.

Our work is essentially in the same spirit. The objective of this paper is to introduce a general and physi-
cally intuitive system of gait representation which may be used qualitatively and quantitatively. Contrary to
the simplistic situation portrayed in Fig. 1, in reality, given the complexity of the human gait, we would need
several quantities for its complete description. In a multidimensional space such quantities can be represented
as a point which characterizes the gait. Different gaits are represented by different points and the evolution of
a gait can be characterized by a locus of points in that space.

From a dynamic systems point of view a complete set of “state variables” uniquely describe a system[36].
For example, the joint angle and the joint velocity constitute the state variables of a simple pendulum and can
completely represent its motion. Although the level of our current knowledge does not permit us to search
for the complete set of state variables of the complex dynamics called the human locomotion, we neverthe-
less extract some measurable, communicable and meaningful gait descriptors to describe locomotion. These
gait descriptors may reflect the changes in gait pattern in response to some externally controllable factor or
parameter. Loosely speaking, a parameter is an imposed condition and a descriptor is the result of the system’s
response to the imposed condition. Examples of some commonly used gait descriptors are the step length,
step frequency, duration of simple and double support phases. A parameter, on the other hand, could be the
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Figure 1: A simplified sketch showing the typical walking patterns on different inclinations and their quantification.
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weight of load carried, or as we study here, the ground slope1.
By parameterization we refer to the systematic and objective description of the evolution of a certain gait descriptor

with respect to a parameter. An example of this will be a curve or a mathematical expression relating the load
carried and the preferred step length. In the current study, the ground slope has been considered as the
only parameter and the gait descriptors are obtained from the geometric features of the cyclograms[20], the
rationale behind the choices being given in the following.

Scope of this work The goal of this paper is to introduce a coherent, meaningful, and efficient technique
to parameterize the human gait kinematics. The presented method is based upon the geometric moments of
the cyclograms of locomotion. As an example of the application of this technique we have considered natural
walk on a range of uphill and downhill inclined slopes. We would like to emphasize that the choice of this
particular example is motivated by our own research interests (see “Motivation from robotics” below) and
the relative familiarity of cyclograms in the biomechanics community and has no special connection with the
parameterization method.

In fact, the moment-based parameterization method can be directly applied not only to the cyclograms of
other repetitive activities but equally to other representations (such as the phase diagram[30], the moment-
angle diagram[18], and the velocity-velocity curves[51]) of repetitive activities.

Why study cyclograms? We postpone the detailed discussion on cyclograms until Section 2. Here we
simply point out that although most of the measurable variables of the human gait respond to a parameter
change, and parameterization may be performed, in principle, with any of these variables, analysis based on
closed trajectories such as cyclograms brings in special advantages. The main reason for this is the fact that the
closed trajectories represent forms or shapes that provide us with important insights into the system[8, 23] and
are describable by appropriate geometric properties[25, 24]. We will see in the following that as the ground
slope gradually changes, the hip-knee cyclogram, obtained by plotting the hip angle versus the knee angle
and by omitting the time variables from the two signals, changes its form giving us a clear indication of the
modification that the gait is slowly undergoing. Moreover, cyclograms reflect the gait kinematics during the
total gait cycle which is different from having other discrete measures such as the step length, or walking
speed, which are more common in the literature[35, 53, 52]. A further justification for choosing cyclograms
over time-angle plots is the fact that locomotion, a tightly coordinated movement of several limb segments is
more naturally grasped as the coupled evolution of two or more joints rather than from the study of individual
joint kinematics[8].

Why moment-based shape characterization? One can imagine a number of quantities such as the
perimeter and the area, that reflect the geometric properties of cyclogram. Our choice of moment-based char-
acterization of the cyclogram features is justified by the fact that moments (of different orders) can be viewed
as a generalization of most of the commonly used geometric features. In the moment-based scheme, the cy-
clogram perimeter is the zeroth-order moment, the position of its “center of mass” (CM) is a combination of
the zeroth-order and the first-order moments. Similarly the higher order moments reflect other features.

Motivation from robotics Before leaving this section we should mention another source of motivation
that guided us to this study and which points to the usefulness of cross-domain study. This stems from our
challenge of formulating a control law for a biped robot walking on different inclinations [15]. A control
law generated for a single slope does not necessarily remain valid for other slopes. Under the assumption
that a biological system is efficient or optimal in some sense, we intend to identify “biologically” motivated
optimality criteria or at least, to mimic human locomotion with the hope that the robot will be endowed with
the same optimal motion. It is possible that the entire dynamics of a complicated system can be generated
from a small set of influencing parameters by means of a powerful underlying principle. We have observed
that in simplified passive biped robot models the ground slope completely specifies the dynamics[21]. Our
long-term objective is to find the principles behind such highly organized motions and to employ them as the
control laws.

Structure of this paper The structure of the paper is as follows: Sections 2 and 3 provide the background of
this work. Section 2 is devoted to a discussion of cyclograms. It describes the construction and interpretation
of cyclograms along with a literature review which we feel is interesting and important. Section 3 consists
of a brief review of the literature on slope walking. We also present the experimental protocol for the gait

1Some quantities, such as step frequency and walking speed can be either descriptors or parameters (when imposed by a metronome
and a treadmill, respectively) depending on the situation. In the literature gait descriptors and parameters are sometime called the
dependent variables and the independent variables, respectively.
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Figure 2: A sketch of the human leg showing the joint angle convention used in this paper. The sketch also shows typical marker
positions on the limb segments which are recorded with a camera system.

data used in this work and an overall snapshot of the results (Figs 6 and 3.3). Section 4 forms the core of this
paper. First we report the techniques adopted in this paper for the computation of generalized moments of the
cyclograms (Section 4.1) and then apply the techniques to calculate various features of the gait cyclograms as
they evolve as a function of the ground slope (Section 4.2). Finally Section 5 draws the conclusions and points
out some of the open questions.

2 Cyclograms revisited

The concept of cyclograms2, although known to the biomechanics community, has not been seen very fre-
quently in the literature of the recent past. We review in this section how to construct a cyclogram, how to
interpret a typical cyclogram of level walking gait, and provide some highlights of the historical developments
of cyclograms.

2.1 What are cyclograms and how to construct one?
Commonly human gait data consist of the recorded positions of retro-reflective markers taped on the skin at
the extremities of the limb segments (the thigh, the shank etc.) of a subject. The angles between each two
segments are subsequently calculated assuming the segments to be idealized rigid bodies. Fig. 2 shows a
sketch of the right leg of a subject and indicates the joint angle assignment used in this paper. �h and �k are
the hip angle and the knee angle, respectively.

Fig. 3(a) and 3(b) show two time-angle plots corresponding to the knee and the hip angle during one
gait cycle. A cyclogram is formed by ignoring the time axis of each curve and directly plotting knee an-
gle VS hip angle as shown in Fig. 3(c). A formal way of describing cyclograms is to identify them as the
so-called “parametric curves”. A parametric curve is obtained by directly plotting the associated variables,
x����� x����� � � � � xn���, where each variable is a function of a parameter, �. In the present context the joint
angles are the variables and time is the parameter. One advantage of this formal definition is that it can be
extended to include other curves such as the phase diagrams[4, 31, 30] and the moment angle diagrams[18].

Please note that for the joint angle assignment convention adopted in this paper, the planar cyclograms
have a counter-clockwise direction. Note also that although the points on the curves 3(a) and 3(b) are equally
spaced this is not so for the points on the cyclogram. The spacing of points on a cyclogram is directly propor-
tional to the respective joint velocities. When the joints move slowly, the points are close spaced.

2A web search for the keyword “cyclogram” points to numerous articles on cyclograms related to the functioning of instruments used
in space flights!
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(a) Hip angle VS time
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(b) Knee angle VS time
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(c) Hip-knee cyclogram
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(d) Hip-knee-ankle cyclogram

Figure 3: Construction of a hip-knee cyclogram from individual hip and knee joint data for a �� uphill walk. The counter-clockwise
direction in the cyclogram corresponds to the forward progression of gait. Data for Fig.(d) was provided by the Gait Lab, University of
Waterloo, with permission of Prof. D.A.Winter.

Steady human locomotion is almost periodic and cyclograms obtained from joint angle signals of equal
time lengths, such as Figs. 3(a) and 3(b), will be an approximate cycle. The cyclogram features that we use in
this paper for parameterization are essentially valid for such contours but for algorithmic simplicity we will
assume that the contours are closed.

Finally, cyclograms do not have to be planar although for visualization purposes we should limit ourselves
to the 3 dimensional space. Fig. 3(d) shows a 3-dimensional cyclogram obtained by simultaneously plotting
the hip, the knee and the ankle joint trajectories. See [55] for examples of some traditional 3-d hip-knee-ankle
cyclograms and [6] for 3-d cyclograms obtained from absolute elevation angles of thigh-shank-foot.

Cyclograms and phase diagrams We have mentioned earlier that our parameterization method is equally
applicable to other cyclic representations of locomotion such as the phase diagram[4, 30, 31], the moment-angle
diagram[18], and the velocity-velocity curves[51]. Since the phase diagram has a formidable following and
are physically more fundamental than the cyclograms, it is important to distinguish between the two.

The phase diagram of a dynamic system resides in its phase space. The two most popular definitions of the
phase space describe it as the space consisting of the generalized coordinate/generalized momentum variables
and the generalized coordinate/generalized velocity variables[3, 26]. The second definition, according to
which the phase space is identical to the state space, is used in the biomechanics community. A state of a
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system is represented by a point in its phase space and the evolution of the system is given by a trajectory in
the phase space, called the phase diagram.

In our current context, phase space would contain the joint displacements and the joint trajectories of the
movement under study and therefore can be considered as a superset of cyclograms, which contain the joint
displacements only. However, since neither the entire phase diagram nor the entire cyclogram of a multi-
degree of freedom system is graphically visualizable, we have to be content with lower-dimensional (most
frequently 2-dimensional) projections of these diagrams. These planar versions of the diagrams carry signif-
icantly different information. A planar angle-angle cyclogram provides information about the posture of the
leg and the coordination of two joints but is silent about the velocities involved. A planar angle-velocity phase
diagram, on the other hand, represents the complete dynamics of a single joint but provides no information
about the coordination of two joints.

Both cyclograms and phase diagrams are important signatures of locomotion and each has its own mer-
its. Although traditionally cyclograms have received more exposure in the biomechanics community, phase
diagrams have started to be noticed as well[29, 30, 31].

2.2 Interpretation of a typical cyclogram
It is instructive to study a typical cyclogram and relate its important features with the characteristics of the
normal gait. We refer to Fig. 2.2 (and Fig. 2 for the joint angle assignment convention) in this section. The
complete gait cycle is divided into 10 equal temporal segments and are marked by ’*’ on the cyclogram. Certain
important events in a gait cycle are marked with an ‘o’ on the cyclogram along with a corresponding short
description.

Let us travel along the cyclogram from the instant of heel-strike (marked hs in the figure). The period just
after the heel-strike is represented by an almost vertical line characterizing the rapid knee flexion and little hip
movement. The shock created by the heel impact with the ground is quickly attenuated during this period.
After foot-flat (ff) the hip begins to extend along with the knee shown by the inclined line connecting foot-flat
and mid-support (msu). The time period between hs and (c)to is called the loading phase which occupies
about �� � ��� of the gait cycle. The next phase, the weight-bearing phase, is characterized by an extending
knee.

The effect of propulsion can be seen in the cyclogram at the end of the stance phase. The hyper-extension
of the hip reaches a maximum and gradually reverses, and the previously extending knee smoothly translates
to flexion which continues steadily through stance into swing phase. The toe-off occurs before the knee is fully
flexed.

Typically the swing phase starts at �� thigh extension angle and a knee flexion of about 80% of the max-
imum. By mid-swing the flexion of the thigh is complete and the knee, after reaching its maximum flexion
is extending in preparation for the next foot placement. There is almost no thigh movement between the
mid-swing and the heel-strike and the phase is effected by a steady reduction of the knee flexion.

We conclude this section by presenting some of the highlights of the historical development of the concept
of cyclogram.

2.3 History of cyclograms
A literature search of the cyclogram reveals the name of Grieve as the first to propose the use of cyclograms
(they were called the angle-angle diagrams) [22, 23]. Grieve argued that a cyclic process such as walking is
better understood if studied with a cyclic plot such as a cyclogram and proposed the inclusion of auxiliary
information such as the time instants of heel-strike and toe-off in the cyclogram to render them more informa-
tive. Observing the deviations of gait characteristics on cyclograms he suggested that the deviations in the gait
characteristics cannot be adequately modeled as a mean square deviation since the deviations are not random
and that both the direction and the magnitude of deviations in combination with others have to be considered
and that only certain combinations of deviations are to be regarded as “normal”. Grieve also recognized on
the cyclogram the prominent shock absorption phase during heel-strike and the “whiplash effect” of the leg
at faster gaits.

Six different cyclograms corresponding to six different walking speeds for each of hip-knee, hip-ankle, and
knee-ankle combinations were presented in [37].

Cyclograms from standing broad jump, stair climbing, race walking as well as normal walking at different
speeds are presented in [8]. One important contribution of this paper is the demonstration that cyclograms,
in synergy with other kinematic representations of multi-joint movements, can become a powerful analytical
tool.

We encounter the subsequent work of Milner and his colleagues during the seventies up until 1980 [40,
25, 24]. Use of cyclograms as a means of tracking the progress of patients undergoing total hip joint recon-
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Figure 4: A typical hip-knee cyclogram for level walk (adapted from [9]). See Section 2.2 for description.

struction was explored in [40]. It was demonstrated that, as one might expect, the cyclograms of abnormal
gaits are geometrically very different and are easy to visually identify from those obtained for normal gaits.
The same work also reported the evolution of the geometric form of the cyclogram as a function of walking
speed3. So far, no attempt has been made to analytically study the quantitative geometric characteristics of the
cyclograms. This was addressed in [25, 24] and subsequent papers.

The importance of a quantitative study of cyclogram shapes in order to extract relevant numbers, to be
used as gait descriptors concerns [25]. Only normal healthy gaits at different speeds were considered in this
article. Three geometric characteristics of the closed-loop cyclograms, the perimeter P , the area A, and the
dimensionless ratio Pp

A
were considered. It was shown that although the perimeter and the area of cyclograms

are approximately linearly related to the average walking speed, the quantity Pp
A

stays roughly constant.
This latter quantity can thus be called an invariant of walk as far the speed is concerned. Cyclogram area is
intuitively related to the conjoint range of the angular movements concerned. The larger the range, the larger
the cyclogram area. In a second concurrent paper [24] the same authors studied cyclograms obtained from
above-knee amputee gait and cerebral palsy gait. The quantity Pp

A
again reflected the abnormalities in these

gaits.
[10] compares the gait patterns of human and dogs by means of cyclograms (called cyclographs and an-

gle/angle diagrams in the paper). It emphasized the utility of cyclic traces of joint variables by pointing out
that a coordinated motion of a leg is to be perceived as an interaction between two or more limbs rather than a
phenomenon of isolated joint movements over time. The cyclogram pattern is noted to be an extremely stable
mechanism to identify gait behavior.

The geometric similarity of two cyclograms or two velocity-velocity curves of locomotion was computed[44,
51] by employing the discrete chain-encoding representation[17] of the curves. Our work follows the same phi-
losophy, that of the quantification of the similarity of different movement patterns, which is nicely articulated
in[51].

In [9] the evolution of cyclograms as a function of the walking speed is considered. Three different levels of
speed corresponding to 0.5 st/s (slow), 0.9 st/s (medium), and 1.3 st/s (fast) were considered4. The cyclograms
are annotated with additional information such as the important events. In Fig. 2.2 we have followed the
same trait. Two pathological cases were considered to show how a “standard” cyclogram and superimposed

3Five different speeds, from 2.34 km/h to 6.91 km/h were studied.
4Stature/second. Speed is normalized by the leg length.
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standard deviation data can be used to detect abnormal gait conditions.
In an unpublished (and personally communicated) article [49] level and uphill and downhill slopes of ���,

��� were considered. It was found that walking speed at all grades was slightly reduced compared to level
walking. The hip-knee cyclograms used in this article demonstrated that downhill walk is associated with
larger knee flexion in stance phase and reduced hip flexion during swing phase. In uphill walking both the
knee and the hip are flexed at foot contact and in the swing phase.

Neural network has been used to perform automated diagnosis of gait patterns represented by cyclograms[2].
Once trained, the network can identify with a 	���� success rate the three different conditions – normal gait,
a gait with unequal leg length and a gait with unequal leg weight. The view that kinematic analysis is of great
help in the diagnosis and rehabilitation of locomotor disorders such as cerebral palsy and spastic diplegia is
reinforced[2].

3-d cyclograms have been recently used in a different context, in order to show the modal bifurcation
displayed in human locomotion[55]. Traditionally, cyclograms are drawn with the inter-segmental joint vari-
ables. A remarkable recent result shows that if instead, the cyclograms are constructed from the absolute
elevation angles of the limbs (angles made by thigh, shank and foot with the vertical), the resulting 3-d cyclo-
gram of human locomotion lies on a plane! This means that a strong underlying strategy is in action during
locomotion.

Although it is about running gait (not walking) gait, [7] reports one the most systematic analyses on the
effect of inclined surfaces performed with cyclograms. Here cyclograms were used to demonstrate the gradual
change in the running gait as a function of the slope and the speed of running. The increased range of the
cushioning phase knee flexion was noted as a remarkable feature for downhill running as we also observe in
our cyclograms for downhill walking.

The value of objective description of human locomotion can be appreciated from the recent work[30, 31] on
the phase diagram. In [30] the periodicity of gait was determined from the Poincaré map[3] of the locomotion
whereas in [31] the difference in the area inside the phase diagrams obtained from the left and the right leg of
the same person was successfully utilized to quantify the gait asymmetry in post-polio patients.

Before getting into the shape analysis of cyclograms we will briefly study the problem of slope walking in
the next section.

3 Slope walking

3.1 Brief literature review
In order to facilitate the interpretation and evaluation of our results we briefly review the existing literature
on slope walking. The review is not meant to be exhaustive and only the results that are comparable to ours
are mentioned.

One of the first papers in this area, [14] reported that the ground slope within the range of � to ��� did not
have any significant influence on the stride length and the step rate.

[50] in a study of level walk and walk on slopes of�������� noticed that average chosen walking speed
decreases both for uphill and downhill slopes. Increased knee and hip flexion of the forward limb during
contact was considered to be the major influence of uphill walk whereas those for downhill walk were an
increased knee flexion of the supporting limb during contact and decreased thigh flexion in late swing.

In [53] gait data from 5 healthy male subjects walking on the level as well as on �
� and ���� slopes.
The authors found that the on an uphill slope the subjects took shorter steps at slow speeds and longer steps
at fast speeds compared to those in the level walk.

Level walk and walk on uphill and downhill slopes of ��, ��, �� and ��� were considered in [35]. The
authors’ found that for higher slopes (both uphill and downhill) the walking speed significantly decreased.
Whereas on uphill slopes the speed reduction was caused by a reduction in the cadence, on downhill slopes
it was caused by a reduction in the step length. The findings point towards the asymmetry in the way human
beings respond to uphill and downhill slopes.

In the study reported in [45] only downhill slopes of �
�,�	�, ����, ���� 5 along with the level walk
were considered. It was reported that the influence of ground slope on the temporal parameters of gait was not
statistically significant. The authors observed two main gait adaptation strategies in downhill slopes. In the
first strategy, perhaps unexpectedly, the subjects lean forward and increase the step length and in the second
the subjects stay relatively erect but decrease the step length.

[47] studied the gait of urban pedestrians on uphill and downhill slopes up to ��. A detailed analysis shows
that for uphill walking the mean walking speed, cadence (steps/min), and step length decreases significantly
with increasing slope. For downhill walk, the speed and cadence did not significantly vary with slope but the

5an x� slope corresponds to an angle of �tan��� x
���

���.
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Figure 5: The experimental set-up.

step length significantly decreased with increasing slope. It is mentioned here that [16] found no significant
differences between the uphill and downhill gaits of urban pedestrians on up to 
� slope.

[42] studied the influence of downhill slopes on the mechanism of fall, which is a serious issue especially
for the elderly. The authors also considered the friction requirements of the shoe for different inclinations. The
energy considerations of slope-walking were considered in [46, 5].

3.2 Experimental method
The data presented in the paper are obtained from two healthy male subjects (28 and 23 years of age, 181cm
and 182cm height, respectively) without any history of lower extremity injury. 11 flat retro-reflective markers
of 1-2 cm diameter were taped onto the skin at the anatomical landmarks of the subjects. The marker on the
shank were placed at the tibial epicondyle and the external malleolus, and those on the thigh were at the
greater trochanter and the lateral femoral condyle. The knee angle is defined as the angle between the straight
lines joining the two shank markers and the two thigh markers. The hip angle, on the other hand, is the angle
between the line joining the two thigh markers and the line joining the marker at the greater trochanter and
another at the iliac crest6. A motor-driven variable inclination treadmill from TechMachine was used for all
the trials. The subjects chose the “most comfortable” treadmill speed for each slope. A NAC HSV400 video
camera registered the marker positions. The camera axis was perpendicular to the length of the treadmill thus
permitting us to register the sagittal plane motion of the subjects. The registered data were processed taking
into account the treadmill speed. The marker position data was filtered with a 
th-order Butterworth filter
with a cut-off frequency of 12 Hz. See Fig. 5 for a sketch of the experimental set-up.

The inclination of the treadmill was varied from ���� to ���� with data collected at each �� interval. To
simplify the logistics, two separate sessions, one each for uphill walk and downhill walk, were organized.
However, in order to minimize the possibility of anticipation on the part of the subjects, the sequence in which
the slopes were changed was unknown to the subjects. The subjects wore soft shoes.

This paper uses data from only one of the subjects. Out of a complete 8 minutes of walk on each slope, we
have selected one cycle which is representative of the particular slope and which does not show any transients.
Other than filtering the time-angle data as mentioned earlier, we do not adopt any sophisticated segmentation
technique (such as [12]) to extract perfect cycles. Despite this, the trend in the evolution of the gait descriptors
as a function of the ground slope is clearly identifiable which illustrates the efficiency and robustness of the
proposed method. However an explanation is called for as the common practice is to average the gait data
over several different individuals and/or several trails from the same individual.

Averaging generally improves the robustness of the data by reducing the effects of the statistical outliers.
An unavoidable consequence is the suppression of the characteristics features of the individual gaits. It is

6We realize that the definition of “joint angle” under this convention is less than satisfactory. Systematic definition of joint angles from
human gait data is a topic of our ongoing study.
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indicated in the literature that gait adaptation strategies in a changed environment often vary from person
to person[45] and by doing a gross averaging we may risk losing some of these subtle strategies adopted by
individuals. We align ourselves with the view[41] that it is important to study the responses of individual
subjects.

Thus, although the data used here is a representative of the normal gait, we do not imply that the specific
gait descriptor values extracted from the data will perfectly match those obtained from other individuals. The
important point is that the parameterization technique is equally valid for the averaged data as well as for the
data from an individual subject.

3.3 A snapshot of the result
In Fig. 6 and Fig. 3.3 we show the gradual evolution of cyclograms on inclined slopes. Fig. 6 shows cyclograms
on downhill slopes changing from � � to ���� and Fig. 3.3 shows cyclograms on uphill slopes changing from
�� to ����. Data obtained for each �� change in the ground slope provides us with a rich database appropriate
for the parameterization techniques.

Some of the interesting qualitative features of slope-walking are visibly discernible from Figs. 6 and 3.3.
Fig 6 shows the prominent impact cushioning phase for downhill slopes marked by a virtual reversal of the
cyclogram trajectory. This is to be compared with the cyclograms for uphill slopes to note the utter lack of
impact in the latter.

The range of hip movement steadily diminishes for downhill slopes as is evident from the horizontally
“squashed” form of the cyclogram at these slopes. The range of hip movement has, in fact, a linearly increasing
trend as we go from ���� to ���� slope, see plot Figs. 8(b) and 8(c). The knee angle behaves in an opposite,
but remarkably symmetric manner. The total range of knee angle is a linearly decreasing function of slope (as
we go from���� to ����) as shown in Figs. 8(a) and 8(d). Here we note the symmetric nature of the Fig. 8(a)
and 8(b). Quantitatively we can say that the range of knee joint (hip joint) decreases (increases) at the rate of
��
� per degree increase in the ground slope.

Fig. 9 presents the evolution of the knee and hip angles at heel-strike (considered to be located at the point
of “folding” of the cyclogram) along with their quadratic fits. Again it is interesting to note the remarkably
symmetric nature of evolution of the hip and the knee angles[13].

4 Moment-based features of cyclograms
The identification and classification of plane closed curves, a subject of study often called 2D shape recog-
nition, is a topic of considerable research interest in the fields of Computer Vision and Pattern Recognition.
The objective of the research, simply stated, is to identify, classify, and describe 2D objects or scenes with un-
known position and orientation, usually from their noisy images. Thus in the Pattern recognition applications,
there is a need for selecting certain geometric properties of the object which are as insensitive as possible to
the variations in size, displacement, orientation and the presence of noise. These properties are called the
shape descriptors of the object. The field of computerized (handwritten) character recognition also has similar
requirements.

There are several techniques for quantifying planar shapes and the reader is directed to[33, 32, 19] for
information on the traditional methods. Here we concentrate on the use of moments for shape identification
and classification. The first significant work on the use of moments in identifying 2D shapes is by [28]. The
usefulness of this technique stimulated a lot of research and algorithms were developed to refine and extend
the method and make it robust against noise[48]. Some relatively recent articles in this domain are [39, 1].
Efficient algorithms to compute moments were presented in [34, 38, 54]. In this paper we have adapted the
method in [34] to compute perimeter-based moments.

It can be shown that the infinite set of moments uniquely determine a planar shape and vice-versa[33]. In
other words, the moments are the axes in an infinite-dimensional space in which a contour is represented by a
unique point. It should be added that the higher-order moments are sensitive to noise and harder to interpret
physically.

Area-based moments VS perimeter-based moments Let us recognize certain distinctive characteris-
tics of the closed contours whose geometric features we study and attempt to quantify here. These character-
istics will help us choose the proper shape computation technique. First of all, as shown in the inset of Fig. 10,
the cyclograms are not continuous curves but are polyline contours or simply irregular polygons. Second, the
contour is rather unsmooth which is often a function of the amount of noise in the overall data registration
system. Third, the plane cyclograms frequently consist of self intersecting loops.
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Figure 6: Hip-knee cyclograms for walking downhill. Each diagram is to be followed in the counter-clockwise direction. Refer to
Fig. 2.2.

11



Goswami Gait parameterization. . .

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

00 degree down

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(a) �� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

01 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(b) �� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

02 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(c) �� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

03 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(d) 	� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

04 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(e) 
� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

05 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(f) �� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

06 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(g) �� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

07 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(h) �� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

08 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(i) 
� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

00 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(j) �� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

10 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(k) ��� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

11 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(l) ��� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

12 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(m) ��� slope

−40 −20 0 20 40 60

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

13 degree up

Hip Angle (degrees)

K
ne

e 
A

ng
le

 (
de

gr
ee

s)

(n) �	� slope

Figure 7: Hip-knee cyclograms for walking uphill. Each diagram is to be followed in the counter-clockwise direction. Refer to Fig. 2.2.
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Figure 8: Evolution of the total range of movement of a) knee and b) hip angles with change in ground slope. Both the curves are shown
with straight lines of least-squares fit, c) and d) represent the actual joint ranges of the knee and hip, respectively as functions of slope.

Traditionally, the Pattern Recognition community has utilized the area-based moments of binary 2D shapes.
Whereas we could use the same techniques here, we prefer the perimeter-based moments of cyclogram contours
for three main reasons. First, the cyclogram is not the boundary of any real object but is the object whose
shape characterization is our goal. Second, the perimeter-based moments are equally applicable to higher
dimensional cyclograms (�hip VS �knee VS �ankle), see Fig. 3(d), where the area-based moments lose their
meaning. Third, the 2D cyclograms often consist of self-intersecting loops and these are free to lie partially
or entirely inside another loop. There are situations where the interpretation of what area inside a curve
might mean is complicated. Although we do not treat the cases of self-intersecting at present they do occur
frequently in the form of self-intersecting multiple loop 2D cyclograms. The interpretation of area is especially
complicated for a self-intersecting cycle that lies partially or entirely inside another loop. On the other hand,
perimeter-based moments are not very reliable for extremely noisy data. The general effect of noise in the
data is the roughness of the trajectory. This may significantly increase the perimeter of the cyclogram without
affecting its area. This intuitive idea is explored more analytically in [43].

In order to calculate the perimeter-based moments we make a physical analogy of the cyclogram with a
thin polygonal wire loop with uniform mass distribution along its length. We find the exact moment of each
side of the n-gon by an integral and sum these to obtain the overall moment of the contour. The procedure is
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Figure 9: Evolution of the knee and hip angle at heel-strike along with their quadratic fits.

analogous to that of calculating area-based moments but the numerical values obtained are obviously differ-
ent.

4.1 Computation of generalized moments
In this section we formally introduce the idea of generalized moments, show their relationships to several basic
features of the contour and present a simple recursive formula (following [34]) to calculate the generalized
moments of higher orders.

The two-dimensional moments of order �p� q� of a curve of length Lin the x� y plane are,

Mpq �

Z L

�

xpyqdl� (1)

In the cyclogram plane x � �h and y � �k. The starting point on the curve, corresponding to L � � does not
have any influence on the moment values. The choice of origin �h � �, �k � � does not have a significant
effect but is fixed by our angle convention.

The above equation can be modified for a contour comprising n straight line segments as follows,

Mpq �

nX
i��

Z Li

�

xpyqdl �

nX
i��

�i�p� q�� (2)

where Li is the length of the ith segment and �i�p� q� is expressed as

�i�p� q� �

Z Li

�

xpyqdl �

Z max�xi�xi���

min�xi�xi���

xpyq
p

�� � s�i �dx� (3)

In the above equation the infinitesimal line segment dl has been replaced, via a change of variables, byp
�� � s�i �dx, where si is the slope of the ith line segment, a constant. Also we need to make sure that the

integration is always performed from the minimum to the maximum of the two numbers xi and xi��. With
this implied order we will henceforth simply put the integration from xi to xi��.

The constant
p

�� � s�i � � ti can be taken outside the integral. The variable y for the ith line segment can
be expressed as

y � six� �yi � sixi� � six� ui� (4)

ui being another constant. With these modifications, �i�p� q� is rewritten as

�i�p� q� � ti

Z xi��

xi

xp�six� ui�
qdx� (5)

Following the procedure presented in [34] for the area-moments of a 2D shape, we search for recursive
equations to compute the higher-order perimeter-based moments. To that goal we do the following
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�i�p� q� � ti

Z xi��

xi

xp�six� ui�
q���six� ui�dx� (6)

� ti�si

Z xi��

xi

xp���six� ui�
q��dx� ui

Z xi��

xi

xp�six� ui�
q��dx�� (7)

The recursive equations are of the form

�i�p� q� � si�
i�p� �� q � �� � ui�

i�p� q � ��� (8)

Any moment of the form �i�p� �� such as �i��� ��, with which the recursion must begin, can be calculated
by a simple integration

�i�p� �� � ti

Z xi��

xi

xpdx �
xp��i�� � xp��i

p� �
� (9)

.
We have to take into account the situation where the considered line segment is vertical; the slope of this

line is not defined. In this case, instead of re-parameterizing dl with the variable x we rather do it with y, as

dl �
q

�� � dx
dy
�dy. The quantity dx

dy
, the inverse of the slope, is equal to zero for a vertical line segment. The

expression for the generalized moments for a vertical line segment therefore reduces to,

�i�p� q� �

Z yi��

yi

xpi y
qdy �

xpi �y
q��
i�� � yq��i �

q � �
� (10)

The first few moments of a straight line segment are presented in the Table 1.

Table 1: Moment computation of line segments

moment non-vertical segments vertical segments
�i��� �� ti�xi�� � xi� yi�� � yi

�i��� �� ti
�x�
i���x

�
i
�

� xi�yi�� � yi�

�i��� �� si�
i��� �� � ui�

i��� ��
y�
i���y

�
i

�

�i��� �� ti
�x�
i���x

�
i
�

� x�i �yi�� � yi�

�i��� �� si�
i��� �� � ui�

i��� ��
xi�y

�
i���y

�
i
�

�

�i��� �� si�
i��� �� � ui�

i��� ��
y�
i���y

�
i

�

The recursion process must follow the sequence:

�i��� ��
�i��� �� �i��� ��
�i��� �� �i��� �� �i��� ��
�i��� �� �i��� �� �i��� �� �i��� ��
�i�
� �� �i��� �� �i��� �� �i��� �� �i��� 
�

4.2 Parameterization of cyclogram features
We now consider the parameterization of the moment-based descriptors of the cyclograms as they evolve as
the ground slope changes from ���� to ����. For each case, we define the gait descriptor, plot its evolution
as a function of the ground slope and discuss its trend.

4.2.1 Perimeter

The perimeter of a cyclogram is simply its zeroth moment M��. In Fig. 11(a) we present the evolution of the
cyclogram perimeter normalized against the perimeter at �� slope (which is equal to ����		�). The perimeter
is a linearly decreasing function of the ground slope as can be inferred from the straight line in the figure
representing the least-squares error line. Although the “jerkiness” of the joint motion was given as a possible
reason of an increase in the perimeter of similar curves in [25], it is unlikely to be reason here.
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P

Figure 10: A plane closed curve. Certain important distinctions of the cyclograms under study are included in this sketch. Cyclograms
consist of a set of unequal straight lines each line connecting two successive data points.

In order to interpret the cyclogram perimeter, we express the length of the straight line segment Li con-
necting two successive data points �hi � �ki and �hi�� � �ki�� , see Fig. 10 as,

Li �
p

��hi�� � �hi�
� � ��ki�� � �ki�

�

� �ti
p

��hi�
� � ��ki�

�
(11)

where �hi and �ki are the average angular velocities of the hip and the knee joints, respectively during the
interval, and �ti is the corresponding time interval. Recalling that L �

Pn

i��
Li, the above equations can be

extended to the entire cyclogram.
According to the first of the Eqns. 11 the cyclogram perimeter is the “total distance traveled” by the two

joints in their respective joint spaces. The larger the joint excursion, the longer is the perimeter. Joint excursion
is not to be confused with joint range (which we discuss later) – a joint can have a large excursion within a
small range. A simple example is Fig 12 where the cyclogram on the left has a higher X-joint range but a
lower X-joint excursion compared to the cyclogram on the right. Fig. 11(a) thus indicates that the total joint
excursion linearly decreases as the slope changes from���� to ����.

The second of Eqns. 11, on the other hand, relates the cyclogram perimeter to the average velocity of the two
joints during a complete gait cycle. For cycles of equal duration, the perimeter is proportional to the average
joint velocity. The duration of gait cycle is a linearly increasing function of slope as shown in Fig. 11(b). The
plot of the perimeter/cycle duration ratio has the same nature as that of Fig. 11(a), only steeper. This implies
that the average joint velocity linearly decreases while the slope changes from���� to ����. Please note that
a higher average joint velocity during a cycle does not necessarily imply a higher walking speed.

Incidentally, a longer cycle duration corresponds to a smaller value of cadence which is what we observe
for uphill slopes thus precisely corroborating the observations by [53, 47].

4.2.2 Area

Although the area does not directly fall into our scheme of perimeter-based moments7, we include it for its
obvious intuitive appeal. In addition, cyclogram area is required to calculate its circularity criterion (Sec-
tion 4.2.3).

The signed area of a polyline contour can be computed as

7In the area-based moment scheme, the area of a closed contour is its zeroth moment
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Figure 11: Evolution of normalized cyclogram perimeter and normalized gait cycle period with change in ground slope. The straight
lines show linear fit of the data.

x

Y

Range of XRange of X

Figure 12: The difference between the joint excursion (measured by perimeter) and the joint range (related to cyclogram area) is
demonstrated with artificial cyclograms. The cyclogram on the left has higher joint range but a lower joint excursion compared to that on
the right.

A �

nX
i��

ai �

nX
i��

xiyi�� � xi��yi� (12)

which assigns a positive value to the area inside a counterclockwise contour and a negative value to one inside
a clockwise contour. This introduces errors in our calculations for cyclograms with intersecting loops.

Fig. 13(a) shows the normalized cyclogram area as a function of the ground slope. The normalization is
done with respect to the area of a circle whose perimeter is equal to that of the cyclogram corresponding to
the �� slope. The parabolic line represents a quadratic fit of the data.

Noting that the cyclogram area is an indication of the conjoint range of joint movements [25] we can say
that the range is maximum for level and shallow uphill slopes.

Although we are not aware of the use of cyclogram area in quantifying gait except that by [25, 24], the area
inside the phase diagram, in a different context, was used to obtain a measure of gait symmetry in post-polio
patients[31].

4.2.3 Circularity or compactness or roundedness

Several versions of a dimensionless criterion involving the perimeter and the area of a closed contour and
characterizing its circularity, compactness or roundedness are in use in the literature. Jain[33] used the expres-
sion � � P�

��A
whereas quantities such as ��A

P� , P�

A
[32], and Pp

A
[25, 24] are also used in the literature. In this
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Figure 13: Evolution of normalized area and cyclogram circularity with change in ground slope. The parabolic lines represent quadratic
fit of the data. In (b) the circularity of well-known geometric entities, the circle, the square and the equilateral triangle are shown for
comparison.

paper, we use � � ��A
P� simply because it is unity for a circle (which is the maximum possible value) and that a

higher value of circularity means that the cyclogram is more circular. For comparison we note that the values
of � for a square and for an equilateral triangle are �

�
and 	

p
	

�
, respectively. Generally oblong objects have

smaller circularity values. Fig. 13(b) presents the evolution of the circularity criterion P�

A
as a function of the

ground slope. The figure indicates that the cyclogram circularity is maximum around �
� slope and decreases
for lower (including downhill) and higher slopes. This is qualitatively verified from Fig. 6 and 3.3. The low
circularity of the negative slope cyclograms is, to a large extent, due to the fact that following the heel-strike
the cyclogram trajectory reverses its direction and retraces itself thereby adding significantly to the perimeter
but very little to the area.

It should however be pointed out that two significantly different shapes may possess the same circular-
ity [56]. Also, the criterion can significantly alter between a continuous curve and its discrete counterpart,
depending on the fineness of discretization.

4.2.4 Location

Location, in this context, means the position of the center of mass (CM) of a wire of uniform mass in the shape
of the cyclogram. The position of the CM (�hCM � �kCM ) is given by

�hCM �
M��

M��
and �kCM �

M��

M��
(13)

where M�� and M�� are the two first-order moments of the polygonal contour, and M��, as seen before, is its
perimeter.

In Fig. 14 we plot the distance of the cyclogram CM from the coordinate origin as a function of the ground
slope. The distance is normalized against that of the cyclogram for �� slope. The line of quadratic fit is also
shown superposed. Fig. 14(b) shows the locus of the CM on the �h	�k plane. It is clear from the plots that
the CM is the nearest to the origin for downhill walk on feeble slopes and moves away for positive as well as
negative slopes.

For the joint angle assignment convention used in the paper (refer to Fig. 2) the coordinate origin of the
cyclogram plane corresponds to a straight leg configuration aligned with the trunk. Thus the distance of a
point from the origin to the cyclogram represents the deviation of the current configuration from this config-
uration. If the cyclogram CM is viewed as the “average” leg configuration during a complete walk cycle, its
distance from the origin will be a quantification of the deviation of this average configuration from the passive
leg configuration which is vertical8.

8We note that this “average” is a purely geometric average and time is not involved in this definition.
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Figure 14: Evolution of cyclogram CM displacement with change in ground slope. A quadratic approximation is superposed on the
data points. In the second figure we see the locus of the CM position with slope.

4.2.5 Orientation

The angle (bounded between����) between the positive abscissa and the line of least second-order moment of
the contour is traditionally called the orientation of a contour. Since the line of the least second moment passes
through the CM of the contour (�hCM � �kCM ), its equation will be simpler if we displace the coordinate frames
such that the new origin coincides with the center[27]. After effecting this displacement as shown in Figs. 15(a)
and 15(b) the points on the curve with respect to the new origin are expressed as �hi � �hi � �hCM � �ki �
�ki � �kCM . We work henceforth with points pi��hi � �ki�.

The moments calculated with respect to a coordinate frame situated at the CM of an object are called
its central moments and are denoted by Mpq . The central moments can be calculated by the same equations
presented in Table 1, only the data point coordinates will have changed. In the new coordinatesM�� � M�� �
�.

The orientation of the line of minimum second-order moment, 
 is given by [32, 33]

sin��
� � �
�M��p

�M
�

����M���M����

cos��
� � �
M���M��p

�M
�

����M���M����

(14)

where M���M��� andM�� are the three second-order central moments of the contour. The orientation of the
line of maximum second-order moment is simply 
 � ���. In the Eqns. 14 the � signs correspond to the
minimum moment line whereas the � signs correspond to the maximum moment line. It can be shown that
the calculation of the angle 
 is equivalent to determining the eigenvectors (the directions of the lines) and the

eigenvalues (the magnitudes of the moments) of the �� � matrix of second moments

�
M�� M��

M�� M��

�
.

Keeping the origin fixed at the CM, if we now rotate the coordinate frame so that it is aligned with the max-
imum and minimum second-order central moments, the moment calculations are much simplified. Fig. 15(c)
shows this coordinate frame alignment procedure. In the rotated coordinate frame M�� � � and the moment
matrix written above is diagonal.

The most characteristic feature in the evolution of orientation with ground slope (Fig. 16) is the two con-
stant orientation regions connected by a discrete jump which occurs around �
� slope. Visual inspection
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Figure 15: The displacement and rotation of the coordinate frames to simplify moment calculations.

of Fig. 3.3 convinces us that the cyclograms for higher uphill slopes are decidedly inclined. The orientation
analysis quantifies this geometric feature.

4.2.6 Eccentricity and the best fit ellipse

There are several definitions of eccentricity of a closed planar contour the simplest of which is the ratio of
the maximum and minimum second moments[27]. Eccentricity is also an indication of the oblongness of
the contour, and is thus related to the circularity criterion. We however prefer using eccentricity which is
conveniently based on perimeter-based moments and no calculation of area is needed. Fig. 16(b) represents
the evolution of cyclogram eccentricity with respect to ground slope. A cubic polynomial approximation of
the data is shown superposed.

The above definition of eccentricity is ill-conditioned for extremely elongated shapes. According to this
definition the eccentricity of a circle is unity but that of a line is infinity (as the minimum second moment for
a line is zero). A better definition is thus [32]

� �
�M�� �M���

� � 
M
�
��

�M�� �M����
� (15)

according to which the curve of minimum eccentricity is a circle which has � � � and for a straight line � � �.
In yet another approach the eccentricity of a contour is defined as the ratio of the lengths of the semi-major

and the semi-minor axes of the best-fit ellipse of the contour. The best-fit ellipse is the ellipse which has the
same second-order moment matrix as that of the contour. Let a and b be the semi-major and the semi-minor
axes, respectively, of the best-fit ellipse. The least and the greatest moments of inertia of the ellipse are

m�min �
�



ab	� and m�max �

�



a	b (16)

For the best-fit ellipse we have[33]

a � �



�
�
�
� �
�m�max�

	

m�min

�
�
� � and b � �




�
�
�
� �
�m�min�

	

m�max

�
�
� (17)

The nature of the plots of the two latter definitions of eccentricity are very similar to that of the former.

4.2.7 Quantification of cyclogram evolution

In order to demonstrate how we can provide a global picture of the evolution of cyclograms with the help
of the gait descriptors we plot in a 3D space two different triplets. In the first figure (Fig. 17) the normalized
perimeter, the ratio of maximum and minimum second moments and the distance of the cyclogram CM from
the origin for each slope are plotted. We have used data from the line fits for this plot shown in Fig. 17. In
the second plot we have shown the normalized cyclogram area, circularity and the normalized cycle duration.
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Figure 16: Evolution of a) cyclogram orientation and b) the ratio of maximum and minimum second central moments with change in
ground slope. The first curve is fitted with two constants. The line in the second figure shows cubic fit of the data.

These figures represent signatures of normal walking of the subject by compactly capturing a multitude of
information.

4.2.8 Higher order moments – an invariant of slope walking?

The higher order central moments of the contour are calculated with respect to the coordinate axes fixed to
the CM and aligned with the maximum and minimum second moments. The alignment is done by means of
multiplying each data point by means of a rotation matrix R as

p
� � Rp (18)

where R �

�
cos
 �sin

sin
 cos


�
and 
 is the orientation angle of the contour.

In general, unless normalized, the higher order moments have high numerical values as we can anticipate
from Eq. 1. Moreover they are known to be sensitive to noise which means a small change in the cyclogram will
cause a large change in the moments. The evolutions of the four third-order cyclogram moments are shown in
the top row of Fig. 18. There is no apparent regularity in the these curves. However if we consider the ratios
of M��

M��

and M��

M��

as shown in the bottom line of Fig. 18 we notice that in a remarkable manner these quantities

stay constant for the entire range of positive and negative slopes. The plot of M��

M��

is shown with two constant
data fits as there is a discrete (but not of large magnitude) jump in the plot around 
� uphill slope. In the plot
of M��

M��

we have suppressed the value (=-21.537) corresponding to ��� slope which we considered to be an

outlier. It is rather interesting to note that in spite of the large magnitudes of these moments (orders of ��� to
��
) their ratios stay remarkably constant. Even without a concrete physical interpretation of the third-order
cyclogram moments, these quantities have the potential to play the role of invariants of slope-walking.

Another candidate for invariant is obtained from what are called the moment invariants. These are the
combinations of moments of a certain order which are insensitive to rotation and reflection of the contour
considered. Two third-order invariants [33] are 
� � �M	� � M���

� � �M�	 � M���
� and 
� � �M	� �

�M���
� � �M�	 � �M���

�. The ratio ��
��

, turns out to be a good candidate of invariant in slope-walking as
confirmed from Fig. 19. Again, in this case the high value of the ratio for ���� slope is perhaps an outlier.
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5 Discussion
Gait parameterization by means of cyclogram moments can be of potential use in a number of fields such as
the quantitative characterization of normal gait, global comparison of two different gaits, clinical identification
of pathological conditions and in the tracking of the progress of patients under rehabilitation program.

What has been achieved up till now is the establishment of a standard cyclogram corresponding to the
normal walk and the recognition of the fact that the cyclograms continuously deform in a predictable manner
as the ground slope changes. Exploiting the concept of perimeter-based moments, each cyclogram has been
assigned with a set of numbers that quantify its geometric characteristics. The standard qualitative features
of the hip-knee cyclograms for uphill and downhill walk are acknowledged in the literature. Based on this
we can expect that the general trends of the slope walking gait descriptors will be similar for all individuals.
What is to be seen is whether the precise moment-values reported in this work are also subject-independent.

In order for the cyclograms to become an effective tool for the clinical identification of pathological con-
ditions we need the analytical skill of correlating a pathology with a corresponding feature of the cyclogram.
This necessitates a thorough acquaintance with all the pertinent cyclogram patterns available from the human
gait. However, if we represent a cyclogram as a point in a multidimensional space capturing all its moments,
a pathology might be suspected or identified by noting the position of this point relative to other points repre-
senting normal gaits. One can imagine judiciously adding other axes in the multidimensional space in order
to make this procedure more robust. Thus more work in concert with the clinicians is necessary.

As a patient under rehabilitation care returns to a normally functioning gait so should his gait cyclograms.
A scalar quantification of the difference between the patient’s gait from a normal gait is the multidimensional
distance between the points (similar to those mentioned in the above paragraph) representing the two gaits.
The locus of this point over several weeks is a signature of the process of rehabilitation.

Improvements of the presented technique should include a proper treatment of the multiple and self-
included loops, as these are often encountered. A second necessity is that of a comprehensive sensitivity anal-
ysis. The sensitivity of the cyclogram moments with respect to different data smoothing/filtering algorithms
might indicate the appropriateness of different algorithms. It seems more reasonable to perform statistical
analyses on the gait descriptors obtained from different gait cycles than to perform averaging of the data be-
fore extracting a standard set of gait descriptors from the averaged data. More work needs to be done to verify
this.

Gait analysis performed on the basis of the entire cycle rather than from discrete measures such as step
length has some advantages as mentioned earlier. It is quite likely that a meaningful normalization of the
cyclograms would significantly improve the results. One can imagine normalizations based on cycle duration,
leg length or body mass. Another approach is to treat the cyclogram as a purely geometric form. Such a
normalization – for example, constraining the entire cyclogram to lie inside a unit square – would complicate
the physical interpretation. We underline the fact that the algorithms for moment calculations are directly
applicable to other closed curves and thus gait parameterization could be performed as well with moment-
angle diagrams[18], phase diagrams[4, 31, 30] or velocity-velocity curves[51]. It is also possible to use other
shape parameters such as the bending energy of the cyclogram perimeter [56] or its electric potential[11] as
gait descriptors.
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edged. Emmanuel Cordier, a Ph.D. candidate at INRIA Rhône-Alpes coordinated the experiments described
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Figure 17: The evolution of a) normalized perimeter, the ratio of maximum and minimum second moments and the distance of the
cyclogram CM from the origin and b) normalized cyclogram area, circularity and the normalized cycle duration, with respect to ground
slope. The projection of the curve on the two vertical planes are shown in dashed lines.
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Figure 18: Evolution of the ratio of e) M�	 and M	� and f) M�� and M�� with change in ground slope. The four smaller curves a, b, c
and d show the evolution of the individual second-order moments M	�, M�	, M�� and M��.

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ground slope (degree)

R
at

io
 o

f t
w

o 
m

om
en

t i
nv

ar
ia

nt
s

Figure 19: Evolution of the ratio of two third-order moment invariants with change in ground slope.
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