
A TIMING AND SCALABILITY ANALYSIS OF THE PARALLEL PERFORMANCE OF
CMAQ v4.5 ON A BEOWULF LINUX CLUSTER

Shaheen R. Tonse*

Lawrence Berkeley National Lab., Berkeley, CA, USA

1. INTRODUCTION

The goal of this activity is to improve the

computational efficiency of CMAQ so that the
computational demands of large modeling
domains or long time periods can be met with
simulations in a reasonable amount of time. When
conducting time-evolving reactive flow simulations
with chemistry and transport on 3 dimensional
spatial grids, the computational power available
usually places limits on the spatial and temporal
resolution, as well as the detail to which the
chemistry can be simulated. Parallel computing is
one way to lower this burden. CMAQ has been
released as a parallel code for several years.
Parallelism in CMAQ is accomplished through the
distributed parallelism method in which identical
versions of the executable code run in parallel on
multiple processor elements (PE) of a computer
with an interconnect between PEs to transfer data
and messages. The MPI (Message Passing
Interface) package facilitates communications
between PEs. Each PE knows its identity and its
responsibilities. Generally in spatially gridded
problems the grid itself is partitioned, with a
different sub-domain assigned to each PE. It is the
responsibility of the programmer to insert MPI
subroutine calls in the code at locations where it is
necessary for a PE to gather/send information
about neighboring grid cells from/to another PE.

During the initialization phase of a CMAQ run
the grid is partitioned among a user-specified
number of PE’s, assigning approximately equally
sized, contiguous portions of the grid to each. The
user has decides the number of divisions in the
column- and row-wise directions. With each
processor now responsible for calculations of a
fraction of the total grid we see significant speedup
over simulations that use a single processor.

In general for parallel codes, improvement in
performance does not scale linearly with number
of PEs. Some of the causes for this are:

*Corresponding author: Shaheen R. Tonse, MS 90K,
Lawrence Berkeley Lab., Berkeley, CA, 94720; e-mail:
tonse@lbl.gov

1. Parts of the code are simply not
parallelizable and execute redundantly on all
the PEs.

2. Load imbalance between PEs causes those
with lower loads to wait for the others until
they have finished a task

3. Increased inter-PE communication costs
(relative to actual computational costs) as the
number of computational sub-domains
increases or due to less-than-optimal choice of
sub-domain topology.

4. Operations whose cost is dominated by
startup costs (latency) and not so much by the
amount of work or the reduced transfer of
data. Disk accesses are in this class.

Bottlenecks to efficient parallelization can

occur for any or all of these reasons. A measure of
the inefficiency is the quantity scalability. E.g. if the
number of PE’s is increased from one to four, but
the speedup is only a factor of two, then we say
that the scalability is 50%. It is as if each PE has
only 50% of the strength it has in a single PE,
serial job. Generally scalability falls as the number
of PEs increases.

When remedying the problem it is important to
keep in mind the ultimate goal, which is to reduce
the simulation time to an acceptable amount of
time. Many users consider a 3-day simulation to
be fine, with the limit of acceptability to be about 5
days. If it is possible to achieve this by simply
assigning more PEs to the problem, then the user
should do so. However often the computing
resources are shared between users or charges
are based on PE-hours utilized, and it is not
possible to simply throw more resources at the
problem. In a modeling project on which we are
involved, (using CMAQ with a 190x190x27 grid,
SAPRC99, for 124 modeling days), the time to
conduct a simulation with 9 PEs is 20 days. Given
that input conditions and parameters will have to
be varied, multiple simulations will have to be
conducted. Clearly it is desirable to use a larger
number of PEs, however, because of current
scalability problems we do not use more than 9.

1

In this study we have conducted timing tests of
parallel CMAQ v4.5 with different numbers of PEs
and analysed the results, isolating the locations
and causes of loss of scalability, and providing
suggestions for remedying them.

2. DETAILS OF THE SIMULATION AND
COMPUTING CLUSTER

The simulation is conducted using CMAQ v4.5
with the SAPRC99 gas-phase mechanism. The
simulated domain is shown in Figure 1.

Figure 1 The domain covers the California

central coast and the Central Valley, and both the
San Francisco and Sacramento metropolitan areas.

The domain has 96 cells horizontally, 117 cells
vertically, with each cell side being 4 km. The
vertical extent of the domain is up to pressure of
100 mbars, about 16km above sea level. The
meteorology is that of a 5-day episode from 29th
July to 3rd Aug. 2000. The 50 original vertical
layers of the MM5 simulation have been
consolidated to 27, giving a total of 96×117×27 ≈
300K cells. Emissions come from Area, Point, and
Biogenic and Motor Vehicle (MV) sources.

The CMAQ simulations are conducted as
parallel simulations on a 28-node Linux cluster
with two Athlon processors and 2 G Bytes RAM
per node. The cluster is rack-based and has a fast
2 Gbits/s Myrinet Interconnect. The cluster can be
viewed at (http://eetd.lbl.gov/AQ/stonse/mariah/)

Depending on the needs of the simulation we
choose between the SMVGEAR (Sparse Matrix
Vectorized Gear) and the EBI (Euler Backward
Iterative) solvers. SMVGEAR (the stiff solver), is
the more computationally expensive of the two,
consuming a large share of the total CPU time.

Our main reason to occasionally resort to this
solver is that the Process Analysis module, a
sophisticated model diagnostic, has only been
implemented to work with SMVGEAR. The EBI
solver, which was first released with CMAQ
version 4.5, produces accurate results and has
resulted in considerable speed-up compared to
SMVGEAR. The computational load of the EBI
module is comparable to that of the advective and
diffusive transport modules. We generally use EBI
for simulations that do not require Process
Analysis. For both solvers, scalability is observed
to decrease as the number of PEs increases. For
the other physical processes: the “yamo”
advection option is used, “eddy” vertical diffusion,
“multiscale” horizontal diffusion, and “noop” for
PinG, aerosols, and clouds.

3. METHOD

We have inserted timing calls into CMAQ to
measure the elapsed time between various points
in the code. The actual timing is provided by the
MPI function MPI_WTIME, which returns the total
clock time elapsed since the beginning of the
simulation. Since we are the sole user of the
cluster and the memory per node is large enough
that CMAQ never undergoes memory swap, the
result returned by MPI_WTIME is an accurate
measure of time elapsed within the code, be it
time spent in calculation, communication or disk
access. We have encapsulated MPI_WTIME
within a user-friendly interface. This allows
simultaneous measurement of multiple elapsed
times in different parts of the code. In general,
most of the timing calls have been made in the
scientific processes section of the code
(Subroutine SCIPROC) or its daughter
subroutines, which calculate the chemistry,
horizontal/vertical diffusion, and horizontal/vertical
advection. Within these routines, measurements
are made of times spent for pure calculation, inter-
PE communication, and disk access. Elapsed
times are written to the CMAQ log files at user-
defined intervals. In the post-processing phase the
information is gathered and processed for
visualization by a simple C++ programme. We use
quantities like Scalability (also called Parallel
Efficiency) and Load Imbalance to characterize the
parallel performance. Scalability is defined as:

(Timeserial) / (Timeparallel × No.PEs)
Load imbalance between several PEs which

have been timed for a particular task is defined as:
(Timeslowest – Timemean) / Timemean

2

http://eetd.lbl.gov/AQ/stonse/mariah/

4. RESULTS AND ANALYSIS
Timing results have been made for 1 PE serial

and several parallel cases. The parallel cases
generally use 9 and 18 PEs, in which the grid is
split 3×3 and 6×3 respectively in the column- and
row-wise directions. A few other grid-partitioning
schemes have also been tried. All results use
identical inputs and identical scientific processes
(with the exception of the chemical solver) and are
for the same 24-hour simulation period.

4.1 Serial Simulations

Tables 1 and 2 show times spent in various
scientific modules for serial SMVGEAR and EBI
simulations, respectively.

Table 1 Times for a serial SMVGEAR solver
simulation, showing time spent in chemistry
(CHEM), horizontal advection (HADV),
horizontal diffusion (HDIFF), vertical diffusion
(VDIF), vertical advection (ZADV) and their
sum. The total simulation time was 255000 s.
“Total time” column is the total time spent in a
particular scientific module. Fraction is the
fraction of time for that module divided by the
sum.

Module name Total time (s) Fraction
CHEM 238000 0.94
HADV 7010 0.027
HDIFF 634 -
VDIF 6680 0.027
ZADV 733 -
Sum 253000 ≡ 1

Table 2 Times for a serial EBI solver
simulation. The total simulation time was
24920 s.

Module name Total time (s) Fraction
CHEM 7370 0.32
HADV 7610 0.33
HDIFF 633 0.027
VDIF 6682 0.29
ZADV 733 0.03
Sum 23028 ≡ 1

 It is apparent that chemistry dominates in

SMVGEAR, whereas for EBI, the chemistry
(CHEM), horizontal advection (HADV) and vertical
diffusion (VDIF) all use comparable amounts of
time. Vertical advection (ZADV) and horizontal
diffusion (HDIFF) use negligible amounts, however
we did continue to monitor them for scalability in
parallel simulations in the event that they could
present a problem later.

4.2 Parallel SMVGEAR Simulations
Table 3 shows total simulation time and

scalability for 1, 4, 9, 18 and 25 PE cases. Also
indicated is the degree of load imbalance within
the chemistry between the slowest PE and the
mean of all PEs.

Table 3 Scalability trend with the SMVGEAR
solver.

PEs Time (s) Scalability
(%)

CHEM
imbalance

(%)
1 255K ≡ 100 ---
4 70K 91 11
9 33K 86 16
18 18K 78 20
25 14K 73 20

The load imbalance even for the 25 PE case is
only on the order of 20%, and the scalability of the
overall code is good even for 25 PEs. The
chemistry load imbalance accounts for much of
the scalability loss (since chemistry accounts for
such a large fraction of the calculation), except for
the 25 PE case, in which other modules may have
increased influence

4.3 Parallel EBI Simulations

Table 4 shows the performance of the various
scientific modules for 1,9 and 18 PE runs using
the EBI solver.

Clearly some modules scale well (chemistry
(CHEM) and vertical advection (ZADV)), and
others poorly. Among those that scale poorly
horizontal diffusion (HDIFF) uses only a small
fraction of the total time and so does not play a
role in overall scalability degradation. With the
information in the table above we can experiment
with what-if scenarios to see the benefit of
improving the scalability in a given scientific
module. HADV is clearly the largest cause for the
drop in scalability, followed by VDIF and then by
non-SCIPROC computation. This last measure is
apparent from the difference between the “Sum”
entry, which is the sum of the 5 scientific
processes called from SCIPROC, and the “Total”
entry, which is the total time of the entire CMAQ
simulation, and which includes all of the
initialisation.

We shall now concentrate on isolating the
cause of the HADV scalability drop. Further timing
calls were inserted inside the HADV subroutine
and its daughters. In particular, these were placed
to return

1. the total times inside selected daughter
subroutines,

3

2. the times spent for MPI communication
calls and

3. the times spent for disk accesses.

 Table 4 Scalability trend with the SMVGEAR
solver differentiated by scientific module.
“Total time” column is the average over all PEs
of the total time that each PE has spent in a
particular scientific module. The row “Total”
contains the total time including that spent
outside of the scientific processes.

Module
name

Total
time (s)

Fraction Scalability
(%)

1 PE
CHEM 7370 0.34 ≡ 100
HADV 7610 0.35 ≡ 100
HDIFF 633 0.029 ≡ 100
VDIF 5310 0.25 ≡ 100
ZADV 733 0.034 ≡ 100
Sum 21656 ≡ 1 ≡ 100
Total 24920 --- ≡ 100

9 PE
CHEM 821 0.24 99.7
HADV 1644 0.48 51
HDIFF 139 0.04 50
VDIF 727 0.21 81
ZADV 81 0.02 100
Sum 3412 ≡ 1 70
Total 4255 --- 65

18 PE
CHEM 418 0.18 98
HADV 1272 0.56 33
HDIFF 87 0.04 40
VDIF 457 0.20 64
ZADV 40 0.02 100
Sum 2274 ≡ 1 53
Total 2821 --- 49

Table 5 shows some of these times.

For the 1 PE case we see that actual
computation (HADV Work) accounts for most of
the time, and that most of this is spent inside the
HPPM subroutine, which is a 1-dimensional, row-
or column-wise advection calculation using the
piecewise parabolic method. For the 9 and 18 PE
cases communication dominates the cost, being
larger than actual computation times. “HADV
Work” scales well with number of PEs. “HADV
Comm”, the communication cost, scales very
poorly. The source of most of the communication
cost is within HPPM, as “HPPM Comm” accounts
for most of “HADV Comm”. Disk file access also
scales very poorly, and if and when the

communication scalability problem is solved, it too
will have to be dealt with.

Table 5 Time spent in HADV module,
differentiated by function. “HADV Work” is
time spent in actual computation. “HADV
Comm” is time spent in MPI communication.
“HADV Disk” is time spent on disk file access.
“HPPM total” is total time spent in the
subroutine HPPM, and “HPPM Comm” is that
part of MPI communication that occurs within
HPPM.

Name Total time (s)
1 PE

HADV Work 6780
HADV Comm 209
HADV Disk 585
HADV Sum 7574
HPPM total 4800

HPPM Comm 168
9 PE

HADV Work 497
HADV Comm 903
HADV Disk 280
HADV Sum 1680
HPPM total 1189

HPPM Comm 797
18 PE

HADV Work 264
HADV Comm 872
HADV Disk 258
HADV Sum 1394
HPPM total 978

HPPM Comm 767

HPPM is called numerous times within the

HADV module, and on each call calculates the
advective transport in the x or y direction by the x
or y component of velocity. We expect its
communication costs to depend on the orientation
of the grid partitioning. In a 9 PE simulation with
the grid partitioned 3 ways in each direction, the
mean cost of HPPM communication per advection
time step is about 0.7s whether HPPM is working
in the row- or column-wise direction. However for
a 9 PE simulation which uses a grid partitioned 9-
ways in the row-wise direction and not at all in the
column-wise direction, the cost of HPPM in the
row-wise direction rises to 2.2 s but drops to 0.02
s in the column-wise direction, for which no actual
inter-process communication is necessary.

4

5. CONCLUSIONS AND
RECOMMENDATIONS

5.1 SMVGEAR Simulations
When used with the SMVGEAR solver CMAQ

v4.5 scales fairly well even up to 25 PEs. Beyond
this, we have found that load imbalance in the
chemistry and possibly scalability degradation
from HADV cause the overall scalability to drop
below 70%. Load balancing for chemistry alone
can be implemented fairly easily since chemistry is
calculated on a per-grid-cell basis. A
producer/consumer model in which equal
workloads are parceled to the PEs can result in a
very high scalability.

5.2 EBI Simulations

Scalability of 65% is seen with EBI even with 9
PEs. The dominant cause of scalability decrease
is communication within the HPPM subroutine of
the horizontal advection scientific module. Using
information from Tables 4 and 5, we calculate that
reducing this communication time to that of the
disk file access time would result in an overall
scalability of 76% with 9 PE and 62% with 18 PE
instead of the current 65% and 49% respectively.
Methods to implement this might be (1) to
restructure the HADV code to process blocks of
rows/columns at one time instead of single
rows/columns at a time or (2) to initially setup
alternate MPI communicators, grid sub-domains
and stencils aligned along the row and column
directions and use these for horizontal advection.
The former method would be easier to implement.
The latter may require recoding of the stencil
library to permit multiple stencils and to allow
CMAQ to dynamically switch to using a different
stencil during run time.

Other causes of scalability decrease which we
have identified, and would be the next bottlenecks
to address, are the disk accesses during
horizontal advection and vertical diffusion.

6. ACKNOWLEDGEMENTS
We are grateful to the California Energy
Commission for making possible this study and
analysis.

5

	1 PE
	9 PE
	18 PE

