Design of Sanitary Sewer System

Key components

Service connections, Manholes and pump stations

Design Flows

1. Infiltration and interflow (71 to $140 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{km}$)
2. Flow from the service connections

Type of Area	Density (persons/ha)
Large lots	$5-7$
Small lots, single family	75
Small lots, two family	125
Multistory apartments	2500

Design period: usually of the order of 50 years
Variation in flow

$$
\frac{Q_{\text {peak }}}{Q_{\text {ave }}}=\frac{5.5}{(P / 1000)^{0.18}}, \quad \frac{Q_{\min }}{Q_{\text {ave }}}=0.2(P / 1000)^{0.16}
$$

$P=$ population of the service area

Example: You are required to estimate the peak and minimum sewage flows for a town having an area of 2500 ha. The residential area is 60% of the total area, whereas commercial and industrial areas are 30% and 10% of the total area, respectively. Of the residential area, 40% are large lots, 55% small single-family lots and 5% multistory apartments. The wastewater from the residential area is estimated to be 800 Lpcd . The sewage from commercial and industrial areas is estimated to be $25000 \mathrm{~L} / \mathrm{ha} / \mathrm{d}$ and 40000 L/ha/d, respectively.

Type	Area(ha)	Density (persons/ha)	Population	Flow $\left(\mathbf{m}^{\mathbf{3} / \mathbf{s})}\right.$
Large lots	$0.4(1500)=600$	6	3,600	0.03
Small single family lots	$0.55(1500)=825$	75	61,875	0.57
Multistory apartments	$0.05(1500)=75$	2500	187,500	1.74
Total			$\mathbf{2 5 2 , 9 7 5}$	$\mathbf{2 . 3 4}$

Commercial sector $=30 \%$ of 2500 ha $=750$ ha Average flow from commercial sector $=750 \times 25,000 \mathrm{~L} / \mathrm{d}=0.22 \mathrm{~m}^{3} / \mathrm{s}$

Industrial sector $=10 \%$ of $2500 \mathrm{ha}=250$ ha
Average flow from industrial sector $=250 \times 40,000 \mathrm{~L} / \mathrm{d}=0.12 \mathrm{~m}^{3} / \mathrm{s}$
Thus,
Average wastewater flow (excluding I / I) $=2.34+0.22+0.12=2.68 \mathrm{~m}^{3} / \mathrm{s}$
Assuming total population is equal to residential population, i.e.

$$
\mathrm{P}=252,975
$$

Then,

$$
\begin{aligned}
& \frac{Q_{\text {peak }}}{Q_{\text {ave }}}=\frac{5.5}{(P / 1000)^{0.18}}=\frac{5.5}{(252.975)^{0.18}}=2.0 \\
& \frac{Q_{\min }}{Q_{\text {ave }}}=0.2(P / 1000)^{0.16}=0.2(252.975)^{0.16}=0.48
\end{aligned}
$$

Hence,
Peak flow $=$ Peak factor x wastewater $+\mathrm{I} / \mathrm{I}=2.0(2.68)+0.03=5.39 \mathrm{~m}^{3} / \mathrm{s}$
Minimum flow $=0.48(2.68)+0.03=1.32 \mathrm{~m}^{3} / \mathrm{s}$

Hydraulics of Sewers

Minimum velocity (self-cleansing velocity) $=0.6 \mathrm{~m} / \mathrm{s}$
Maximum velocity $=3.5 \mathrm{~m} / \mathrm{s}$
Minimum pipe diameter $=150 \mathrm{~mm}$.
Sanitary sewers up to 375 mm diameter should be designed to run half full.
Larger pipes may run three-fourths full.

The design problem

Given:

1. Discharge, Q
2. Pipe Diameter, D
3. Pipe slope, S_{0}

Determine:

1. Depth of flow, h
2. Minimum velocity, $V_{\text {min }}$
3. Maximum velocity, $V_{\max }$

$h=\frac{D}{2}\left[1-\cos \left(\frac{\theta}{2}\right)\right]$
$A=D^{2}\left[\frac{\theta-\sin \theta}{8}\right]$
$P=\frac{D \theta}{2}$
$Q=\frac{A}{n}\left[\frac{A}{P}\right]^{2 / 3} S_{0}^{1 / 2}$
Combining these equations we get

$$
\frac{(\theta-\sin \theta)^{5 / 3}}{\theta^{2 / 3}}-\frac{20.16 n Q}{D^{8 / 3} S_{0}^{1 / 2}}=0
$$

After solving it by trials we can compute A and then, $V=\frac{Q}{A}$

If $V<V_{\min }$, reduce the diameter to achieve $V \geq V_{\text {min }}$

If diameter is the minimum $(150 \mathrm{~mm})$, put $V=V_{\text {min }}$ and find the slope of the pipe from the Manning's equation.

Table 4.25 Available Sizes of Concrete Pipe	Nonreinforced pipe		Reinforced Pipe	
	Diameter (mm)	Diameter (in.)	$\underline{\text { Diameter (mm) }}$	Diameter (in.)
	100	4	-	-
	150	6	-	-
	205	8	-	-
	255	10	-	-
	305	12	305	12
	380	15	380	15
	455	18	455	18
	535	21	535	21
	610	24	610	24
	685	27	- 685	27
	760	30	760	30
	840	33	840	33
	915	36	915	36
	-	-	1,065	42
	-	-	1,220	48
	-	-	1,370	54
	-	-	1,525	60
	-	-	1,675	66
	-	-	1,830	72
	-	-	1,980	78
	-	-	2,135	84
	-	-	2,285	90
	-	-	2,440	96
	-	-	2,590	102
	-	-	2,745	108

Example: Determine the average velocity in a trunk sewer made of concrete ($\mathrm{n}=0.015$) having 1500 mm diameter laid on a slope of 1%. The peak discharge through the pipe is estimated to be $4000 \mathrm{~L} / \mathrm{s}$.

Given:

$$
\begin{aligned}
& n=0.015, \quad Q=4 m^{3} / \mathrm{s}, S_{0}=0.01, D=1.5 \mathrm{~m} \\
& \frac{(\theta-\sin \theta)^{5 / 3}}{\theta^{2 / 3}}-\frac{20.16(0.015)(4)}{(1.5)^{8 / 3}(0.01)^{1 / 2}}=0
\end{aligned}
$$

By trials,

$$
\theta=3.5 \text { radian }
$$

Therefore,

$$
\begin{aligned}
& h=\frac{D}{2}\left[1-\cos \left(\frac{\theta}{2}\right)\right]=\frac{1.5}{2}\left[1-\cos \left(\frac{3.5}{2}\right)\right]=0.88 m \\
& A=D^{2}\left[\frac{\theta-\sin \theta}{8}\right]=1.5^{2}\left[\frac{3.5-\sin 3.5}{8}\right]=1.08 \mathrm{~m}^{2}
\end{aligned}
$$

The average flow velocity in the sewer is given by
$V=\frac{Q}{A}=\frac{4}{1.08}=3.7 \mathrm{~m} / \mathrm{s}$

Sewer Pipe Material

Rigid Pipes: Concrete, Cast iron, Vitrified clay
Flexible pipes: Ductile iron, Steel, PVC
Advantages and disadvantages of each category

Typical Manholes

Sulfide Generation

$Z=0.308 \frac{E B O D}{S_{0}^{0.5} Q^{0.33}} \times \frac{P}{B}$
$E B O D=B O D \times 1.07^{T-20}$
$B O D={ }_{5}$-day biochemical oxygen demand
$S_{0}=$ Slope of the pipe
$Q=$ Discharge through the pipe
$P, B=$ wetted perimeter and top width of the flow, respectively.

Z values	Sulfide Condition
$Z<5,000$	Sulfide rarely generated
$5,000<Z<10,000$	Marginal condition for sulfide generation
$Z>10,000$	Sulfide generation common

Example: Check the potential for sulfide generation in the trunk sewer of the previous example, if 5-day BOD of the sewage is measured as $1600 \mathrm{mg} / \mathrm{L}$ and the ambient temperature in the sewer is $30^{\circ} \mathrm{C}$.

Solution:

$$
E B O D=B O D \times 1.07^{T-20}=1600 \times 1.07^{10}=3147.44
$$

$$
P=\frac{D \theta}{2}=\frac{1.5 \times 3.5}{2}=2.625 \mathrm{~m}
$$

$$
B=\frac{D}{2} \sin \left(\frac{\theta}{2}\right)=\frac{1.5}{2} \times \sin \left(\frac{3.5}{2}\right)=0.738 m
$$

$$
\begin{aligned}
Z & =0.308 \frac{E B O D}{S_{0}^{0.5} Q^{0.33}} \times \frac{P}{B}=0.308 \frac{3147.44}{0.01^{0.5} 4^{0.33}} \times \frac{2.625}{0.738} \\
& =21822>10000
\end{aligned}
$$

So, sulfide generation will be common in the sewer.

Design Computations

Example A sewer system is to be designed to service the area shown in the following Figure. The average per capita wastewater flow-rate is estimated to be $320 \mathrm{~L} / \mathrm{d} /$ person, and the infiltration and inflow (I/I) is estimated to be $70 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{km}$. The sewer system is to join an existing main sewer at manhole MH 5, where the average wastewater flow is 0.37 $\mathrm{m}^{3} / \mathrm{s}$, representing the contribution of approximately 100,000 people.
The I/I contribution to the flow in the main sewer at MH 5 is negligible, and the main sewer at MH 5 is $1,065 \mathrm{~mm}$ in diameter, has an invert elevation of 55.35 m , and is laid on a slope of 0.9%. The layout of the sewer system shown in the figure is based on the topography of the area, and the pipe lengths, contributing areas, and ground-surface elevations are shown in the table.
Design the sewer system between A Street and C Street for a saturation density of 150 persons/ha. Municipal guidelines require that the sewer pipes have a minimum cover of 2 m , a minimum slope of 0.08%, a peak flow factor of 3.0 , a minimum flow factor of 0.5 , and a minimum allowable pipe diameter of 150 mm .

Line no. (1)	Location (2)	Manhole no.		Length (m) (5)	Contributing area (ha) (6)	Ground surface elevation		
				Upper		Lower		
		From (3)	To (4)			(m) (28)	(m) (29)	
0	Main Street	-	5		-	-	-	60.04
1	A Street	1	2	53	0.47	65.00	63.80	
2	A Street	2	3	91	0.50	63.80	62.40	
3	A Street	3	5	100	0.44	62.40	60.04	
4	A Street	4	5	89	0.90	61.88	60.04	
5	Main Street	5	12	69	0.17	60.04	60.04	
6	B Street	6	8	58	0.43	65.08	63.20	
7	P Avenue	7	8	50	0.48	63.60	63.20	
8	B Street	8	10	91	0.39	63.20	62.04	
9	Q Avenue	9	10	56	0.88	62.72	62.04	
10	B Street	10	12	97	0.45	62.04	60.04	
11	B Street	11	12	125	0.90	61.88	60.04	
12	Main Street	12	19	75.	0.28	60.04	60.20	
13	C Street	13	15	57	0.60	64.40	62.84	
14	P Avenue	14	15	53	0.76	63.24	62.84	
15	C Street	15	17	97	0.51	62.84	61.60	
16	Q Avenue	16	17	63	0.94	62.12	61.60	
17	C Street	17	19	100	0.46	61.60	60.20	
18	C Street	18	19	138	1.41	61.92	60.20	
19	Main Street	19	26	78	0.30	60.20	60.08	

- Table 4.27 Sewer Design Calculations

Tutorial Problem

(a) Use MS-Excel to design the sewerage system for Streets A and B shown in the previous example.
(b) Use SewerCAD to design the sewerage system for Streets A and B shown in the previous example.

Reference: Water Resources Engineering by Chin, 2000.

