
Errors and Omissions in Marc Alexa’s
“Linear Combination of Transformations”

Charles Bloom∗

OddWorld Inhabitants, Inc.
Jonathan Blow†

Bolt-Action Software, Inc.
Casey Muratori‡

RAD Game Tools, Inc.

Abstract

The affine transform is a fundamental computer graphics
tool. While there are many situations which require the lin-
ear combination of such transformations, most practioners
find these operations troublesome due to the non-linear na-
ture of rotations. Alexa [2002] proposed a methodology for
treating transforms as linear, and although this is a worth-
while goal, we feel that the techniques presented were sorely
lacking, both in their practical implementation and in their
theoretical underpinnings. This paper points out these se-
rious flaws, and demonstrates how alternative techniques,
already in limited use since the late 1990s, are much more
suited to adoption as standard practices than those advo-
cated by Alexa [2002].

1 Introduction

Rotation has long been the troublesome part of the 3D trans-
formation. While translation, scale, and shear all admit ob-
vious, plausible linear combination operators, rotation does
not. This has lead to a variety of rotation representations
and operators, and the computer graphics community has
yet to settle on a standard.

Alexa [2002] boldly tries to attack the general problem of
linear combination of any type of transformation. Since only
the rotation portion of a typical 3D transformation matrix
is combinationally non-linear to begin with, the majority of
Alexa [2002] revolves around how to map rotation matri-
ces to and from a space where the rotation portion can be
treated linearly.

In this paper, we will show that Alexa’s proposed transfor-
mation interpolation is seriously flawed. Rotation in particu-
lar has many different flavors of interpolation, and restricting
the method of interpolation is often a hindrance, not a help.
Furthermore, Alexa’s chosen interpolant lacks many impor-
tant qualities that are essential to a versatile representation
for the linear combination of transformations.

In addition, we put forward, for the first time, a concise
presentation of the properties of rotation interpolation as

∗e-mail: cbloom@cbloom.com
†e-mail: jon@bolt-action.com
‡e-mail: cmu@funkytroll.com

they apply to computer graphics. It is our hope that this
will set the record straight, such that meaningful progress in
standardization on rotation combination operators can be
made.

The rest of this paper is organized as follows.
In section 2, we introduce the qualities one might look

for in a rotation interpolant. We explain why a single inter-
polant cannot have all of them at the same time, and assign
the appropriate qualities to the common methods of rotation
interpolation.

In section 3, we discuss the topology of rotation interpo-
lation. We point out the important aspects of this topol-
ogy, and isolate specific ways in which the methods of Alexa
[2002] do not adequately address problems or take advantage
of possibilities presented by the topology.

In section 4, we correct Alexa’s erroneous assertion that
the non-geodesic nature of the exponential map implies that
it is not constant speed. We then demonstrate that it actu-
ally is constant speed, but that it does not minimize torque,
and we discuss the downsides of this tradeoff.

In section 5, we point out a very serious problem with
exponential mappings that Alexa [2002] dismisses. We show
where Alexa’s math is erroneous, and why it is a serious
problem for the exponential map to have a non-injective in-
verse.

In section 6, we provide examples of real-world perfor-
mance criteria for transformation representations. Using
Alexa’s own timings, we then demonstrate that even if there
was some benefit to using Alexa’s proposed implementation,
it would be too slow to be used in any serious application.

In section 7, we discuss a constructive approach to the
rotation interpolation problem. We point out practical com-
promises for the central problems of rotation interpolation,
and demonstrate how a thoughtful implementation can usu-
ally have the best of both worlds when it comes to rotation
interpolation.

2 Interpolant Properties

Interpolation of translations and scales is relatively straight-
forward. Interpolation of rotations, however, has many com-
plex subtleties. In particular, there are three primary qual-
ities of interpolation that are of interest: torque minimiza-
tion, constant angular velocity, and commutivity.

If a rotation interpolation is torque-minimal, it means that
the path taken between two interpolated rotations takes the
shortest path through the space of rotations. In a sense, if
one considered there to be actual force involved in spinning
a coordinate frame, torque-minimal interpolation “uses the
least amount of torque” to rotate from one orientation to
another.

If a rotation interpolation has constant angular velocity, it
means that a uniform change in the interpolation parameter
produces a uniform change in the resulting rotation. The

speed of the rotation during interpolation is constant if the
rate of change of the interpolation parameter is also con-
stant. Put a different way, the interpolation speed depends
only on the derivative of the interpolation parameter, and
not the parameter’s actual value.

If a rotation interpolation is commutative, it means that
for multiple sequential interpolations, the order of interpo-
lation is unimportant. If you interpolate part way from A to
B, then part way from there to C, the resulting orientation
will be the same as if you went from C to B, and then to A,
provided you still used the same coefficients.

Sadly, there is no known direct interpolation scheme which
can provide all three of these (generally desirable) qualities
at the same time. Out of the three primary contenders, each
lacks one.

Spherical linear interpolation of quaternions (typically ab-
breviated “SLERP”) provides torque minimization and con-
stant angular velocity, but it does not commute. This is be-
cause the operation depends on the angle between the two
rotations being interpolated. Changing the order changes
the relative angles, thus you get a different result.

Linear interpolation of quaternions provides torque mini-
mization, and it commutes, but it does not interpolate with
constant angular velocity (for those unfamiliar with this op-
eration, see ??). This is because the linearly interpolating
rotation is effectively “tunnelling” through the unit hyper-
sphere, and then being projected back onto its surface. The
projection necessarily introduces the non-linear angular ve-
locity.

Linear interpolation of exponential maps is constant an-
gular velocity, and it commutes, but it does not follow the
torque-minimal path. This is because composition or ro-
tations is not commutative. Therefore, addition in their
log-space is not the same as multiplying them in rotation
space, so they mathematically cannot follow the same path
as a quaternion SLERP or LERP, which are proven to be
torque-minimal. The exception to this is, of course, when
the rotations do commute, which is whenever one rotation is
the identity, or both rotations are occuring along the same
axis, in which case the formulations are equivalent, which
can be proven the same way.

It is generally assumed that there is no way to construct
a single interpolant that satisfies all three of these require-
ments. This is due to the non-Euclidean topology of the
space of rotations; ie., there is no way to unwrap a sphere
onto a plane while preserving linearity, commutivatity, and
the distance metric. The following section discusses this in
more detail.

3 The Topology of Interpolation

Alexa [2002] does not address the global structure of trans-
formations. Although he does not present it as such, Alexa’s
approach boils down to one well-known prescription: inter-
polate transformations in their Lie space.

All transformations are elements of a group. That group
has Lie generators which define a local manifold in each
neighborhood of the group. Alexa is suggesting that you
take the local neighborhood around the identity operation,
use the Lie basis to define a flat Reimann topology for the
transformations, and then to use that topology globally.
This works fine for groups that have globally flat topology,
such as the Translation and Scale groups (ie the Lie algebra
is commutative). Because Translation and Scale are locally
flat, and we can write our transformation as a group prod-
uct, the only problem with interpolation between transfor-

mations comes from the rotation part. The rotation group
(in dimensions greater than R2) is a group that does not have
globally flat topology. Alexa’s approach is akin to making
a flat projection of the group topology, and then working in
that projected space.

The rotation group has topology S3/Z2. S3 is the 3-
dimensional surface of a sphere (embedded in 4 dimensions);
the division by Z2 refers to the fact that opposite rotations
are identical. That is, rotation around N by theta and ro-
tation around −N by −θ are the same rotation. Note that
the rotation around N by theta and the rotation around N
by (2π − θ) lead to the same orientation, but they are not
the same rotation. The topology S3 means that any flat
projection (ala Alexa) is going to cause distortion. Failure
to account for the Z2 (double-cover) will cause global neigh-
borhood errors.

Thus, two major problems arise from trying to use Alexa’s
method in general: distortion and global neighborhood er-
rors. Distortion means that distances in the exponential map
(Lie space) are not proportional to distances in the group.
This can cause you to take unnatural curved paths through
the space of transformations. Close to the identity, this dis-
tortion is small; infinitesimally close, the exponential map
is a perfect coverage; the error gets worse the farther you
get from the identity operation. Global neighborhood errors
typically manifest by taking an unnecessary long path be-
tween two transformations. In a flat Reimann space (like
R3) there is only one straight line between two points. On a
sphere, there are many geodesics between two points; if you
try to make an unwrapping of the surface of a sphere (to
a disc), you must also consider the paths which go around
the boundary of the disc. In general, there may be many
ways that two different points on the unwrapping have zero
distance between them; for example, a torus may be un-
wrapped to a rectangle, with opposite edges representing
the same points in the group.

The problem with Alexa’s technique in general is that
it produces more distortion than rival techniques, and it
doesn’t account for the global topology problems at all. The
only way to handle the topology problems is to explicitly
know what group you are dealing with, and to account for
that space. Thus, generic interpolation of transformations
is impossible and undesirable.

4 Constant Speed

Now that we have covered the relevant theory of rotation
interpolation, we are ready to discuss the first specific error
in Alexa [2002]:

The exponential map, on the other hand, has some
drawbacks. Essentially, a straight line in param-
eter space doesn’t necessarily map to a straight
line (i.e. a geodesic) in the space of transfor-
mations. This means the linear interpolation be-
tween two transformations as defined above could
have non-constant speed. Furthermore, also spline
curves, which could be thought of as approximat-
ing straight lines as much as possible, are mini-
mizers of a geometrically doubtful quantity. Nev-
ertheless, we found the results pleasing.

Sadly, although Alexa correctly observes (or transcribes
from Grassia [1998]) the concept that exponential map in-
terpolation is not geodesic, he apparently fails to understand
what this actually means. The geodesic interpolation refers

to taking the torque-minimal path through rotation space.
This has nothing to do with constant angular velocity, which
is an entirely separate quality. In fact, contrary to Alexa’s
assertion, the exponential map is constant speed. The fact
that it is not always geodesic means that it is not torque
minimal.1 See Appendix A if you are interested in an intu-
itive presentation of geodesy.

5 The Non-injective Inverse

Obviously, the exponential map must be inverted to go from
one of its values back to the corresponding rotation. Because
the exponential map is not periodic, and rotations are, this
implies that there will be multiple values in the space of the
exponential map that all become the same rotation when
the mapping is inverted. If you think about exponentially
mapped values as vθ, then it’s clear that a family of values
in the exponential map, which all correspond to the same
rotation, is given by v(θ + n2π), where n is any integer.

This means that there are an infinite number of values
in the exponential map space that correspond to a single
rotation. While this non-injectivity causes no problems for
simple operations, it causes serious problems for interpola-
tion, which Alexa mentions:

We would also like to point at an interesting dif-
ference to quaternions: The log-matrix representa-
tion allows angles of arbitrary degree. Computing
the logarithm of a rotation by π and then mul-
tiplying this log-matrix leads to a representation
of rotations more than 2π. While this could be
useful in some applications it might be disadvan-
tageous in others. For example, the interpolation
between the two rotations of ±(π − ε) results in
a rotation by almost 2π rather than by a rotation
by 2ε. However, using the tools presented in the
following section this could be easily avoided.

In a moment, we will take issue with the words “this could
be easily avoided”. But before we do, we would first like to
point out that non-injectivity of the inverse mapping is not a
feature that the exponential map has which quaternions do
not (as might be misconstrued from the ambiguous first sen-
tence in the quoted paragraph above). Unit quaternions also
have a non-injective inverse. However, instead of infinitely
many unit quaternions corresponding to a single rotation,
there are in fact only two: the family is defined by q and its
inverse, −q. 2

To interpolate along the shortest path from
R1toR2 one chooses for each of the factors
x1, y1, z1 and x2, y2, z2 the shorter path on the
circle. Specifically, if the difference between two
corresponding factors is larger than |r|, then the
shorter interpolation path is via ±r rather than
via 0.

Unless Alexa knows something he isn’t telling us, relying
on this kind of alignment for interpolation of the exponential
map is far from “easy”. This “neighborhooding” operation
is central to all animation work, be it a single interpolation

1At this point, the reader may wonder which of these two prop-
erties is more desirable. See section 7.

2One may ask oneself at this time, precisely how many values
does one want to map to a single rotation in the ideal represen-
tation for rotation in computer graphics? See section 7.

between two rotations or a cubic b-spline that interpolates
four rotations at once. It is therefore essential that it be
simple and efficient to take any number of rotations and put
them in the proper neighborhood for interpolation.

To demonstrate why Alexa’s neighborhooding operation
does not make things easy, we begin by looking at the first
paragraph in 6.2. Alexa states that the angle of rotation is

(x + y + z)/φ
Actually, it is
|(x, y, z)|/φ
which is to say that it is the magnitude of the vector

(x, y, z).
The value ”r” that he talks about here is (pi * phi). This

”phi” factor is very confusing, so I’ll drop it from now on,
and just use phi = 1. The choice of phi=1 means that my
rotations are :

Rx = e(Jx) log(Rx) = xhat
and
T = e(J ∗ ntheta)
T is rotation around n by theta
And
x =< logRx, logT >= nxtheta
In particular,
x, y, z = n ∗ theta
Are the parameters in the exponential map space.
Now, Alexa’s r is just pi. Alexa then considers each pa-

rameter separately. He says that if you look at a parameter
x, then values pi and −pi are the same rotation. In the
exponential map, x is a segment; by equating the ends, it’s
a circle. He’s saying that the rotations around X have the
topology S1. This is true when you only do a rotation around
X, but it is WRONG for a 3D rotation. Alexa is treating the
global topology as S1 ∗ S1 ∗ S1, which is just wrong, that’s
not the same as S3, which is what he should be using. In
particular, the rotations :

x, y, z and 2pi − x, y, z
are NOT the same rotation. They are only the same if y

and z are zero. The correct relation is that :
n ∗ thetaandn ∗ (theta − 2pi)
are the same rotation. If we take that theta starts in [0, pi]

, then this means that opposite points on the surface of the
sphere of vectors of magnitude pi are equal rotations.

It seems that implementations of quaternion
splines or other elaborated techniques are hardly
available in common graphics APIs. Note how
simple the implementation of interpolating or ap-
proximating transformation curves is with the ap-
proach presented here. One simply plugs the
transform object into existing implementations for
splines in Euclidean space.

As Alexa suggests, we note “how simple the implementa-
tion” is, which is, in this case, not simple at all. It is not sim-
ple because each combination of b-spline control points must
occur between matrix logarithms that are in the same neigh-
borhood, as described previously. This means that you do
not simple write the addition operator and “plug the trans-
form object in”. You must instead write a large preamble
that ensures the proper neighborhood. Furthermore, assum-
ing you only want to perform the neighborhood operation
when interpolating, this leaves you with two different oper-
ators (or one operator and a neighborhood operator), and
thus the code for splines in Euclidean space must be made
aware of this.

6 A Realistic Notion of Performance

In Alexa [2002], Alexa suggests that the performance penalty
involved with his method for interpolation is not an issue:

Our current implementation needs 3 · 10−5 sec to
construct a transform object, which is essentially
the time needed to compute the matrix logarithm.
The conversion to standard matrix representation
(i.e. exponentiation) requires 3·10−6 sec. Timings
have been acquired on a 1GHz Athlon PC under
normal working conditions. Note that for most
applications transform objects are created at the
initialization of processes, while the conversion to
standard representation is typically needed in in
[sic] every frame. However, we have found the 3µs
necessary for this conversion to be negligible in
practice.

CROWD SIMULATION EXAMPLE
Unless Alexa intends for his method to be used solely for

the purpose of rotating cows or a single 17-bone human ani-
mation cycle, 3µs most certainly is not negligible. A typical
game engine today must run on machines less powerful that
the 1GHz Athlon Alexa uses (even the XBox has only a
733mHz Pentium III), but even so, the typical game load of
fifty or more characters with thirty bones each would make
this method prohibitively expensive. Even assuming a 20the
animation system, Alexa’s method would eat a full 22of that
just to convert the results. For a 60Hz app, this means you’d
be spending half you entire animation budget doing nothing
but conversion!

But at the same time Alexa overestimates the perfor-
mance of his own method, he manages to vastly underes-
timate the performance of others:

We have compared the computation times of this
approach with standard techniques. A SLERP
based on quaternions between two rotation ma-
trices is about 10 times faster than our approach.
However, this is only true for the linear interpo-
lation between two transformations. Quaternion
splines are substantially slower. They typically do
not allow interactively adjusting the key transfor-
mations.

By “quaternion splines”, we can only assume that Alexa
is restricting this classification to apply to solvers or energy
minimization approaches to quaternion splining. If one sim-
ply treats quaternions as linear during splining, then the
performance is actually vastly superior to Alexa’s proposed
method. In fact, that method is currently used by one of
the author’s character animation systems, whose total CPU
budget (including all spline evaluation) weighs in at less than
just the conversion required by Alexa’s method.

7 Alternatives

To practically interpolate rotations, we must get away from
the difficult (S3/Z2) topology. Quaternions do this using
a double-cover; the topology of quaternions is S3, which
means that for each rotation there are two quaternions. Lin-
ear interpolation of quaternions is a mapping to R4, simply
by allowing the quaternions in S3 to leave the surface of
their sphere. (Note that there are many ways to boost ro-
tations from S3 to R4; Casey’s ”Lerp” is one, but see also

the Rational Map papers). The exponential map is a pro-
jection/unwrapping of the sphere to R3.

At this point, the reader may wonder which of these two
properties is more desirable. Is it a good idea to trade min-
imal torque interpolation for constant speed? While the an-
swer likely depends on your application, it is, as far as is
known, much easier to correct the speed of an interpolation
than it is to correct its path. This is because correcting the
speed of interpolation is a matter of changing the rate of
change of the interpolation parameter, which can be done
accurately (as in the way SLERP operates) or which can
be approximated for visually equivalent but less computa-
tionally expensive results. On the other hand, attempts at
changing the path of interpolation typically involve solvers,
as in the case of torque-minimal quaternion splines.

One may ask oneself at this time, precisely how many val-
ues does one want to map to a single rotation in the ideal
representation for rotation in computer graphics? The an-
swer, luckily for quaternions, is “two”. While it may have
seemed intuitively obviously that the answer was “one”, it
turns out that that is overly restrictive. For a free rotation,
where interpolation is always intended to take the shortest
path, injectivity would suffice. However, if one considers
that computer graphics is concerned both with free rotation
and constrained rotation, representing exactly 4π radians is
essential.

The canonical example is with a constrained joint whose
range of motion is more than π radians. In this situation, one
wishes the joint to remember that the shortest path always
passes through zero, regardless of whether or not it would
be “shorter” to traverse through 2π instead. Thus, having
the option to select, at any time, whether we would like to
allow interpolation across 2π or not turns out to be quite a
valuable tool.

C) I would take this chance to explicitly describe the
”Lerp” technique (just letting quats stray from S3 into R4);
maybe in an appendix. You refer to ”Lerp” in section 2, but
haven’t really described it.

D) The bit at the end of page 2, beginning of page 3,
starting with ”one may ask oneself” : I think this bit is a lit-
tle questionable. It is correct, but there are a few problems.
For one thing, I would make it clear that we are talking
about both ”operations” and ”states” here; that is, a rota-
tion R represents the ”operation” of rotating by R; it also
represents the orientation which you get by applying R to
the identity. Without this, I think it’s confusing whether
we are talking about ”rotations” or ”orientations” - really
we’re talking about both. Really, I think I might leave this
section out of the main paper, like in an appendix, because
it doesn’t really address any problem in Alexa. If you’re
going to mention it, you should mention that orientations
in the real world actually have the topology of quaternions
(SU(2)) not rotations (SO(3)). The classic example of this
is of course Dirac’s ”belt trick”; you can also find web sites
of Feynman’s ”Candle Dances”, and knot theoretical issues.
That is, a rigid body in space rotations like SO(3) - that
is, a 2pi rotation takes the object to itself. If, however, you
attach that object to three strings that extend to infinity, a
2pi rotation is no longer the identity, but a 4pi rotation still
is!

It’s useful to compare this to what you have to do with
quats. With quats, you start with two rotations q1,q2. You
need to consider the mirrors -q1 and -q2. You have to con-
sider

q1-¿q2, q1-¿(-q2), q2-¿(-q1), and (-q1)-¿(-q2)
Neatly enough, there are actually only two cases here,

since
q1-¿(-q2) is the same as q2-¿(-q1)
and (-q1)-¿(-q2) is the same as q1-¿q2
So, to get the shortest path, all you have to do is :
z = q1 DOT q2
if z ¿= 0 , use q1-¿q2 else , use q1-¿(-q2)
Note that this is also a better distance metric. The proper

distance metric for rotations is the length of the geodesic
between them on the surface of S3. This is just acos(z)
for quats, so using ”z” means you are correctly choosing
the shorter geodesic. In the exponential map, it’s not even
clear that you *want* to choose the shorter geodesic, since
interpolation doesn’t go across geodesics on S3.

8 Conclusion

We close with the following statement from Alexa:

The main feature of this approach is the simplicity
and fle xibility [sic] in developing graphics soft-
ware. We believe that many of the possible re-
sults of this approach might be generated by other
means, though with considerably more progrmam-
ing effort and use of complex numerical techniques.
We hope that the simple iterative implementations
of matrix exponential and logarithm find their way
[into] in every graphics API.

Hopefully, after reading this paper, you will agree that
the above paragraph is completely false. Alexa’s approach
is not the simplest, it is not the most flexible, and it is not
the most efficient. It requires more complex numerical tech-
niques than equivalent or superior methods, not less. And
we hope that you will join us in ignoring Alexa’s request that
these techniques “find their way into every graphics API”.

A Linear Interpolation of Quaternions

It is useful to point out the one can intuitively understand
the geodesy of various interpolations by thinking of the fa-
miliar 3D sphere (instead of the more complicated 4D one).
The sphere unwrapping analogue of the exponential map
(Alexa’s chosen interpolation method) is to peel the sphere
back from its pole and lie it flat onto a plane (FIGURE!). By
contrast, linear interpolation of quaternions is simply a pro-
jection of the sphere (FIGURE!). Spherical interpolation of
quaternions operates on the sphere itself, and as such, is not
an unwrapping at all (and this is why it does not commute
or permit linear combinations).

B Exponential Map Neighborhood Opera-
tor

I just worked out the correct relations for choosing the short-
est path in the exponential map.

Consider two vectors in the exponential map :
r1 = n1 * theta1 r2 = n2 * theta2
Here the ”n” are unit vectors an the theta are angles in

[0,pi]. Each rotation has a ”mirror” that must be considered
:

r1’ = n1 * (theta1 - 2pi) r2’ = n2 * (theta2 - 2pi)
We must consider four different paths. You can inter-

polate r1-¿r2, r1-¿r2’, r1’-¿r2, or r1’-¿r2’. I used just the
Euclidean distance between the vectors in the exponential

map. That’s actually questionable, but it’s the best we can
do. I call these paths ”A”,”B”,”C”, and ”D”, respectively.

Put theta1 = pi * u theta2 = pi * v
so u is in [0,1] and v is in [0,1] Also put
z = n1 * n2
So z is in [-1,1]
We find these terms :
d(A) = 0 d(B) = 1 - v + z*u d(C) = 1 - u + z*v d(D) =

2*(z+1) + (z-1)*(u+v)
You should choose the path that has the smallest ”d”.

The first thing we see is that
d(D) ¿= Min d(A), d(B), d(C)
So that the ”D” path (r1’-¿r2’) is never the best one. We

also see that
if z ¿= 0 , then A is the best path. That is, the rota-

tion axes must be opposing for the ”strange” paths to be
favorable.

Also, if (u+v) ¡= 1, then A is the best path. The sum of
angle must be ¿= pi for the strange paths to be preferred.

It’s fun to plot the change-over point for when the two
strange paths B and C become shorter. If you make a plot
of u vs. v and draw the lines of change-over for various values
of ”z”, you get this triangle in (u+v) ¡= 1 where the basic
path A is always preferred. At z = -1, both B and C are
equally good, and they start at u+v = 1. As z gets bigger,
up to ”1”, the B lines rotate back towards v = 1, and the C
lines rotate up to u = 1.

I think all this material is appropriate for an appendix.
It’s a good record of how to correctly handle the exponential
map, and it’s a good demonstration that it’s definitely not
”simple”.

