
Extending QuickTime’s Object VR Interactivity

Stewart Crawford
BioGraphix, LLC && Visible Productions, LLC; Fort Collins, CO USA

http://www.cs.colostate.edu/~sgcraw

Figure 1 : A series of images used to create a rotating skull.

Abstract
Image-based 3D visualizations are required when frame
rendering times are long, when photographic image sets rather
than mathematical models of objects are available, or when
model complexity does not support real-time rendering. The
Object VR model of QuickTime (QT) is a common framework
for such visualizations. While these have proved useful in the
biomedical community, the QTVR framework has some
limitations, presented and addressed in this paper. This work
provides solutions to the issues of smoothly going beyond
two degrees of control and allowing models to freely tumble
end-over-end; an improved method of hot spot labelling and
interaction is also presented. These solutions are all being
actively implemented in our current generation of biomedical
models.

Keywords: QuickTime, object VR, QTVR, interactive images

CR categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Virtual reality; I.3.3 [Computer
Graphics]: Picture/Image Generation – Viewing algorithms

1. Introduction
Image-based interactive 3D visualizations, though less
glorious and less studied than polygonal models rendered and
texture mapped in real time, still have a useful lives. Image-
based visualizations are still viable in cases where there is as
yet no mathematical model of an object but a sequence of still
photographs can be obtained, or when the complexity of the
model dictates that it can’t be rendered sufficiently quickly to
support interactive frame rates.

The Object VR model embodied in QuickTime’s QTVR suite of
tools and players is perhaps the most common framework for
these visualizations. The biomedical community has
developed a large set of these Object VRs for university
teaching and patient education [Nieder 2002]. We have

utilized image-based Object VRs since our detailed polygonal
models, when combined to show many anatomical systems,
have polygon counts in the hundred-thousands with
rendering times measured in minutes.

With user interaction controlled by the mouse, horizontal and
vertical mouse motion provide two natural degrees of freedom
to control the model viewing. In the biomedical community,
we have used these two degrees of freedom to make either (1)
fully rotatable models or (2) dissectable models with limited
rotation. But we would like to have models both fully
rotatable and dissectable, which imply more than two degrees
of control. Another limitation of QTVRs is that they are
inconsistent with a our usual experience of handling on
object, since the QTVRs is limited in its ability to tumble
freely, end-over-end, in all directions. In this paper, we
provide solutions to these problems, and provide an improved
alternative to QTVR’s hot spot methodology which is used to
identify and act upon specified regions in the imagery.

2. QuickTime Object VR Basics
QuickTime has two distinct flavors of VR in its QTVR toolkit:
Panoramic and Object VR. The user’s world model of a
Panoramic VR is that they are standing in one place, viewing
the world as they turn around. The user’s world model of an
Object VR is that they are holding an object and rotating it
around in their hands observing it. This work addresses only
the handling of Object VR imagery.

The simplest object model is a sequence of images taken
around an object, as shown here in Figure 1. When these are
frames of a movie and put in a loop, the skull would appear to
be rotating around its vertical axis. To add user interaction,
the user can be presented with any one image initially and
then asked to drag the cursor across the image. Dragging the
cursor to the right advances the movie frame-by-frame to the
right, wrapping around appropriately at either end of the
image sequence. The user thus appears to be rotating the
object clockwise or counter-clockwise by interacting through
the mouse with the image sequence. This is the most basic
user-controlled Object Movie or Object VR, also referred to as
“interactive images”.

To allow the user to more freely rotate the object, additional

strips of images are used, with the object rotated about its
vertical axis and the camera inclined at an azimuth angle. In
Figure 2 (on the color plates), each strip represents a change of
20 azimuth degrees from its neighbors.

This represents the QTVR Object model. We call this a global
rotatable model, to distinguish it from the more primitive
single axis rotatable model. Note that while the left-most
images wrap smoothly around to the right-most images on
each row, the top images do not smoothly wrap around to the
bottom in each column. Thus continued upward mouse
motion, when positioned on the top row, has no effect.

For smoother transitions, the standard recommendation is to
have increments of 10 degrees in both equatorial and azimuth
angles, which results in an array of 19 rows of 36 images each,
or 684 total images [Apple 2000]. On the QuickTime movie
timeline, the rows are laid out linearly, adjacent to one
another; horizontal mouse movements over an image move in
the timeline frame-to-frame, while vertical mouse movements
jump to the same relative frame in the appropriately adjacent
group.

Object VRs have filled a niche in the biomedical education
community [Gutmann 2000; Trelelease et al. 2000]. One
innovation that receives use in this community is called a
“dissectable VR”. In this style of VR, the rows represent an
object at various levels of dissection. For a dissectable model
of the head, the first row shows the skin, the second row would
show the bones and muscles, the third would show the brain,
and additional rows would show succeedingly deeper
structures within the brain. In this way, as the user moves the
cursor vertically in an image, the user sees the progressive
peeling away of structures, simulating a dissecting of the
subject. A collection of both global and dissectable human
anatomical models has been published on the Merk Medicus
web site [Merk 2003]. The QuickTime VR Anatomical
Resource web site [Nieder 2002] carries links to a further
variety of anatomical object VR models.

Conceptually, nothing in this model requires the use of
QuickTime; there just happen to be tools available in
QuickTime toolkits that aid in assembling these
representations. We have implemented this interaction on a
DVD, using the up/down/left/right keys of a standard DVD
controller to run the model. A straightforward java applet
could implement this same user experience: it would read a
super-image that essentially looks like Figure 2 (color plates),
with all the images, full scale, aggregated into one image; it
would display only one sub-image through a window; and as
the user moves the cursor horizontally or vertically, the
aggregate super-image is simply shifted under the viewer’s
window.

3. Limitations of QuickTime
We generated a series of these VRs for biomedical clients
during the late 1990s. During the course of this work, several
limitations were encountered:

 * QuickTime worked well across both Mac and
Windows platforms, but troubles arose across

generations of Quicktime. We had models generated
with Quicktime versions 2 through 5, and later
players wouldn’t run earlier generation models,
which forced us to continually reload various
QuickTime libraries.

 * Mouse motion in 2D gave two-dimensions of control
in the VRs. With horizontal cursor motion
controlling rotation about a vertical axis, vertical
cursor motion could be used to control either
moving through dissection layers or rotation about
horizontal axes. But now we wanted both, VRs that
are at the same time globally rotatable and
dissectable.

 * The image strips of Figure 2 (color plates) wrap
around horizontally, but not vertically. The user is
thus manipulating a model which rotates smoothly,
but when rotating end-over-end, it gets “stuck” at the
top and bottom and won’t tumble any further. This
is at variance with our day-to-day tactile
manipulation experience with physical objects: we
can tumble the object over, seeing it right-side up,
then on end, then up-side down, then on (other) end,
then right-side up, then on end, ...

In addressing the versioning problem, we looked at rewriting
the VR movie controller for web delivery in another way. We
considered the applet mentioned earlier, but requiring novice
users to load a JVM on their machine was judged both risky
and as onerous as loading specific QuickTime versions.
Director/Shockwave was a possibility. But Flash was the
rising star, with a compact and soon-to-be ubiquitous player
in all the web browsers. The basic Flash 5 controller solved
our first problem, and our models still run in later players. As
a side benefit, more platforms are covered, since Flash players
are available across the unix/ linux world, which has sparse
QuickTime support. Now with a VR movie controller under
our development, we could start addressing other VR issues.

4. End-Over-End Tumbling
The image set of Figure 2 (color plates) fully captures the
skull at all aspects. Why can’t we tumble the model and see it
upside down? Starting with the skull face, if we tumbled it to
see the bottom and continued tumbling, we’d soon see the
back of the skull, upside down. Figure 3 shows the top half of
the image matrix. The solution to the end-over-end tumble is
to observe that, upon arriving at the top image in column
three, the image sequence continues moving down column
nine, as long as the images in column nine are rotated 180
degrees.

There is one issue: the viewer may notice the column switch
depending on the object lighting and any image background.
If the lighting setup and background are rotationally
symmetric about the camera axis, there will be no visual effect
if the images are rotated.

Figure 3 : The natural sequence of images, after moving up column three, continues down column nine, if column nine’s images
are rotated 180 degrees. A demoonstrataion SWF was submitted with the auxillary material.

5. Dissectable & Globally Rotatable VRs
With an end-over-end, globally rotatable VR now
implemented as a Flash movie clip, dissectability can be
added by layering movie clips on top of one another. Virtual
dissections can now be achieved by swapping in new movie
clips that are synchronized to the previous clip. Further
flexibility can be achieved by layering the movie clips one on
top of the other, synchronizing them with one another, and
then smoothly varying the alpha transparency of the movie
clips on top. The transparency of each clip can be varied
independently creating a variety of effects, such as a ghost
layer of skin overlaying translucent muscles overlaying
almost solid organs with the trace view of the skeleton under
it all.

With all this imagery, these models can grow quite large. A
440 x 440 sized VR, with 108 images per layer, five layers
deep, with each image an alpha-channel PNG at 4 bytes-per-
pixel, requires in 345.6 Mb of raw image data. While this
image data will be compressed when stored as an SWF file, it
all is brought into play when the Flash player runs the VR.
This can slow down and potentially cause trouble with the
Flash player, which was not likely to have been designed with
this much throughput as a consideration.

6. Hot-spot Labelling
The ability to designate specific image areas of a QTVR (for
both panoramic and object VRs) allows an image to be
labelled or linked. These specially designated image areas are
called hot spots . The QTVR interface allows the programming
of various actions when the cursor rolls over a hot spot or
when the user clicks the cursor within the boundary of a hot
spot. Hot spots are delineated on an off-camera image that is

mapped to the image within the user’s view. Figure 4 (color
plates) show an example of an image and its hot spot
definitions.

Each of the named bones, ligaments, and muscles in the image
on the left has a corresponding area painted a solid, unique
color in the hot spot image on the right. These hot spot
images are color-mapped, 8-bit images [Chen 1995], and thus
limited to identifying at most 256 areas in their
corresponding image.

In this example, the user has placed the cursor (in the left
image) over a particular muscle, the semimembranosus muscle.
The corresponding location in the hot spot image is blue. The
color map index for this blue points into a table of
information about the structure; in this application, the name
of the muscle is retrieved and displayed to the user. The
information associated with the colormap indices could
represent almost anything: it could link the user to different
VRs, it could generate a quiz for that structure, it could be an
audio clip; it could contain physical therapy information.
The basic idea is that the solid color in the hot spot image
determines the region over which a specific action would
occur.

This model of interaction doesn’t directly port to a Flash
implementation, because it has no primitives to query an
image as to what color is at a particular location. Buttons with
rollover states, though, can be put to similar effects.
Typically, buttons on web pages are thought of as simple
rectangular shapes. Flash buttons can have any shape, and
they need not be contiguous. Thus, a set of buttons can be
defined, one button corresponding to each of the uniquely
colored areas in the hot spot image. Figure 5 (color plates)
shows the muscle identified earlier. Note in this case, the
rollover state was set to a semi-transparent white, which

highlights the full extent of the muscle. Note the extension of
the semimembranosus muscle on its lower portion – it is not
obvious from the original image that the two muscle parts are
related. This illustrates a shortcoming of the original, off-
screen colormapping methodology: the cursor location can be
mapped to a specific color map index, but it would be difficult
to map back from the colormap to the original image and
highlight all locations with identical properties.

This solution is compact in space (since the off-screen
colormapped images are not needed) but expensive in
processing, because now the player must search each of many
irregularly shaped buttons deciding whether the cursor is
within its region.

Figure 6 : A labelled, fully rotatable, five-layer dissectable visualization of the brain.

7. Discussion
This work provides solutions to the issues of allowing
biomedical object visualizations to be simultaneously both
fully rotatable and dissectable, and allowing the
visualizations to freely tumble end-over-end. An improved
method of general region labelling and interaction is also
presented. These solutions are all being actively implemented
in our current generation of biomedical models. The solutions
presented here were implemented with Flash’s actionscript,

though they would be straightforward to implement in other
languages. This has provided the next increment of additional
functionality associated with Object VR models in general.

References
Apple Computer, Inc. 2000. QuickTime for the Web. Morgan
Kaufman.

Chen, S.E. 1995. “QuickTime VR – An Image-Based Approach
to Virtual Environment Navigation”, In Proceedings of ACM
SIGGRAPH 1995, ACM Press / ACM SIGGRAPH, New York.
R.Cook, Ed. Computer Graphics Proceedings, Annual
Conference Series, ACM, 29-38.

Merck & Co., Inc. 2003. “MerckMedicus : Your Key to the
Medical Internet”.
http://www.merckmedicus.com/pp/us/hcp/frame_emedtool.jsp

Nieder, G.L. 2002. “QuickTime VR Anatomical Resources”,
http://www.anatomy.wright.edu/qtvr/.

Trelease, R.B., Nieder, G.L., Dørup, J., and Hansen, M.S, 2000.
Going Virtual With QuickTime VR: New Methods and
Standardized Tools for Interactive Dynamic Visualization of
Anatomic Structures. In The Anatomical Record (New Anat)
261: 64-77.

Transcending QuickTime Object VRs

Figure 2: The image set used to make a fully rotatable Object VR of the skull. If the image in the fourth row,
fourth column were currently displayed, the left arrow indicates which image would be displayed next

corrsponding to a motion of the cursor. Though not shown, diagonal motions are also allowed.

Figure 4: An image of the leg’s muscles (left) and
its corresponding hot spot map (right). Each
unique hot spot color designates a particular

structure in the original image.

Figure 5: The roll-over state of an
irregularly shaped button defines

the muscle’s full extent.

