FastLSM: Fast Lattice Shape Matching for Robust Real-Time Deformation

Alec R. Rivers

Doug L. James

Cornell University

Figure 1: Real-time Peng-chinko! (Left) /50 cartoon penguins deforming dynamically using Fast Lattice Shape Matching (FastLSM); (Right) Deformed
lattices consisting of 150 particles per penguin (22,500 particles total). Using FastLSM, these penguins can be deformed robustly at real-time gaming rates
(25 FPS, simulation cost of 0.28 ms/object; Pentium4 3.4 GHz; w = 2). Note: in these timings penguins collide with icicles but not with each other.

Abstract

We introduce a simple technique that enables robust approximation
of volumetric, large-deformation dynamics for real-time or large-
scale offline simulations. We propose Lattice Shape Matching, an
extension of deformable shape matching to regular lattices with em-
bedded geometry; lattice vertices are smoothed by convolution of
rigid shape matching operators on local lattice regions, with the
effective mechanical stiffness specified by the amount of smooth-
ing via region width. Since the naive method can be very slow for
stiff models — per-vertex costs scale cubically with region width —
we provide a fast summation algorithm, Fast Lattice Shape Match-
ing (FastLSM), that exploits the inherent summation redundancy of
shape matching and can provide large-region matching at constant
per-vertex cost. With this approach, large lattices can be simulated
in linear time. We present several examples and benchmarks of an
efficient CPU implementation, including many dozens of soft bod-
ies simulated at real-time rates on a typical desktop machine.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling

Keywords: Fast summation, summed-area tables, interactive dy-
namics, large deformation, soft body, domain embedding, free-
form deformation, shape matching, polar decomposition, video
game physics, fracturing

1 Introduction

Interactive simulation of large-deformation dynamics is an old and
important problem in computer graphics. Unfortunately, the intrin-
sic difficulty of large-deformation physical simulation is confound-
ing for real-time simulation: many proposed methods are simply
not robust or fast enough to be employed in actual real-time ap-
plications such as interactive virtual environments. Furthermore,
other systems that are fast enough typically achieve this speed at the
cost of introducing various restrictions, such as limiting the range
of possible deformations or user interactions, requiring specialized
hardware or resources, or precluding runtime modifications such as
cutting or smashing. In addition, many techniques are quite com-
plex, making them difficult to implement.

We present a geometrically based approach that seeks to address
these simulation concerns. Our system performs at very fast inter-
active rates on desktop computers, supports a substantial range of
deformation for detailed geometric models, and is visually plausi-
ble even under large external forces. Our approach can take any
mesh as input, requires no manual preprocessing, and supports dy-
namic model modifications (such as fracture) as an easy extension.
It is also unconditionally stable, and easy to implement.

Our approach begins by applying the deformable shape match-
ing dynamics of Miiller and colleagues [2005] to regular (cubic)
lattices via a region-based convolution. We use rigid shape match-
ing transforms that use regional estimates of rotation and translation
at every lattice location to provide detailed deformation smoothing
without domain boundary artifacts. Increasing the shape matching
region width increases the smoothing, which effectively approxi-
mates more rigid models (see Figure 2). The method provides a
simple framework that is robust by construction. However, naive
lattice shape matching with even modest filter widths is expensive,
and cost increases cubically with width.

We address this problem by demonstrating how lattice shape
matching can be achieved efficiently at cost linear in the size of
the lattice, and effectively independent of the region size. This lat-



<o

@) O
Tao1 -2
7
¢
o008 %e - S
QQQQG%é XX ;é
o060 8 5 & & 8K

Figure 2: Increasing shape-matching region width increases stiffness:
(Top) larger half-width, w, values correspond to (Bottom) faster deforma-
tion smoothing and larger effective stiffness. Each hexagon represents a
shape matching particle set. Particles are shown at the positions they would
take after two steps of smoothing the perturbation.

ter point means that both stiff and soft models can be time-stepped
at similar costs. In Section 3 we illustrate the inter-region simi-
larity of shape matching summations, and show how this can be
exploited to construct a linear-time fast summation algorithm for
Fast Lattice Shape Matching (FastLSM). We use the fast summa-
tion technique both to estimate the rigid shape matching transforms
from lattice positions and to distribute their smoothing influences
on the lattice to obtain goal positions for the particles, which are
used to drive dynamics as in [Miiller et al. 2005]. Our optimiza-
tion is conceptually similar to Crow’s classical summed-area tables
result that enables fast linear-time image convolution for box fil-
ters [Crow 1984; Hensley et al. 2005], or the restructuring of fast
median and bilateral filtering pixel kernels to exploit redundancy
for improved performance [Weiss 2006].

In Section 4 we present a number of extensions that improve the
usefulness and speed of the technique. In particular, we address
how to approximate the high number of polar decompositions re-
quired by our system, introduce techniques to support damping and
fracturing, and describe efficient hardware rendering.

Other related work: Given the substantial work on deformable
models, we refer the reader to surveys of the field [Gibson and Mir-
tich 1997; Nealen et al. 2005] and focus here on closely related
works. Lattice-based shape deformers, such as classical free-form
deformation, are commonplace in graphics and cleanly separate
deformation modeling complexity from geometric complexity and
surface representation [Sederberg and Parry 1986; Coquillart 1990;
MacCracken and Joy 1996; Westermann and Rezk-Salama 2001].
Related physically based dynamic deformation models are widely
used to animate embedded geometry [Faloutsos et al. 1997; Gib-
son and Mirtich 1997]; common lattice embeddings such as regular
voxels [Miiller et al. 2004; James et al. 2004] or BCC tetrahedral
meshes [Molino et al. 2004] can simplify meshing issues for simu-
lation, especially during fracture.

Unfortunately, detailed discrete approximations of volumetric
deformation are expensive to simulate, prohibitively so for many
real-time applications. Detailed lattice-based FEM meshes are used
in character animation [Sifakis et al. 2005], but mostly for of-
fline simulations. Avoiding element recomputation costs is possi-
ble using rotated linear element models [Miiller et al. 2002; Capell
et al. 2002], but integrating large-deformation dynamics often in-
volves significant costs for semi-implicit integration and algebraic
linear system solves. Adaptive meshing and sophisticated space-
time adaptive simulation methods can reduce this problem some-
what [Debunne et al. 2001; Grinspun et al. 2002; Capell et al. 2002],
but this speed tradeoff comes at the cost of simplifying deforma-
tions and increasing implementation complexity. Improved speed

and robustness can be achieved by other dimensional model reduc-
tion techniques, such as precomputation-based subspace integration
methods [Barbi¢ and James 2005], but these can also limit defor-
mation complexity since dimensional model reduction may restrict
deformations to a non-optimal low-dimensional subspace.

Another serious issue when simulating volumetric deformable
models, especially with collisions, is robustness. It is unclear
whether many of these methods are robust enough for “general-
purpose abuse” in video games. Simple lattice deformers such as
ChainMail [Gibson and Mirtich 1997] provide speed and robust-
ness, but suffer from limited realism. Invertible finite elements
provide robustness for very challenging simulations [Irving et al.
2004], and particle-based approaches are versatile [Wicke et al.
2006], but neither are fast enough for real-time simulation. By re-
laxing physical consistency, so-called meshless deformations based
on shape matching (of rigid, affine and quadratic deformation mod-
els of constant deformation complexity) can deliver both excellent
speed and robustness suitable for video games [Miiller et al. 2005],
as well as physical plausibility for modest deformation complex-
ities. While more detailed displacement fields can be approxi-
mated using multiple overlapping domains, the resulting deforma-
tion model can suffer from blending artifacts from the domain in-
fluences. Lattice shape matching (LSM) addresses the problem of
blending artifacts by using a regular lattice with as many overlap-
ping domains as cells (see Figure 3). Unfortunately, this exacer-
bates the issue that deformable shape matching is computationally
inefficient for many domains; we address this by exploiting the reg-
ular lattice definition to construct a fast summation algorithm.

Our contributions:

e Lattice Shape Matching, a volumetric lattice-based formula-
tion of deformable shape matching for robust dynamic defor-
mation of embedded meshes;

e A linear-time fast summation algorithm for lattice shape
matching (FastLSM);

e Practical enhancements such as for fast rotation estimation,
hardware rendering, and fast-summation damping.

2 Lattice Shape Matching

We now define the lattice representation of objects in our system
and present notation used throughout, and go on to show how to
apply rigid shape matching to overlapping lattice domains to yield
our unoptimized dynamic deformation model.

Lattice construction: Given a surface mesh to be deformed, we
conservatively voxelize the model to construct a lattice of cubic
cells containing the mesh, with solid objects appropriately flood
filled [James et al. 2004]. The embedded mesh is then deformed
using trilinear interpolation of lattice vertex positions. Lattice de-
formation is controlled by unit point-mass particles placed at the
lattice cell vertices. Each lattice vertex and particle share an equiv-
alent index i. For each particle i, let its static initial (material) posi-
tion be x , its dynamic position be x;, and its mass be m;. For each
particle i, we construct its one-ring neighborhood list N; comprised
of particles sharing at least one lattice cell with particle i.

Shape matching regions: Each particle i is associated with a
shape matching region comprised of a set of shape matching parti-
cles, R;, which for half-width w contains i and all particles reach-
able by traversing not more than w neighborhood lists from particle
i;e.g., if w=1then R; = N;. Here w is the region half-width (or {
radius) that is given as input to the system. This definition of R; al-
lows irregular shape matching regions and handles boundary cases.
In the common case where particles are maximally connected, re-
gions will be cubes of side length 2w + 1. Note that shape match-
ing sets need not be unique, and R; = R; for i # j is common at



Figure 3: Comparison of shape matching methods under extreme defor-
mation:(Left) Linear and (Middle) quadratic shape matching with a low
number of regions; (Right) lattice shape matching.

boundaries. Finally, for each particle i, the set of indices of all shape
matching regions to which i belongs is equivalent to R;.

Dynamics: The dynamics of a lattice shape matching region are
similar to the rigid case of [Miiller et al. 2005], except that there are
multiple overlapping shape matching regions. At each time step,
each region r finds the best rigid transform to match the initial par-
ticle positions (x?);cx, to their deformed positions (x;);c,, thus
determining a per-region least-squares rotation and translation of
the rest positions, T, = [R, t,] € R3**. To ensure that particles
belonging to many regions are not weighted more than others, we
use modified particle masses, 7i; = m;/ |R;|, for shape matching.

This transformed rest configuration is then used to assign goal
positions to each particle with respect to the region r (see Figure 2),
with each particle i computing its final goal position as the average
of regional goal positions, g; =< T,x? >,cx,- Finally, particle po-
sitions X; and velocities v; are updated using the goal positions g;
as in [Miiller et al. 2005]:

gi(l)_xi(l)+hf€x’(t) )
h mj
xi(t+h) = x(t)+hvi(t+h) @

Vl‘(t +h) = V,‘(l‘) +

Behavior and tuning: Although LSM utilizes only rigid trans-
formations per shape matching region, there are many regularly
overlapping regions, and the resulting system can consequently
have high-degree-of-freedom motions with minimal region blend-
ing discontinuities (see Figure 3). Physical constants such as the
center of mass and angular momentum of an object are conserved
due to the properties of the shape matching algorithm, which ensure
that the best-fit goal positions will share the same center of mass as
the particles’ actual positions, and that the rotation will be a least
squares best fit and therefore introduce no net torque [Miiller et al.
2005]. If the shape matching forces are repeatedly applied with no
external forces, the local-frame displacement field will smooth out
as the object returns to its rest configuration (up to a global rigid
transformation). In this way, the geometrically based models we
simulate are analogous to elastically deformable models.

The rigidity of the object can be adjusted using the region half-
width parameter, w € {1,2,...}. Smoothing performed with small
regions (small w) will spread perturbations slowly, causing the ma-
terial to appear floppy. Conversely, large shape matching regions
smooth deformations more, and quickly return the object to its rest
configuration (see Figure 2).

This approach is general, capable of simulating objects from any
surface mesh, and, as a shape matching-based approach, is uncondi-
tionally stable. The approach is capable of simulating increasingly
rigid objects by increasing the region size. It also has the advan-
tage of requiring no manual preprocessing, unless the user wishes
to specify particle-specific values for m;, which can be made easier
by attaching values to the vertices of the surface mesh and having
particles assume the values of the nearest surface mesh vertex.

3 Linear-Time Fast Summation Algorithm

A naive implementation of lattice shape matching involves O(w?)
flops per lattice node, as each region will contain on the order of
w? particles. Fortunately, simple optimizations can reduce this to a
small O(1) cost in practice (see Figure 4). Our optimizations rely on
a specialized shape matching algorithm that maximizes calculation
reuse between regions. This is achieved by restating the position
and rotational components of each region’s best fit transformation
in terms of simple summations of a property (e.g., X;) over the par-
ticles in each region. (How the rotation estimation is amenable to
linear summations is described in Section 3.2.) Because these sum-
mations are dependent only on the particles, and not on what region
is performing the shape matching, summations can be computed
just once for any set of particles and then reused by all regions that
contain that set. Because regions are densely packed and overlap-
ping, the summation reuse will be high.

Figure 4: Cost complexity versus re- 150

s s . : . —O(w3) naive
gion width, w,3 per fzmulanon par <= =00w) bar-latecube
ticle: the O(w’) naive brute-force .+ 0(1) FastLSM

approach; our O(w) bar-plate-cube
approach; and our O(1) FastLSM
approach. FastLSM speedups are no-
ticeable even for small w values. Data
is for solid buddha model. Cost is
measured in units of FastLSM(w=1)~
FastLSM(w), and illustrates hundred-
fold speedups over the naive approach
for moderate w.

COST

3.1 Fast Summation

We now present a method of breaking down the particle lists R,
into sub-summations that will be maximally reused between re-
gions. We can then quickly sum any particle-defined value v; over
all the particles i € R, for all R, by building up and reusing these
sub-summations, rather than computing the sums over all particles
in each region separately. By decomposing the list of parent re-
gions R; for each particle in the same way, we can also efficiently
sum any region-defined value v, over all the regions r € R; for all
R;. This fast summation is the basis for our system’s high speed.

Figure 5: Decomposing a region summation into sub-summations for
reuse across regions (w = 1 case).

Simple perfect-cube case: The main idea of our summation al-
gorithm can be illustrated most easily for the simple case of cubical
regions. In the common non-boundary case where the surrounding
particles are maximally connected, a region r of half-width w that
is centered around the particle at a generalized index r = xyz will
bea(2w+1)x 2w+1) x 2w+ 1) cube —a 3 x 3 cube forw =1
(see Figure 5). The summation of a particle-defined value v is, in



an obvious notation, equivalent to

4w ytw  xtw +w yitw xtw
-5 F T ¥ (T (L))
1

k=z—w j=y—wi=x—w k=z—w \J=y—w \i=x—w
(3)

These inner summations can be broken out and calculated for each
location in the lattice, allowing us to reuse the values between re-
gions. We are then able to build up the final region summations
SUM, in three global passes:

x+w yitw z+w
Xyyz = Z Viyy = XYy = Z Xyj; = SUM,= Z XYy D
i=x—w j=y—w k=z—w

Sum over X (—Bars) Sum over Y (—Plates) Sum over Z (—Cubes)

Linear-time approach: The total cost of calculating these values
for every index in the lattice will be 3n(2w + 1) flops, as opposed to
n(2w+ 1)3 flops for the naive approach that treats each region sum
independently, where n is the number of lattice indices. However,
we can do even better than O(w) flops per lattice index when we
observe these summation recurrences:

Xxyz = X(xfl)yz - V(xfwfl)yz + v(x+w)yz (5)
XYy =

SUMyy, =

X1z = Xaty—w-1): F Xsp4wz (0
SUMxy(zfl) _Xny(szfl) +Xny(z+w) @)

Using these definitions, the summation requires constant time per
lattice index: only 6 flops. Consequently, lattice summations can
be performed in time linear in the number of lattice indices, and
independent of the size of w to leading order (see Figure 4).

Handling irregular regions: To extend this simplified approach
to handle cases where not all regions are perfect cubes, we record
for each region r region-specific sub-summations Xy, and XY/ .
These sums consist of the particles that would be in the correspond-
ing generic sub-summations Xy, and XY, but are restricted to par-
ticles in R,

At lattice generation time, we generate these sub-summations for
each region r by splitting SUMy,, into w XY{~ summations along
the z axis, and then splitting each XYy, summation into w Xy
summations along the y axis. We then collapse identical sets; often
for each index xyz there will exist only one unique Xy, and XYy,,.

Fast summation operator: To indicate that the sum of a field
vi over i € R, is performed using the fast summation algorithm, we
introduce this operator notation:

F {v,-} = Z v; (using multi-pass fast summation). (8)
ER, iER,

3.2 Shape Matching using Fast Summations

In this section we show how the shape matching operation can be
accelerated by expressing computations in terms of summations
that can leverage the fast summation operator. We describe efficient
calculations for each region r’s center of mass ¢, and least-squares
rotation R, (which determine each region’s optimal rigid transfor-
mation T,) and each particle i’s goal position g;.

Center of mass: We obtain the deformed center of mass for each

region r as follows:
1 -
TR ©)

where M, = Y ;cq 7; is the precomputed effective region mass.
The calculation of ¢, can be performed efficiently by using the fast-
summation algorithm to calculate the regional sums of 7;x;.

Rotations: Following [Miiller et al. 2005], we estimate the least
squares rotation R, for particles R, using the rotational part of

Ar= Y mi(xi—e)(x) — )T e RV, (10)
i€ER,

where ¢! = (Ziejay ﬁz,-x?) /M, is the precomputed center of mass of

region r’s undeformed particles. We obtain the rotational part using
the polar decomposition A = RU, where U is a unique 3-by-3 sym-
metric stretch matrix [Golub and Van Loan 1996]. Unfortunately,
(10) is not directly amenable to fast summation since the summand
is a function of both particle i and region r. We isolate these depen-
dencies by expanding (10) and simplifying common terms:

~ T _ T _ T T
A, = Z mi(x,-x? )—( Z m,vx,-)c(,) —c( Z mix? )+Mrc,.c(,)
i€Rr i€Ry i€Rr
_ T _ _oT
= Y mxx) )= (Y mx) (Y mx) ) /M, —
i€Ry i€ERy i€ERy
_ _oT _ _oT
(Y mx) (Y, mx) )M+ (Y mx)(Y, X)) /M,
iERy i€Ry i€Ry iERy
~ T T
= Ezr{m;xix? } — Myc.° (11)

Given that ¢, and c? are already available (c? is precomputed), only
the fast summation over mixi(x?)T is required for efficient calcula-
tion of R,.

Rigid transformations: Each region’s least-squares rigid trans-
formation of the rest positions X? is a rotation by R, and a transla-
tion that shifts the rotated c(,) to ¢,. This transformation is stored as

the matrix T, = [R, (¢, —R,e)] € R3*4,

Goal positions: Each particle’s goal position g; can be restated
as the transformation of the particle’s rest position, x?, by the aver-
age rigid transformation over the regions the particle belongs to,

_ ! 0

FastLSM algorithm: The overall simulation algorithm for de-
formable shape matching dynamics is as follows:

FASTLSM() ]
1 Precompute M,,c for all regions
2 while true
3 Calculate AF {nﬁ[xi} , AF {ﬁz;xix?T} for all r
i€ER, i€ER,
4 for each region r
5 Calculate ¢, using (9)
6 Calculate A, using (11)
7 Polar decompose A, = R, U, |
8 Calculate T, = [R, (c,—R,c?)] 3)
9 Calculate F {T,} forall i
reR;
10 for each particle i
11 Calculate g; using (12)
12 Calculate v;(t + h) using (1)
13 Perform damping (see §4)
14 for each particle i
15 Calculate x;(¢ + h) using (2) i

4 Extensions

Fast polar decompositions are required for efficient rotation
extraction from many thousands of A matrices per frame to enable
detailed lattices. Like [Miiller et al. 2005], we use cyclic Jacobi
iterations to diagonalize ATA = U? = Vdiag(A)V7 to construct



R = AU, However, doing this naively would limit FastLSM
to modest lattices, and fewer objects. To address this limita-
tion, we cache each region’s stretch eigenvectors V from the last
timestep, and use these to provide a “warm start” (see [Golub
and Van Loan 1996]): we initialize with V = V and begin Jacobi
sweeps on V7 U%V, which during temporally coherent phases is
nearly diagonal. With cold starts (V = I) we observed average be-
havior of 1.9 Jacobi sweeps/solution, resulting in a total of 2,500
ns/decomposition, which was a system bottleneck — note that even
in undeformed configurations, A is not approximately the identity
matrix. However, with caching of stretch eigenvectors, we required
only 0.4 Jacobi sweeps on average per solution, resulting in a cost
decrease to 450 ns/decomposition and removing the system bottle-
neck. The exact savings depend upon the degree of rotational tem-
poral coherence. Finally, we experimented with state-of-the-art fast
polar decomposition algorithms for 3 x 3 matrices [Kopp 2006], but
despite being slightly faster they were not sufficiently robust.

Damping can be approximated using a fast summation extension
of the method introduced by Miiller et al. [2006]. In that paper, least
squares is used to fit an instantaneous rigid motion to the particles;
particle velocities are then filtered by attenuating velocity devia-
tions from the spatial rigid motion by a factor k € [0, 1) at each time
step. As an alternative to global damping of nonrigid motion, we
can apply damping on a per-region basis, bleeding off non-rigid mo-
tion of local regions. A key observation that makes this efficient is
that the estimate of region r’s rigid-body velocity, (v, o =1 1 L,),
is decomposable into fast-summation passes (reusing prior values),

1

- F {~. } 14
Vr M, icR, m;vi (14)
L - F r{nﬁiiivi}—Mrérvh L-F r{rh,i,-iiT}—M,érérT.

Using fast summations, this damping model requires roughly the
same number of flops as the shape matching operation. Further-
more, for interactive applications this operation can produce con-
vincing results even if applied only every, e.g., third frame.

Fracture: Our fast summation method is flexible enough to be
applied to lattices undergoing fracture. To illustrate
this, we use a classic approximation wherein links
between any neighboring particles (i, j) whose dis-
tance exceeds a preset strain limit are simply bro-
ken [Terzopoulos and Fleischer 1988]. We then up-
date the locally affected per-region summation sets
to reflect this change. A prototype example of this approach is
shown inset; better renderings are possible by updating the embed-
ded surface mesh using results of prior work [Miiller et al. 2004;
Molino et al. 2004].

Hardware-accelerated rendering is desirable for the defor-
mation and rendering of complex lattice-embedded geometry. We
therefore briefly outline an optimized vertex shader. Lattice parti-
cle positions are copied to uniform/constant GPU memory, so that
each deformed vertex position x can be computed as the weighted
combination of its eight lattice-cell positions,

x=x(X)= ) &(X) X(i) = Y O‘i(X) X1(i)» (15)
i=1..8 i=1..8

where ai<x) = ¢;(X) are trilinear interpolation weights for the ver-
tex’s material position, X, and (i) are the indices of the positions
in constant memory.

Per-vertex normals are slightly trickier. We use the per-vertex
deformation gradient,

F=Vx(X)= ) x) Vei(X) (16)
i=1..8

(where V = %) to transform surface tangent vectors as follows.
Note that F introduces shear, so that the undeformed vertex nor-
mal, N, maps to FN which is no longer normal to the deformed
surface. However, undeformed tangent vectors are mapped by F
to deformed tangents. Therefore, given N, we precompute mutu-
ally orthonormal tangent vectors, U and V, and can then transform
them using F to obtain the new tangent vectors u and v as weighted
combinations of the eight lattice positions,

u=FU= Y a"x where a®@=U.V(X) (17
i=1..8

and similarly, v =Y, g ai(v) Xp()-  The
shader then computes these u and v lin-
ear combinations to obtain the deformed nor-
mal as n = normalize(u x v).  Our ver-
tex shader implementation uses precomputed
{I(i),(xi(x),(xi(u),Oti<v)},-:1“g, or eight 4-vectors
per vertex.

Finally, since hardware restricts the number
of uniform/constant memory positions index-
able by any shaded vertex, during precomputa-
tion we greedily construct triangle batches ren-
derable using common lattice positions of suit-
ably bounded size. The inset buddha image
shows colored triangle batches, with associated
lattice points shown for one batch.

5 Results

Model statistics and algorithm timings are provided in Table 1. All
timings were generated on a Pentium IV 3.4 GHz machine with a
GeForce 7800. The per-vertex complexity of our algorithm is illus-
trated empirically in Figure 4. Real-time demonstrations of the sys-
tem for modest lattices suitable for gaming applications are shown
in Figure 1. High-resolution models are shown in Figure 6. Please
see our accompanying video for animations of our system in use;
additional materials and demonstrations are available at
http://www.graphics.cornell.edu/projects/FastLSM

Figure 6: High-resolution examples: (Left) Solid buddha model deforms
at 1 FPS, and (Middle) shell model deforms at 2 FPS (both with 10
timesteps/frame, and self-collision processing); (Right) Infant model with
rigid skeleton deforms at 20 FPS (3 timesteps/frame).

6 Conclusion and Discussion

We have presented Lattice Shape Matching and an optimized fast
summation algorithm, FastLSM, for dynamic deformations that
emphasize visual plausibility and large deformations while main-
taining the speed and simplicity of geometrically based approaches.
We have demonstrated an efficient implementation that can simu-
late a large number of objects convincingly on a desktop machine.

Our system can handle a wide range of possible deformations,
but may produce non-physical behavior in some circumstances as



Model “ # Triangles | # Particles | # Regions [ w [ Fast Sum (%) [ Shape Matching (%) [ Polar Decomp (%) [ Damping (%) [ Total Time
Penguin 9,874 150 130 | 2 0.03ms (12%) 0.07 ms (26%) 0.10ms  (36%) - 0.28 ms
Buddha (solid) 200,000 57,626 57,626 | 1 | 31.62ms (18%) | 29.36 ms (17%) | 31.66 ms  (18%) | 51.29ms (30%) | 167.83 ms
Buddha (shell) 200,000 19,959 19959 | 1 | 10.15ms (20%) | 10.48 ms (21%) 4.02 ms (8%) | 17.08ms  (35%) 48.47 ms

Infant (without bones) 16,844 2,570 2,506 | 2 0.51Ims  (10%) 0.10 ms (19%) 1.17ms  (23%) 1.50ms  (30%) 4.99 ms
Table 1: Model statistics and simulation timings: Percentages are of simulation time, with missing percentage points from simulation

overhead. Identical regions are collapsed, leading to fewer unique regions than particles.

a result of its geometrically motivated approach. This makes it un-
suitable for applications requiring precise or predictive modeling.

Future work includes exploring different particle frameworks,
including tetrahedral lattices or irregular samplings. Reducing the
resolution of particles or regions in the object interior could speed
performance without seriously altering the visual behavior, and
could still be written to take advantage of the calculation reuse and
fast summation methods that are the core of our system. FastLSM
provides an efficient orientation-sensitive smoothing operator that
might find other uses in geometric modeling.

Acknowledgments: The authors wish to acknowledge the help
of Calen Pennington, Jonathan Grassi, David Rosen, Jernej Barbic¢,
and Christopher Cameron; The Stanford 3D Scanning Reposi-
tory for the buddha mesh; the infant model was provided cour-
tesy of Zygote Media Group, Inc. and 3DScience.com. The sec-
ond author was supported in part by the National Science Founda-
tion (CAREER-0430528, CompBio-0621999), National Institutes
of Health (NIH ROIEB006615), the Alfred P. Sloan Foundation,
The Boeing Company, Pixar, and NVIDIA.

References

BARBIC, J., AND JAMES, D. 2005. Real-Time Subspace Integra-
tion for St. Venant-Kirchhoff Deformable Models. ACM Trans.
on Graphics 24, 3 (Aug.), 982-990.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
PoPOVIC, Z. 2002. Interactive Skeleton-Driven Dynamic De-
formations. ACM Trans. on Graphics 21, 3 (July), 586-593.

COQUILLART, S. 1990. Extended Free-Form Deformation: A
Sculpturing Tool for 3D Geometric Modeling. In Computer
Graphics (Proc. of SIGGRAPH 90), vol. 24, 187-196.

Crow, F. C. 1984. Summed-area Tables for Texture Mapping. In
Computer Graphics (Proc. of SIGGRAPH 84), vol. 18,207-212.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic Real-Time Deformations Using Space & Time
Adaptive Sampling. In Proc. of ACM SIGGRAPH 2001, 31-36.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
1997. Dynamic Free-Form Deformations for Animation Synthe-
sis. IEEE Trans. on Visualization and Computer Graphics 3, 3
(July - September), 201-214.

GIBSON, S. F., AND MIRTICH, B. 1997. A Survey of Deformable
Models in Computer Graphics. Tech. Rep. TR-97-19, Mitsubishi
Electric Research Laboratories, Cambridge, MA, November.

GOLUB, G., AND VAN LOAN, C. 1996. Matrix Computations,
third ed. The Johns Hopkins University Press, Baltimore.

GRINSPUN, E., KRYSL, P., AND SCHRODER, P. 2002. CHARMS:
A Simple Framework for Adaptive Simulation. ACM Trans. on
Graphics 21, 3 (July), 281-290.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast Summed-Area Table Generation
and its Applications. Computer Graphics Forum 24, 3, 547-556.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite
elements for robust simulation of large deformation. In 2004
ACM SIGGRAPH / Eurographics Symposium on Computer Ani-
mation, 131-140.

JAMES, D. L., BARBIC, J., AND TWIGG, C. D. 2004. Squashing
Cubes: Automating Deformable Model Construction for Graph-
ics. In Proc. of the SIGGRAPH 2004 Conference on Sketches &
Applications, ACM Press.

Koprp, J., 2006. Efficient numerical diagonalization of Hermitian
3x3 matrices. arXiv:physics/0610206v1 [physics.comp-ph].

MACCRACKEN, R., AND Joy, K. I. 1996. Free-Form Defor-
mations with Lattices of Arbitrary Topology. In Proc. of SIG-
GRAPH 96, Computer Graphics Proc., 181-188.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node
algorithm for changing mesh topology during simulation. ACM
Trans. on Graphics 23, 3 (Aug.), 385-392.

MULLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND
CUTLER, B. 2002. Stable Real-Time Deformations. In ACM
SIGGRAPH Symposium on Computer Animation, 49-54.

MULLER, M., TESCHNER, M., AND GROSS, M. 2004. Physically
based simulation of objects represented by surface meshes. In
Proc. of Computer Graphics International (CGI), 26-33.

MULLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless Deformations Based on Shape
Matching. ACM Trans. on Graphics 24, 3 (Aug.), 471-478.

MULLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2006. Position Based Dynamics. In Proc. of Virtual
Reality Interactions and Physical Simulations (VRIPhys), 71-80.

NEALEN, A., MULLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2005. Physically based deformable models in
computer graphics. In Eurographics: State of the Art Report.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-Form De-
formation of Solid Geometric Models. In Computer Graphics
(Proc. SIGGRAPH 86), vol. 20, 151-160.

SIFAKIS, E., NEVEROV, 1., AND FEDKIW, R. 2005. Automatic
determination of facial muscle activations from sparse motion
capture marker data. ACM Trans. on Graphics 24, 3, 417-425.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Deformable mod-
els. The Visual Computer 4, 6 (Dec.), 306-331.

WEISS, B. 2006. Fast Median and Bilateral Filtering. ACM Trans.
on Graphics 25, 3 (July), 519-526.

WESTERMANN, R., AND REZK-SALAMA, C. 2001. Real-Time
Volume Deformations. Comp. Graph. Forum 20, 3, 443-451.

WICKE, M., HATT, P., PAULY, M., MUELLER, M., AND GROSS,
M. 2006. Versatile virtual materials using implicit connectivity.
In Eurographics Symposium on Point-Based Graphics, Boston,
USA, 29-30 July, 73-82.



