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Chapter 1

Introduction

The aim of this paper is to introduce the reader to the world of Calabi-Yau
manifolds. These are a special kind of complex manifold, which have the
properties to be compact, Kähler and to have a Ricci-Flat metric. Thank to
this, they happen to be of great interest for physicists, which presume the
space-time fabric to be in part shaped like a Calabi-Yau manifold.
Our approach to Calabi-Yau manifolds is resolutely Differential Geomet-
ric:we regard them as smooth real manifolds equipped with a geometric
structure. The alternative would be to define them using Algebraic Geom-
etry, but this lies out of the main line of this paper.

In the set of all 2m dimensional real manifolds (we call this set A) there
is only a part of it which admit a complex structure, i.e. which can be made
complex manifolds by considering 2 real coordinates as real and imaginary
part of a new complex coordinate. We will call this subset B.
There is another subset C, which contains all the complex manifolds having
the property of being Kähler. These are the ”nicest” class of metrics on a
complex manifold, since their Riemannian structure is compatible with the
complex structure.
The last subset D will consist of all these manifolds which admit a Ricci-flat
metric, these are called Calabi-Yau Manifolds.
All these sets ar proper in the sense that, for example, there are complex
manifolds which don’t admit a Kähler metric, etc (there are manifolds in
A but not in B, in B but not in C and so on). There is something to say
also about the number of manifolds contained in each subset. As one could
think, the set A of real manifolds and the set B of complex manifolds contain
an infinite number of elements. The same is true for C, Kähler manifolds,
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however it is believed that the set of Calabi-Yau manifolds be a finite one.
Although it may seem weird to guess this number, a reasonable one may be
10’000 (Come?). In the following we shall see how to create large number
of this manifolds, using the so called Calabi conjecture: a theorem that will
be the center of our paper.

Having seen how all these subjects are related to each other, the best path
to follow throughout the paper is the one that starts with real manifolds,
mainly to define the notation but also to give the reader the opportunity
to better follow the approach taken in chapter 3, which considers an m-
dimensional complex manifolds as a 2m-dimensional real one. Thereafter
we will come to the definition of complex structure and complex manifolds,
showing examples of real manifolds that could or not can be made complex.
After pausing on Kähler manifolds,it will be the turn of Calabi-Yau. In this
chapter we will expose the Calabi conjecture, which can be used to construct
a large number of Calabi-Yau manifolds. We shall then give a sketch of the
differential geometrical aspect of the proof, given by Yau almost 20 years
after the first publication of this theorem, in 1954. (Soggetto Lucio)
The last chapter will concentrate on the application of this mathematical
field to physics. It will be explained why string physicists think that the
space-time fabric would have the form of a four dimensional space with a
six-dimensional Calabi-Yau manifold at each point. Here strings, supposed
to be the building blocks of matter, would vibrate and appear to us like
elementary particles.
In every chapter we shall try to illustrate things with an example; what we
will try, is to find examples that fit in the subsets posed at the beginning
of the introduction, namely to find, for every subset A,B,C,D, examples
of manifolds which fit in one set but not in the next one, this in order to
highlight the properties of each singular set.
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Chapter 2

Real Manifolds

In order to introduce complex manifolds, we will first need to know some-
thing about the real ones. Being easier to understand, real manifolds will
help us defining and visualizing concepts, which shall then be expanded
to complex manifolds. This approach will be of particular interest in next
chapter, where we will study complex m-dimensional manifolds as real 2m-
dimensional ones. In This chapter we will focus our attention on two topics:
the curvature and the holonomy group of a connection. We will see how
restrictions upon the holonomy group gives rise to restriction upon the cur-
vature of a manifold. This will be useful in future sections, where, studying
the properties of Calabi-Yau manifolds, we will meet an example of such a
relationship.

2.1 Real Manifolds and Forms

We shall start by defining real manifolds and by giving some backgrounds
of differential geometry. This will be done mainly out of completeness and
to fix notation, but also to prepare the reader for the next chapter, where
we shall encounter complex definitions of manifold and tangent space.
We assume the reader is already familiar with the concept of submanifolds
in Rn, as zeroes of differentiable functions; such a definition has to be ex-
panded to the case where our object is no longer embedded in some external
space. For example, it is easy for us to visualize the earth surface as a sphere
in R3; this wouldn’t be the same if we were flat, lying on the surface of the
sphere, without perception of the third dimension. In that case we would
need a description with local coordinates, in the same way as we use maps
to describe locally the earth surface.
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A smooth m-dimensional Real Manifold M is a Hausdorff space
(where each two points have disjunct neighborhoods) with an abzaehlbare(?)
basis of the topology and the property that for each point p ∈M there exists
an injective map ϕ : U → ϕ(U) bringing an open neighborhood U of p to an
open set ϕ(U) ⊂ Rn.

A point p on the manifold is then specified by coordinates x1(p), ..., xn(p),
the components of the function ϕ.
This combination of Neighborhood and map is called a chart and a collec-
tion of a whole system of charts such that every point of M is included is
known as an atlas.
The main problem now will be to define a tangent space. Since we do not
have any external space anymore, where can we define the tangent space?
We need a definition in terms of internal quantities:

The Tangent Space TMp of an m-dimensional manifold in point p is
defined as

TMp = {(ϕ, ξ)|ϕ is a chart of M in p, ξ ∈ Rn}/ ∼

where (ϕ, ξ) ∼ (ψ, η) ↔ d(ψ ◦ ϕ−1)ϕ(p)(ξ) = η. So the tangent space is the
set of all classes TMp = [ϕ, ξ] .

It can be shown, that an equivalent definition is given in terms of the
coordinate functions x1, ..., xn: we define a derivation in p as a linear map
X : C∞(M) → R with the property

X(f ◦ g) = X(f)g(p) + f(p)X(g) ∀f, g ∈ C∞(M).

Next, we define the canonical derivation as

∂

∂xi
|p(f) =

∂(f ◦ ϕ−1)
∂xi

(ϕ(p)).

It follows that the tangential space TMp can be proved to be the vector
space of all the derivations at the point p, spanned by the set of canonical
derivations:

[ϕ, ξ] = X =
n∑

j=1

ξj ∂

∂xj
|p ∈ TMp.

This definition is motivated by the analogy with submanifolds in an external
space, like Rn, where the tangent space is easily seen to be the space formed
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by the directional derivatives to all the curves on M at the point p.
The cotangent space TM∗

p is defined as the dual to TMp:

TM∗
p = {λ : TMp → R, linear}

The basis of TM∗
p is obviously the dual basis to TMp,

dxi
p

( ∂

∂xj
|p

)
=
∂xi

∂xj
(p) = δi

j .

The Tangent Bundle TM and the Cotangent Bundle TM∗ are de-
fined as the set of all points of the manifold together with their tangent
(cotangent) space in that point:

TM =
⋃

p∈M

{p} × TMp TM∗ =
⋃

p∈M

{p} × TM∗
p

The Tangent Bundle and the cotangent Bundle are examples of what are
called vector bundles over M, namely fiber bundles, whose fibers are real (or
complex) vector spaces.
A bundle is a manifold which is the product of a fiber and a manifold,
but the delicacy lies in how this product is taken: a smooth manifold E is a
vector bundle over a smooth manifold M if there exists a smooth projection
π : E →M with the properties:

1. ∀p ∈M has Ep = π−1(p) the structure of a real vector space, and

2. ∀p ∈ M it exists an open neighborhood U of p in M and a smooth
diffeomorphism ψ : π−1(U) → U × Rn, so that ψ|Eq a vector space
isomorphism of Eq into {q} × Rn.

In our case this definition sustains that the tangential space in every
point has the structure of a real vector space, and helps us visualizing the
fiber structure of TM , being TMp the fiber in every point, isomorph to Rn.
(e vera questa cosa?)
Finally we define a smooth section of E as any smooth function s with
the property

π ◦ s = idM ,which means s(p) ∈ Ep = π−1 ∀p ∈M

Such a function relates to each point of the manifold a set of points in the
fiber.

5



After having defined some features of the structure of a real manifold,
we shall say something about another kind of objects, which can be thought
as the ones acting on this structures: differential forms and tensors.

We use the notation C∞(E) for the vector space of smooth sections of E.
Elements of C∞(TM) are called vector fields and elements of C∞(TM∗)
are called 1− forms (or differential forms). We can expand this definition
to the k − th exterior power of the cotangent bundle ΛkTM∗ (which is also
a real vector bundle over M) and define a k− form as a smooth section of
ΛkTM∗.
k-forms also form a vector space, written C∞(ΛkTM∗).
A nowhere vanishing n-form on an n-dimensional manifold M is called a
volume form. It can be shown that, if M is orientate, then there exists
only one volume form on M .

The natural operation between forms is the so called exterior product
(or wedge product) ∧ which, if α is a k-form and β an l-form, takes α and
β into a (k + l)-form α ∧ β:

(α ∧ β) =
(k + l)!
k!l!

Alt(α⊗ β) ∈ Λk+l(TM∗)

Where Alt(·) is the linear projection on the space of antisymmetric tensors
(see later):

Alt(α)(v1, ..., vk) =
1
k!

∑
σ

sgn(σ)α(vσ(1), ..., vσ(s)

Where σ is a permutation of the indexes [1, ..., k] and vi are elements of the
tangent space. (?vero?)

So, a k-form can be written uniquely using the wedge product, being
dx1, ..., dxn the basis of TM∗:

αk = αµ1,...,µk
dxµ1 ∧ ... ∧ dxµk (µi ∈ 1, ..., n)

for some smooth functions αµ1,...,µk
: U → R. Here we have used the Einstein

summation convention and summed over repeated indices. An (n+ 1)-form
in n dimensions always vanishes, because of his anti-symmetry A zero form is
just a smooth real function on a subset of M and a k-form, being dx1, ..., dxn

the basis of TM∗, can be written uniquely using the wedge product:

αk = αµ1,...,µk
dxµ1 ∧ ... ∧ dxµk (µi ∈ 1, ..., n)
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for some smooth functions αµ1,...,µk
: U → R. Here we have used the Einstein

summation convention and summed over repeated indices. An (n+ 1)-form
in n dimensions always vanishes, because of his anti-symmetry. And a zero-
form is just a smooth function on a subset of M .

The natural derivative operator on forms is the exterior derivative (or
curl), which maps a k-form into a k + 1-form, in index notation:

(dα)a1...ak+1
=

∂

∂x[a1
αa2...ak+1]

Here denoted [..] antisymmetrizaton over the enclosed indices.
So, for example, a 2-form α with coordinates αij :

dα =
∂αjk

∂xi
dxi ∧ dxj ∧ dxk,

Here the antisymmetrization comes from the definition of the wedge product.
An important property of the exterior derivation is that for any k-form α

d(dα) = d2α = 0

which follows from the commutability of partial derivatives.
Studying the exterior derivation on forms we can group k-forms into closed
ones, for which dα = 0, and exact ones, for which there exists some globally
defined (k−1)-form β with α = dβ. An exact form is obviously closed (from
d2 = 0) and an n-form on an n-dimensional manifold is closed, as well. One
can show that on Rn every closed form is exact (since the definition of
manifold states that every point has a neighborhood injectively mapped to
Rn). Hence, locally on M every closed form is exact. But this is not in
general true globally. The obstruction to doing so is the k-th De Rahm
cohomology Hk(M):

Hk(M) =
{closed k-forms}
{exact k-forms}

which is the set of all closed k-forms, where two forms α and α′ are consid-
ered equivalent if α − α′ is exact. The elements of Hk(M) are equivalence
classes called cohomology classes [α] and they build a real vector space,
which dimension is called the k-th Betti number bk(M) = dim(Hk(M)).
The simplest example for a simple connected manifold is H0(M), the space
of constant functions, with, of course, b0 = 0.
Since on Rn every closed form can be written as an exact form, and the De
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Rahm cohomology has just one cohomology class, we could say that the De
Rahm cohomology is in some sense a measure of how non-trivial the topol-
ogy of M is.

Now, taking the tensor product instead of the exterior product of the
vector bundles TM and TM∗, we obtain the bundles of tensors on M. A
(k,l)-Tensor T on M is a smooth section of a bundle

⊗k TM ⊗
⊗l TM∗.

In analogy to k-forms we can write tensors in coordinates, too, remembering
that ∂

∂x1 , ...,
∂

∂xn forms a basis of TM :

T =
∑

1≤ai≤n, 1≤i≤k, 1≤bj≤n, 1≤j≤l

T a1...ak
b1...bl

∂

∂xa1
⊗ ...⊗ ∂

∂xak
⊗ dxb1 ⊗ ...⊗ dxbl

Now ΛkTM∗ is a subbundle of
⊗k TM∗, so k-forms are tensors on M , as

well, tensors αa1...ak
with k covariant indices that are antisymmetric (they

change sign when two of its arguments are exchanged).

2.2 Curvature and Holonomy Groups

In this section we will introduce the two most important concepts of this
chapter: the curvature and the holonomy group of a real manifold. These
will be of great importance when coming to Calabi-Yau manifolds, where a
simple restriction upon the holonomy group or upon the curvature, forces
a manifold to be Calabi-Yau. As a natural path in defining curvature and
holonomy group, we will also meet connections, a sort of directional deriva-
tive on manifolds, which, together with parallel transport, provides a tool
for comparing tangent vectors at different points.

Tangent vectors in TMp and tangent vectors in TMp′ cannot be added
together as if they would if the manifold was embedded in some external
space, since they don’t lay in the same space anymore. A first link between
tangent spaces at different points is given by so-called connections. If M is
a manifold and TM his tangent bundle, then a connection ∇TM on TM
is a bilinear map ∇TM : C∞(TM) → C∞(TM ⊗ TM∗) satisfying

1) ∇TM (αY ) = α∇TMY + Y ⊗ dα, (2.1)

whenever Y ∈ C∞(TM) is a vector field and α : M → R is a smooth
function on M .
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If ∇TM is such a connection, and X ∈ C∞(TM), then we write

∇TM
X (Y ) = X · ∇TMY ∈ C∞(TM) (2.2)

where the dot ” · ” contracts together the TM factor in X and the TM∗

factor in ∇TMY (since TM∗ is the space of linear functions TM → R, we
can ”contract” them by applying them to functions in TM , and obtaining
a real number).
Then, for a smooth function on M β : M → R we have

2) ∇TM
βX Y = β∇TM

X Y. (2.3)

Note that for any Y ∈ C∞(TM) fix, ∇Y : C∞(TM) → C∞(TM) defines a
(1, 1)-tensor field, that is, (∇XY )p depends only on X at the point p and,
vice versa, for any X ∈ C∞(TM) fix, it depends only upon Y in a neigh-
borhood of p. This motivates the name connection, since it creates a link
between tangent space in different points (Come lo crea il link?).

We are now ready to introduce the curvature of a connection. This will
be of particular interest when dealing with Riemannian manifolds, where,
thank to the uniqueness of the Levi-Civita connection, the curvature will
become an intrinsic property of the metric.
The idea is that, for every connection ∇TM , there exists a unique tensor
R : C∞(TM)× C∞(TM)× C∞(TM) → C∞(TM) satisfying

R(X,Y )Z = ∇TM
X ∇TM

Y Z −∇TM
Y ∇TM

X Z −∇TM
[X,Y ]Z (2.4)

for all X,Y, Z ∈ C∞(TM), where [X,Y ]a = Xb ∂Y a

∂xb − Y a ∂Xa

∂xb is the lie
bracket of X,Y . This tensor is called the curvature of ∇TM.
The reason why it is written R(X,Y )Z is that for fixed X and Y , we can
see R(X,Y ) as an endomorphism of the tangent space.
In a local chart, denote byRl

kij the l-th component ofR(∂/∂xi, ∂/∂xj)∂/∂xk,
these are the components of the curvature tensor.
Let’s now have a look to the practical meaning of the curvature. Tak-
ing X and Y to be two different element of the basis, X = vi = ∂

∂xi and
Y = vj = ∂

∂xj , then [vi, vj ] = 0. Now, with Z a vector field, we can interpret
∇TM

vi
Z as a kind of partial derivative ∂Z/∂xi of Z (perche’????). From the

definition of the curvature we get

R(X,Y )Z =
∂2Z

∂xi∂xj
− ∂2Z

∂xj∂xi
(2.5)
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which means that the curvature may be interpreted as a sort of measure of
how much partial derivatives fail to commute in TM.
Another tensor which can be defined for connections is the torsion of ∇TM,
a unique tensor T : C∞(TM)× C∞(TM) → C∞(TM) with the property

T (X,Y ) = ∇TM
X Y −∇TM

y X − [X,Y ]. (2.6)

A connection with T = 0 is called torsion− free.

We have been talking about connections as a link between tangent spaces
in different points p ∈ M . This becomes touchable with the introduction
of parallel transport, a linear map effectively transporting vectors from the
tangent space in one point p ∈ M to the tangent space in another point
q ∈M , where they can be compared and summed to each other. Let’s now
put together some definitions yielding to parallel transport.
A vector field Y is called parallel, if ∇TM

X Y = 0 for all X ∈ C∞(TM).
In the same way a vector field Y c along a curve c : I ⊂ R → M (”along”
means that Y c ∈ TMc(t)∀t ∈ I) is called parallel along this curve if
∇TM

ċ Y c = 0.
Now, from the existence and uniqueness of the solution of differential equa-
tions it follows:

Proposition 1 Let be c : [a, b] → M a curve in M , then, for each v ∈
TMc(a) it exists only one parallel vector field Y c

v along c with Y c
v (a) = v.

Thus, we can define a map, bringing vectors v from the tangent space in
p = c(a) into v′ = Y c

v (b), in the tangent space to q = c(b). This map

P c : TMc(a) → TMc(b), P c(v) = Y c
v (b) (2.7)

is called parallel transport. It may help to note that for submanifolds in
Rn, a vector is said to be parallel transported along the curve c if its change
as it moves along c is orthogonal to the tangent plane, i.e. it is not rotated
in the tangent plane.
A curve which parallel transports the vector tangent to the curve itself is
called a geodesic.
Now we might ask what happens if we parallel transport a vector around a
closed curve. The answer is that it is generally found to be rotated when
it returns to its initial location. The group of all such rotations is called
holonomy group

Holp(∇TM ) = {pc : TMp → TMp|c : [a, b] →M piecewise-smooth path
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with c(a) = c(b) = p} ⊂ GL(TMp). (2.8)

Before talking about the relations between holonomy group and curvature,
we shall list some of his properties.

Property 1 Holp(∇TM ) is a Lie subgroup of GL(TMp).

Proof This follows from P γδ = P γ ◦ Pδ and P γ−1
= (P γ)−1, where γ and

δ are two piecewise-smooth closed curves in p, γδ is the path which goes
through γ and then δ and γ−1 is the curve γ with inverse parameterization.
This proves Holp(∇TM ) being a subgroup, which is why we call it group.♦

Property 2 Holp(∇TM ) is independent of the basepoint p ∈M and Holp(∇TM )
as a subgroup H of GL(n,R) defined up to conjugation in GL(n,R).

Proof This is somewhat more abstract to imagine: suppose M be connected
(this will be the case through all the paper), then, for each p, q ∈M we can
find a piecewise-smooth path γ : [a, b] →M with γ(a) = p and γ(b) = q, so
that P γ : TMp → TMq. Then Holp(∇TM ) and Holq(∇TM ) satisfy

P γHolp(∇TM )P−γ = Holq(∇TM ) (2.9)

Now, if TMp has fiber Rn (recall the definition of vector bundle), then any
identification TM ∼= Rn induces an isomorphism GL(TMp) ∼= GL(n,R).
Then we might regard Holp(∇TM ) as a subgroup H of GL(n,R) defined up
to conjugation in GL(n,R). This follows because, if we had chosen another
identification TMp

∼= Rn we would have gotten another subgroup aHa−1

of GL(n,R) for some a ∈ GL(n,R). Then from (2.9) (remember that now
P γ lyes in Gl(n,R), as well) and from what we have just shown, that the
holonomy group be defined up to conjugation, we conclude that Holp(∇TM )
is independent of the basepoint p, and we can drop this index.♦

Property 3 The Holonomy group of a simply connected manifold is also
simply connected.

Next we shall investigate closer the link between holonomy group and
curvature. If we parallel transport a vector v around an infinitesimal loop
on the manifold: the change in the vector δv is proportional to curvature
tensor times the vector self, times the area of the loop. This gives us a hint
of a link between this two concepts, but let’s look closer to it.
There is a fundamental relationship between the holonomy group (its Lie
algebra, actually) and the curvature of a connection: the holonomy group
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both constraints the curvature and is determined by it. The next proposi-
tion will illustrate such constraints.
We first define the holonomy algebra holp(∇TM ) to be the Lie algebra of
Hol0p(∇TM ), a vector subspace of End(TM) (end(TM) coincide con qual-
cos’altro?E poi perche in END?? cos’e’ end??), where

Hol0p(∇TM ) = {P γ |γ null − homotopic loop based in p} (2.10)

is the so called restricted holonomy group, which is a subgroup ofHolp(∇TM ),
namely the connected component containing the identity. A null-homotopic
loop based in p is a piecewise-smooth closed curve which can be continuously
deformed to the constant loop in p. Note that, since we are only dealing
with simply connected manifolds, also the holonomy group will be simply
connected, and therefore the Lie algebras of Hol0(∇TM ) and Hol(∇TM )
coincide.
With this new concepts in mind, we can come to

Proposition 2 Let M be a manifold, TM its tangent bundle, and ∇TM a
connection on TM. Then for each p ∈ M the curvature Rp of ∇TM lies in
holp(∇TM )⊗ Λ2TM∗

p .

(beweis?) This is how the holonomy group of a connection constraints its
curvature: through its Lie algebra.

The last property of the holonomy group we would like to treat in this
chapter, is his influence on so-called constant tensors. But before introduc-
ing constant tensors we shall say something else about connections. Up to
now we have only seen connections acting on vector fields, but in the very
definition of connection (2.2) there is nothing stopping the argument Y from
being a general tensor:

Proposition 3 Let M be a manifold. Then a connection ∇TM on TM
induces connections on all the vector bundles of tensors on M . such as⊗k TM ⊗

⊗l TM∗. All of these induced connections on tensors will also be
written ∇TM .

We are now ready to define a constant tensor S as a tensor satisfying
∇TMS = 0.
The next theorem states the influence of the holonomy group upon such
tensors: constant tensors are determine entirely by the holonomy group.

Theorem 4 Let M be a manifold, and ∇TM a connection on TM. Let be
p ∈M a fixed point on M and H = Holp(∇TM ). Then H acts naturally on
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the tensor powers
⊗k TM ⊗

⊗l TM∗.
Suppose S ∈ C∞(

⊗k TM ⊗
⊗l TM∗) is a constant tensor, then S|p is

invariant under the action of H on
⊗k TM ⊗

⊗l TM∗.
Conversely, if S|p ∈

⊗k TM⊗
⊗l TM∗ is invariant under H, then S|p may

be extended to a unique constant tensor S ∈ C∞(
⊗k TM ⊗

⊗l TM∗).

Proof The first part follows simply from the extension of Proposition 3 of
∇ to the whole vector bundle C∞(

⊗k TM ⊗
⊗l TM∗).

For the second part, we shall consider that a constant tensor is invariant
under parallel transport, in the sense that P γ(S|p) = S|q. This is because
a constant tensor doesn’t need a parallel tensor field (as in proposition 1, a
parallel vector field) to be transported from one point to another, since it
his itself parallel, i.e. ∇S = 0 for each and every curve. So, for any path
γ from p to q we have P γ(S|p) = S|q. Now, taking p and q to be the same
point we have P γ(S|p) = S|p for any closed curve γ in p. This is like stating
that S|p is fixed by the action of the holonomy group H on TMp.♦
This theorem will help us studying the holonomy group of Riemannian man-
ifolds, in next section.

2.3 Riemannian metrics

In this section we will concentrate on a special kind of manifold, Riemannian
manifolds. We shall investigate how, by forcing a metric structure on the
manifold, we also put restrictions upon the holonomy group, which, as seen
in the last section, is strictly related to the curvature. We will revisit some
of the concepts we have just treated, and investigate their new, stronger,
properties.

A Reimannian metric g on a manifold M is a (0, 2)-tensor field with
the property that, for all p ∈ M , is gp : TMp × TMp → R a scalar product
(that is, symmetric and positive definite). The pair manifold and Rieman-
nian metric (M, g) is called a Riemannian manifold.
Once defined Riemannian manifolds, let’s say something about their con-
nections.
We are looking for intrinsic properties of the manifold, so it disturb us to
have an holonomy group and a curvature defined for each connection; we
would much better like to have just one unique connection, strongly related
to the metric of the manifold self, and then define holonomy and curva-
ture on that very connection. The next theorem states the existence and
uniqueness of such a preferred connection.
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Theorem 5 (Fundamental Theorem of Riemannian Geometry) Let
M be a manifold and g a Riemannian metric on M . Then there exists a
unique, torsion-free connection ∇ on TM with ∇g = 0.

This connection is called the Levi−Civita connection.
Proof This theorem follows from the properties of torsion-free and constant
tensors and the definition of connection, which, combined together and re-
arranged are equivalent to

2g(∇uv, w) = u · g(v, w) + v · g(u,w)− w · g(u, v) + g([u, v], w)

−g([v, w], u)− g([u,w], v) (2.11)

where [v, w] = ∇uv − ∇vu. Now it is easy to show that, for fixed u, v,
there is a unique vector field satisfying (2.11) for all w ∈ C∞(TM). This is
enough to define ∇ uniquely, and it turns out that ∇ is indeed a torsion-free
connection with ∇g = 0.♦

As seen in the previous section the curvature of a connection is a tensor
Rl

kij , this will also be true for the Levi-Civita connection. Consider now the
4-covariant tensor R(X,Y, Z, T ) = g[X,R(Z, T )Y ] with components Rlkij =
glmR

m
kij . Both these tensors are known as the Riemann curvature of g

and have the following symmetries:

Rijkl = −Rijlk = Rklij (2.12)

Rijkl +Riklj +Riljk = 0 (2.13)

∇mRijkl +∇kRijlm +∇lRijmk = 0 (2.14)

where (2.13) and (2.14) are known as bianchi identities.
Now, if (M, g) is a Riemannian manifold with Riemann curvature Ri

jkl,
then there is only one nonzero tensor obtained by contraction of the curva-
ture tensor. It is called the Ricci curvature of g and its components are
Rij = Rk

ikj . From (2.12) it follows that the Ricci tensor is symmetric.

We would now like to investigate the holonomy group of Riemannian
manifolds. We have just explored the new symmetries possessed by the
curvature of a Riemannian manifold, and we remember the holonomy group
being strictly related to the curvature, so we may expect the holonomy group
of a Riemannian manifold having stronger properties than holonomy groups
on arbitrary vector bundles.
It is natural to define the holonomy group of g Holp(g) as the holonomy
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group of the Levi-Civita connection of g, let’s now investigate its properties.
First of all remember the definition of the Levi-Civita connection, which
included ∇g = 0, i.e. g is a constant tensor. It follows from theorem 4 that
the metric tensor g is invariant under Hol(g). This means that an element
of Holp(g) cannot be a simple linear map in GL(TMp) but has to preserve
scalar product, and we know that the subgroup of GL(n,R) preserving the
scalar product is just O(n). We have therefore showed

Proposition 6 Let M be an n-manifold, and ∇ a torsion-free connection
on TM . Then ∇ is the Levi-Civita connection of a Riemannian metric g on
M if and only if Hol(∇) is conjugate in GL(n,R) to a subgroup of O(n).

Next we shall explore how the holonomy group of Riemannian manifold
constraints its curvature.
Define the holonomy algebra hol(g) of g to be the holonomy algebra
of the Levi-Civita connection. Then, since we have seen that hol(∇) is
the Lie algebra of the connected component containing the unity element,
hol(g) will be a Lie subalgebra of so(n). Now, for every p ∈ M is holp(∇)
a vector subspace of TMp ⊗ TM∗

p (perche??????), which can be identified
with ⊗2TM∗

p , if we use the metric and equate T a
b with Tab = gacT

c
b . So

holp(∇) is now a vector subspace of ⊗2TM∗
p , which we wrote as holp(g). It

can further be shown (?) that actually lies holp(g) in the vector space of
the twice covariant antisymmetric tensors Λ2TM∗

p . Next, from Proposition
2 we know that the curvature lies in holp(∇TM )⊗ Λ2TM∗

p .
So, from this and the symmetry properties of the curvature (2.12), it follows
that the curvature itself lies in the symmetric part of holp(g)⊗ holp(g):

Theorem 7 Let (M, g) be a Riemannian manifold with Riemannian curva-
ture R. Then R lies in the vector subspace S2holp(g) in Λ2TM∗

p ⊗ Λ2TM∗
p

at each p ∈M .

This explains the restriction on curvature and holonomy group, posed by
the introduction of a metric structure.

Finally we would like to add something about the structure group, a
concept which might help understanding the role of the metric and could
also be useful in comprehend the step taken in next chapter, to complex
manifolds.
We recall the definition of vector bundle, in which we had an homeomor-
phism

Ψα : π−1(Uα) → Uα × Rn (2.15)
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for some neighborhood Uα of a point p ∈M . Taking another neighborhood
Uβ of p we obtain another homeomorphism Ψβ. In overlapping regions
Uα ∩ Uβ the Ψ’s are related by the transition functions

Ψα ·Ψ−1
β : Uα ∩ Uβ × Rn → Uα ∩ Uβ × Rn (2.16)

where Rn is the fiber. For fixed p ∈ M this homeomorphisms define the
structure group of the fiber.
The point is that, if these functions are Ck, then the manifold M is said
to be Ck, and if they are holomorphic functions, the manifold is said to be
complex (we shall return on this point in next chapter).
Let us now clarify the role of the metric, in the context of structure groups.
In general the structure group of a real manifold is GL(n,R). The assign-
ment of a Riemannian metric corresponds to an assignment of a scalar prod-
uct in the tangent space at each point of the manifold and reduces GL(n,R)
to simply O(n).
This is a particular example of the general case where GL(n,R) is reduced to
a subgroup G, called G− structure. Another example is G = GL(n/2,C),
the group of invertible n/2×n/2 complex matrices. In this case G is said to
be an almost complex structure. We will reencounter this definition in
the next chapter, where a complex manifold will be a real manifold, allowing
a complex structure. (Legame Structure Gruop, Holonomy Group?).

2.4 Example of a Real Manifold

Let us now pause and consider an example. As said in the introduction, we
are looking for a real manifold, allowing a Riemannian metric, but which
can not be made complex (which fits in A but not in B, where A and B are
the sets defined in the prelude). One such manifold is the six-dimensional
sphere S6. Let’s consider the standard metric of constant curvature (com’e’
definita?posso prima definire la metrica e poi calcolarne la curvatura?). For
the connection defined by this metric, the holonomy group is SO(6), since
there are no subspaces of the tangent space left invariant under parallel
transport(cosa vuol dire?, se ho degli spazi invarianti, il gruppo cambia,
come?).
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Chapter 3

Complex Manifolds

In the path taking us to Calabi-Yau manifolds, the next condition to im-
pose is that the manifold be a complex one. In this short chapter we shall
encounter this new objects and discuss the differences between these and
the already known real manifolds. We shall start by exposing two different
definitions, a more algebraic one and a more differential geometric one, and
then by showing their equivalence. We shall then discuss the meaning of this
complexification for tensors and forms, and finally we will give an example
of such a manifold.

3.1 Definitions

The traditional definition of complex manifold is the one given at the end
of last chapter.
A real manifold of complex dimension 2m is said to be a complex manifold
if it has an atlas of complex charts (U,Ψ), such that all the transition func-
tions are holomorphic, as maps from Cm to itself. A complex chart on M
is simply the complex version of a chart, namely a pair (U,Ψ) where U is
open in M and Ψ : U → Cm is a diffeomorphism between U and some open
set in Cm.
Note that, given a 2m-dimensional real manifold, one can always let the
coordinates become independent complex variables and obtain a 2m com-
plex dimensional manifold. This is not what is meant here, since here we
obtain an n complex dimensional manifold. This means that, in passing
from 2m real to m complex dimensions, one has to create a link between
pairs of coordinates, and this cannot be done on every manifold. This link
is highlighted by the so called complex structure, which is the center of a
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more differential geometric definition of complex manifold.
So, the second definition is based on the concept of complex structure, there-
fore, before defining complex manifolds in this new way, we shall start by
expose some definitions.
An almost complex structure J on a 2m-dimensional real manifold M is
a field of automorphisms J : TM → TM of the tangent bundle satisfying

J2
p = −Ip ∀p ∈M (3.1)

where I denotes the identity.
Observe that, the fact that J is an automorphism and has complex eigen-
values, means that a tangent vector multiplied by a complex number must
still lie in TM . Thus, the almost complex structure gives each tangent space
TMp the structure of a complex vector space.
An almost complex structure is said to be integrable if the so called Ni-
jenhuis tensor N(J) associated to J

N(v, w) = [v, w]+J [Jv,w]+J [v, Jw]−[Jv, Jw] ∀v, w ∈ C∞(TM) (3.2)

equals zero N(J) = 0.
This integrability condition implies that the almost complex structure be in-
duced by a (unique) complex structure. This takes us to define a complex structure
as an almost complex structure satisfying the integrability condition.
It turns out that this integrability condition is precisely what is needed so
one can introduce complex coordinates with holomorphic transition func-
tions.
So we will define a complex manifold simply as a real manifold equipped
with a complex structure.

Let’s be more precisely about why this definition is valid; a smooth func-
tion f : M → C is holomorphic if it satisfy the Cauchy-Riemann equations,
which can be written using J as J(df) ≡ i(df). It turns out that if m > 1 the
equations are overdetermined and the Nijenhuis tensor (perche lui?) forbids
the existence of large numbers of holomorphic functions on M . But this is
exactly what is needed to form holomorphic coordinates in every point. The
Newlander-Nirenberg Theorem shows that the condition for the existence of
a holomorphic atlas (recall the first definition of complex manifold) is the
vanishing of the Nijenhuis tensor. This makes the two definitions equivalent
to each other.
Note that a complex structure is not a unique feature for a manifold. A real
manifold can give rise to different inequivalent complex manifolds, in other
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words, it may have more than one complex structure, even a whole space of
structures.

3.2 Complexification of the Tangent and Tensor
Bundles

In this section we shall clarify the role of the complex structure, we will see
that this induces a splitting of the complexified tangent bundle in two sub-
bundles. In order to give a clear exposition for those already familiar with
real manifolds, we will try to work only with real objects, almost avoiding
the use of complex coordinates.

We have seen in last chapter how the metric reduced the structure group
from GL(n,R) to O(n); we encounter even more dramatic consequences,
when introducing a complex structure.
It can be shown, that, if a Lie-group G induces a G-structure on a manifold
M , then the bundles of tensors and forms decompose into the direct sum
of subbundles, corresponding to the irreducible representations of G. Now,
thank to the complex structure, the structure group of a complex manifold
becomes GL(m,C) (m = n/2 is the complex dimension), so the bundle of
tensors and forms will split into subbundles, corresponding to the irreducible
representations of GL(m,C).(su cosa?)
We shall now investigate what happens under the action of J , explicitly.
Let’s first complexify the tangent space in each point, i.e. extend it to com-
plex coordinates. What we will get is TMp ⊗R C (perche?? e cos’e’ xr?), a
complex vector space isomorphic to C2m (remember that the real tangent
space was isomorphic to R2m).
Now, we have seen that J : TM → TM acts linearly on vector fields. Since
J2v = −v, for all v ∈ TM , then J must have eigenvectors with eigenval-
ues ±i. This is how J induces a splitting, in its two different eigenspaces:
TMp ⊗R C = TM

(1,0)
p ⊕ TM

(0,1)
p , where TM (1,0)

p
∼= Cm (TM (0,1)

p
∼= Cm) is

the eigenspace with eigenvalue +i (−i); these are complex conjugate spaces.
This splitting extends to the whole tangent bundle and, similarly, it can also
be applied to the complexified cotangent bundle.
Every vector field can be written as a sum

X = U + U (3.3)

19



where

U =
1
2
(X− iJX) ∈ TM (1,0) and U =

1
2
(X+ iJX) ∈ TM (0,1) (3.4)

This operation is a projection.
In a similar way, also the complexified tensor bundle is split into subbundles
by the complex structure. We will see what happens to the bundle of C-
valued k-forms. Here the situation is a little more complicated, since we have
to deal with the exterior product of a sum of two bundles. This becomes

ΛkTM∗ ⊗R C =
k⊕

j=0

Λj,k−jM (3.5)

with
Λp,qM = ΛpTM∗(1,0) ⊗ ΛqTM∗(0,1). (3.6)

This is the decomposition of the bundle of k-forms on M induced by the
complex structure.
A section of Λ(p,q)M is called a (p, q)− form.
A projection like (3.3) can also be defined with general tensors, simply by
substituting the vector field X with the tensor S and by taking the contrac-
tion of S and J in (3.4).
If M is an m-dimensional complex manifold, then, in general Λp,0M has
fibre with complex dimension (m

p ), which means that for p = m, Λm,o has
fibre isomorph to C. This is the bundle of complex volume forms on M and
is called the canonical bundle of M , written KM .

Finally we will revisit the exterior derivative d in this new context. One
might ask on which part of a (p, q)-form will the derivative operator act.
The answer is that the exterior derivative dϕ of any (p, q)-form ϕ is the sum
of a form of type (p+ 1, q) and a form of type (p, q+ 1), which we will write
∂ϕ and ∂ϕ. So we obtain two differential operators acting on complex forms
and satisfying

d = ∂ + ∂ (3.7)

where ∂ is the component of d mapping C∞(Λ(p,q)M) into C∞(Λ(p+1,q)M)
and ∂ is the one mapping C∞(Λ(p,q)M) into C∞(Λ(p,q+1)M).
From the properties of d it follows:

∂2 = ∂
2 = 0 and ∂∂ + ∂∂ = 0. (3.8)
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3.3 Example of a Complex Manifold

Before continuing to the next chapter, we shall pause a moment on an exam-
ple. S6, the real manifold threaten in last chapter doesn’t allow a complex
structure, since it doesn’t allow irreducible eigenspaces on his tangent bun-
dle (e giusta sta cazzata?)
The example we have chosen for this chapter is also a six-dimensional real
manifold, namely S3 × S3.
If we consider the standard metric on each S3, then its connection has holon-
omy group SO(3) × SO(3) (cos’e x? e poi devo dimostrare che questo e’
un sottoinsieme di...di cosa?). We shall see in the next chapter why this ex-
ample accepts a complex structure (questo potrei gia dirlo qui, PErche???),
but doesn’t satisfy the Kähler conditions.

Holonomy di una complex manifold???
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Chapter 4

Kähler Manifolds

In this chapter we will treat the next class of manifold of interest to us:
the ones with a Kähler metric. These are the ”nicest” class of metrics on a
complex manifold, in that the Riemannian structure is compatible with the
complex structure in a natural way. Like every restriction upon the metric
we have treated so far, also this one will have consequences for the holon-
omy group. In fact the holonomy group of a Kähler metric g on a complex
m-dimensional manifold, will be a subgroup Hol(g) ⊂ U(m).
We will start by defining the hermitian form of g, which will be the base-
point in defining Kähler metrics and than Kähler manifolds. Thereafter we
will study the holonomy group and, of course, the curvature of these man-
ifolds. Calabi-Yau manifolds will then spontaneously follow by forcing a
last restriction upon the curvature of Kähler metrics, i.e. by making them
Ricci-flat.

4.1 Definitions

A hermitian metric on a complex manifold (M,J) is a Riemannian metric
g on M satisfying

g(v, w) = g(Jv, Jw) ∀v, w ∈ C∞(TM). (4.1)

This condition forces a natural compatibility between metric and complex
structure.
(4.1) is like asking that the scalar product g(·, ·) between any two of the
projected vector fields of (3.4) in the same projected space (eigenvalues +i
or −i) be zero g(V ,U) = g(V,U) = 0. So an hermitian metric is one for
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which the complex structure divides the tangent bundle in perpendicular
subbundles.
For any hermitian metric we can build a 2-form on M , called hermitian
form ω and defined as

ω(v, w) = g(Jv,w) ∀v, w ∈ C∞(TM). (4.2)

ω is a (1, 1)-form in the sense of (3.6).
Note that if we know the hermitian form ω of a metric, we can always re-
construct the metric self with g(v, w) = ω(v, Jw). This will be of particular
interest when studying Calabi-Yau manifolds, where, thank to the so called
Calabi conjecture, we will be able to recognize which forms will be the her-
mitian forms of a Calabi-Yau manifold; from the hermitian form it could
then be useful to know how to reconstruct the metric g.

We are now ready to define a Kähler metric g on a complex manifold
(M,J) as an hermitian metric g with a hermitian form ω satisfying the clo-
sure condition dω = 0. In this case we call ω a Kähler form and (M,J, g)
a Kähler manifold.
Remember when, in the second chapter, we introduced the volume form
(which we shall write dVg), as a unique nowhere vanishing m-form on an
m-dimensional manifold. For Kähler manifolds this is just the m-th exterior
power of the Kähler form: ωm = m!dVg.

Before continue, we shall motivate the ambitious title of ”nicest” class
of metrics on a complex manifold, given at the beginning of this chapter.

Proposition 8 Let M be a manifold of dimension 2m, J an almost com-
plex structure on M , and g an Hermitian metric, with hermitian form ω.
Let ∇ be the Levi-Civita connection of g, then the following conditions are
equivalent:

(i) J is a complex structure and g is Kähler (dω = 0),
(ii) ∇J = 0,
(iii) ∇ω = 0,
(iv) The holonomy group Hol(g) of g is contained in U(m) ⊂ O(2m).

Proof This follows from the definitions of the Kähler form and Hermitian
metrics and from the fact that the Nijenhuis-tensor be zero for complex
structures, thereafter is just an algebraic computation to show the equiva-
lence of (i), (ii) and (iii). Part (iv) is a consequence of (ii) and (iii), they
imply that J and ω be constant tensors on M . From Theorem 4 it follows
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that they must be invariant under the action of the holonomy group. This
restricts the holonomy group to U(m), the subgroup of O(2m) preserving
these two tensors.♦

Now, since the Levi-Civita connection ∇ is the connection of the metric
g, the fact that J be constant with respect to g (∇J = 0) means that the
Riemannian structure is somehow compatible with the complex structure.
This gives Kähler manifolds stronger properties than normal manifolds.

We said in the introduction that Kähler metrics form an infinite set; next
we shall discuss how, given a Kähler metric on M , it is possible to build an
infinite number of other Kähler metrics upon the same manifold.
To achieve this, we shall translate the problem of finding Kähler metrics into
the problem of finding Kähler forms: we have seen that for every Kähler
metric there is a Kähler form, in the other way, every (1, 1)-form ω is the
Kähler form of a Kähler metric if and only if ω is positive, which means

ω(v, Jv) > 0 ∀v ∈ C∞(TM), v 6= 0. (4.3)

Now, it can be shown that,

Proposition 9 (The ∂∂-Lemma) Let φ : M → R be a smooth function
on a complex manifold M , then i∂∂φ is a closed (1, 1)-form on M . Con-
versely, every closed real (1, 1)-form can be written locally as i∂∂φ, for a
smooth function φ : M → R.

This applies also to the Kähler form ω, which can always be described locally
by a so called Kähler potential φ: ω = i∂∂φ.
Note that we have emphasized the word locally. This is because it is in
general not possible to find a global Kähler potential on a compact manifold
M , here is why. From the definition of Kähler manifold it follows that
the Kähler form be closed (dω = 0). So it’s an element of the de Rham
cohomology [ω] ∈ H2(M), which, for the Kähler form, is called Kähler
class. Now, it turns out that the volume form on M , which has to be non-
zero, depends only on this cohomology class [ω]. So [ω] must be different
from zero, and this is not possible if ω = i∂∂φ, since i∂∂φ is exact, i.e.
[i∂∂φ] = 0.
So, we cannot write the Kähler form globally with a Kähler potential, but
what we can show is that, if two Kähler metrics g, g′ have Kähler forms in
the same Kḧaler class, then they differ by a Kähler potential:
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Theorem 10 Let (M,J) be a compact complex manifold, and let g, g′ be two
Kähler metrics on M , with Kähler forms ω, ω′ lying in the same Kähler class
[ω] = [ω′] ∈ H2(M). Then there exists a smooth real function φ : M → R
on M , such that ω′ = ω + i∂∂φ. The function φ is unique up to addition
with a constant.

Proof This follows from the fact that if [ω] = [ω′], than ω − ω′ is exact.
Then, from the definition of exact forms on real manifolds it can be shown
that every exact (1, 1)-form on a complex manifold can be written as i∂∂φ.
Thus, we can also write ω − ω′ = i∂∂φ which is what we wanted to show.♦

Theorem 9 furnishes a tool for, knowing a Kähler form on M , building
others such forms, simply by adding a Kähler potential. As shown before,
this is equivalent to the problem of finding Kähler metrics on a given mani-
fold; so we have shown that, if there exist one such metric than we can easily
build an infinite-dimensional family of these.

Finally, we would like to say something about the Riemannian curvature
on Kähler manifolds.
Like in the case of real and complex manifold, here also, a restriction upon
the holonomy gives a restriction upon the curvature. We have seen in Propo-
sition 7, part (iv) that the holonomy group of Kähler manifolds is limited
to U(m) for an m-dimensional complex manifold. The main consequence of
such a restriction is that the curvature tensor will posses more symmetries.
This additional symmetries will be inherited by the Ricci tensor Rij , defined
in chapter 2 as the only non-vanishing contraction of the Riemannian cur-
vature. In the following we shall investigate the consequences of this new
symmetries.
We have seen at the beginning of this chapter how to create the Kähler
form ω, from the metric tensor g as ω(v, w) = g(Jv,w) for any two vector
fields v, w. Two bilinear forms, related by such a relationship are said to be
associated with each other. We have also seen that the metric tensor can
always been reconstructed from his associated Kähler form.
So, let’s now try to build such an associated form for the Ricci tensor, as
well. This is known as the Ricci form ρ, and in index notation is defined
as

ρij = J l
iRlj . (4.4)

si puo definire senza indici?)
So ρ is a real (1,1)-form and, as for the Kähler form, we can always recover
the Ricci curvature from ρ with Rij = ρilJ

l
j .
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Now, the important role of those additional symmetries we have seen before
is that they make the Ricci form be a closed form dρ = 0. Therefore the
Ricci form defines a cohomology class [ρ] ∈ H2(M). This cohomology class
turns out to be independent of the Kähler metric you start with, but depends
only on the complex structure of M .
So we define the first Chern class c1:

[ρ] = 2πc1(M). (4.5)

(perche? 2pi???) Note that we decided to define the first Chern in this way,
from the Ricci form, but the first Chern class is actually an intrinsic object
which can be defined independently from ρ and is related to it by (4.5).

Now, it is obvious that if c1 6= 0, then there cannot exist a Ricci flat
metric (recall the reconstruction from ρ to the Ricci tensor). The converse,
namely that there exists a Ricci flat metric for c1 = 0, is far from obvious.
However Calabi has proved the uniqueness and Yau, almost twenty years
later, has shown the existence of Ricci flat metrics whenever c1 = 0.
But this is another story...
We will threat Calabi-Yau spaces in next chapter.

4.2 Example of a Kähler Manifold

At the end of last chapter we have seen S3 × S3 as an example of complex
manifold. However this doesn’t admit a Kähler metric. It can be shown
that for a manifold to admit a Kähler metric, the even Betti numbers must
satisfy b2p ≥ 1 (perche?, non c’e’ un altro modo di dirlo, senza betti?), a
condition not satisfied by S3 × S3, which has b2 = 0.
Thus we will take a similar example: S2 × S2 × S2, another 6-dimensional
manifold. Here also, the holonomy group is very easy, namely SO(2) ×
SO(2)× SO(2). (come dimostro che e’ un sottoinsieme di (U(6)?).
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Chapter 5

Calabi-Yau Manifolds

Calabi-Yau spaces are named after two mathematicians, Eugenio Calabi and
Shing-Tung Yau which, together, found which form could be the Ricci form
of a Kähler metric. This is known as the Calabi conjecture, stated by Cal-
abi in 1954. Calabi also proved the uniqueness of such a metric, but for the
whole proof the world had to wait another twenty years, since it wasn’t until
1976 that Yau proved its existence.
Although the Calabi conjecture furnishes a tool to build Calabi-Yau man-
ifolds in large numbers, their exclusive properties make them very rare in-
deed. Even though belonging to a family of ten thousands or more may
not seem such a privileged position, it has to be compared with the infinite
number of possible shapes.

Unfortunately so far nobody has proved the uniqueness of a definition
of Calabi-Yau manifolds; so our first task will be to define such objects in
different manners, and then to prove that these are just one and the same.
Thereafter it will be the turn of the Calabi conjecture. After having seen this
powerful theorem, we shall explore some more applicable corollary before
spending some time on its proof. Since our approach has so far been mainly
differential geometrical, we will skip the analytical part of the proof, the one
which took Yau so long to show.
Finally...

5.1 Equivalent Definitions

There are several ways to define Calabi-Yau manifolds; we encountered seven
different definitions in the literature, which at first sight looked all equiva-

27



lent, but after a closer investigation showed little discrepancies: the man-
ifolds defined in one did not fulfilled all the properties required by other
definitions. So we combined these seven to three, stronger definitions.
Each one of the following statements can be taken as the definition of
Calabi-Yau spaces, and they are all equivalent to each other.

(i) Calabi-Yau manifolds are compact Kähler manifolds of dimension m ≥
2 with holonomy Hol(g) = SU(m).

(ii) Calabi-Yau manifolds are compact Ricci-flat Kähler manifolds (M,J, g)
of complex dimension m with trivial canonical bundle (or M simply
connected).

(iii) Calabi-Yau manifolds are quadruples (M,J, g,Ω) such that (M,J) is
a compact complex manifold of dimension m, g a Kähler metric on M
with holonomy Hol(g) = SU(m), and Ω a nowhere vanishing constant
(m, 0)-form on M , called the holomorphic volume form and which
satisfies

ωm/m! = (−1)m(m−1)/2(i/2)mΩ ∧ Ω. (5.1)

where ω is th Kähler form of g.

Proof of the equivalence of (i), (ii) and (iii)
(i)↔(iii): Let’s first see what happens on the simplest imaginable manifold
Cm ' R2m: define a metric g a (1, 1)-form (?)ω and a (m, 0)-form Ω on Cm

by
g = |dz1|2 + ...+ |dzm|2,

ω =
i

2
(dz1 ∧ dz1 + ...+ dzm ∧ dzm), Ω = dz1 ∧ ... ∧ dzm. (5.2)

Now, it is easy to study this objects, when acting on Cm. By simply applying
linear transformation to the coordinates zi, we can verify that the subgroup
of GL(2m,R) which preserves g, ω and Ω is simply SU(m). We can now
come back to a general manifold M and apply Theorem 4 to this tensors.
We see that every Riemannian manifold (M,g) with holonomy SU(m) ad-
mits natural like the ones defined in (5.2), and they must be constant under
the Levi-Civita connection. Next, if the forms defined in (5.2) satisfy (5.1)
in Cm, which can be easily proved, then they will satisfy (5.1) at each point.
Finally, it is obvious that there is only one complex structure J on M for
which ωij = Jk

i gkj . So if we identify ω with a Kähler form, then (M, g, J)
is a Kähler manifold with Kähler form ω. Furthermore, Ω is a holomor-
phic (since formed only with holomorphic functions) (m, 0)-form, where the
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(m, 0)- splitting is consistent with J . With this we have proved that every
Riemannian manifold with holonomy SU(m) is a Kähler manifold, admit-
ting a constant, holomorphic volume form.
The other way round, a Kähler manifold equipped with a holomorphic vol-
ume form with ∇Ω = 0 must have Hol(g) = SU(m).♦
(ii)↔ (iii) We have threaten in chapter 4 the canonical bundle KM , the
bundle of volume forms on M . From the definition of holomorphic volume
form Ω, it follows that Ω is a non-zero section of KM . Such a form, like the
one defined in (5.2) exists if and only if the canonical bundle is isomorph to
M ×C (we than say that KM is trivial). We said also that the first Chern
class was a topological property of the manifold; it turns out that if the
canonical bundle is trivial, then the first Chern class vanishes. Thus, any
Kähler manifold with holonomy SU(m) must have c1(M) = 0 and trivial
canonical bundle. This can be considered a fourth definition of Calabi-Yau
manifold and its equivalence with definition (ii) will be shown thank to the
Calabi conjecture, in Corollary 12.♦

5.2 The Calabi Conjecture

In this section we will threat the famous Calabi Conjecture. This powerful
theorem specifies which closed (1, 1)-form can be the Ricci form of a Kähler
metric on M . By asking that the metric be Ricci-flat and the manifold be
simply-connected (or with trivial canonical bundle), we than have the Ricci
form of a Calabi-Yau manifold. Thus, the Calabi conjecture represents a
useful tool for building large number of Calabi-Yau spaces, and this is how
they got their name.
Note that the fact that we know the Ricci form is not enough to know the
metric explicitly. Although from the Ricci form we can reconstruct the Ricci
tensor, then we can go no further, since the Ricci tensor is a contraction of
the Riemannian curvature, we cannot work it out explicitly.(vero?)

Theorem 11 (The Calabi conjecture) Let M be a compact, complex man-
ifold and g a Kähler metric on M , with Kähler form ω. Given any real closed
(1, 1)-form ρ′ on M , such that [ρ′] = 2πc1(M), there exists a unique Kähler
metric g′ on M with Kähler form ω′, such that [ω′] = [ω] ∈ H2(M,R) and
the such that the Ricci form of g′ is ρ′.

The interesting part of this theorem is that, if we have a vanishing first
Chern class c1(M) = 0, then we can choose ρ′ to be zero and, as a result
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of the Calabi conjecture we will have a Ricci-flat metric g′: the metric of a
Calabi-Yau space.
So we have proved the uniqueness of Calabi-Yau metrics in every Kähler
class:

Corollary 12 Let (M,J) be a compact complex manifold with c1(M) = 0.
Then every Kähler class on M contains a unique Ricci-flat Kähler metric
g.

We are now ready to begin the proof of the Calabi conjecture. As ex-
plained before, we shall concentrate on the differential geometrical aspects
of the proof, the ones proved by Calabi, and skip its algebraic difficulties,
the ones solved by Yau.
The main idea of the proof is to translate the problem of finding existence
and uniqueness of a metric with given properties, to the problem of showing
existence and uniqueness of a second-order nonlinear elliptic partial differ-
ential equation. So we will show how to rewrite this equivalent version of
the Calabi conjecture.

Proof of the Calabi conjecture
Restating the problem. Let (M,J) be a compact complex manifold, g a
Kähler metric with Kähler form ω on M , and let ρ be the Ricci form of g.
Next, choose a real, closed (1, 1)-form ρ′ on M such that [ρ′] = 2πc1(M).
What we are looking for is a metric g′, with Kähler form ω′ in the same
Kähler class of ω, [ω′] = [ω], such that g′ has Ricci form ρ′. Finding g′

would be the proof of the Calabi conjecture.
In this first part of the proof, we shall restate the problem of finding the
metric g′, to the problem of finding the solution of a partial differential equa-
tion (p.d.e.) for a real function φ on M .

We will start by considering the following Lemma, which can be proven
by working out explicitly the hermitian form and the Ricci form of a given
metric g.

Lemma 13 Let ω be the Kähler form of a complex m-dimensional manifold
(M,J) and ω0 the form induced (?) by the standard hermitian form on Cm,
given by

ωm
0 =

(−1)m(m−1)/2imm!
2m

dz1 ∧ ... ∧ dzm ∧ dz1 ∧ ... ∧ dzm (5.3)
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for holomorphic coordinates (z1, ..., zm) on an open set U of M . Let define
a smooth function F : U → [0,∞] by

ωm = Fωm
0 . (5.4)

Then the Ricci form is given by ρ = −i∂∂(log(F )), on U .

This Lemma can be further generalized: let ω and ω′ be two Kähler
forms on M , with Ricci forms ρ, ρ′, and let define a function F̃ : M → R
by (ω′)m = F̃ωm. Then we can write (ω′)m = F̃Fω0, where F and ω0 are
defined in the Lemma. Applying Lemma 13 to this new form, and using the
properties of the logarithm, leads

ρ′ = −i∂∂log(F̃F ) = −i∂∂log(F̃ )− i∂∂log(F ) = ρ− i∂∂log(F̃ ).

Taking F̃ = ef for a smooth function f : M → R, we have

ρ′ − ρ = −i∂∂f. (5.5)

Ok, let’s now come back to our problem. We have those two forms ρ and
ρ′ and we know they satisfy [ρ′] = [ρ] = 2πc1(M) which means that ρ − ρ′

is exact. Thus, from the ∂∂-Lemma, we get an expression like (5.5), with
f unique up to addition of a constant f + c. We can further get rid of
this constant by invoking the volume form: recall that the volume form
of a Kähler metric g with Kähler form ω, was defined from the Kähler
form as m!dVg = ωm. We have said before that this volume form depends
only of the Kähler class of ω and since we have [ω] = [ω′], we can write∫
M (ω′)m =

∫
M ωm. Furthermore we have seen that this volume form is

unique and can be thought as a sort of volume of our manifold volg(M).
This fixes the constant c:

ec
∫

M
efdVg =

∫
M
dVg = volg(M).

Without lack of generality, we can assume that this constant vanishes, c = 0.
Magically, all these calculations brought us to formulate the Calabi conjec-
ture in a second, equivalent way:

Theorem 14 (The Calabi conjecture, second version) Let (M,J) be a
compact complex manifold with Kähler metric g and Kähler form ω. Let
f : M → R be smooth, then there exists a unique Kähler metric g′ on M
with Kähler form ω′, such that [ω′] = [ω] and (ω′)m = efωm.
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Does this looks easier? It doesn’t but it is easier. This new statement is
about the existence of a metric with a prescribed volume form (ω′)m, the
first statement was about the existence of a metric with prescribed Ricci
form. This new volume form should also be positive and should have the
same total volume as the other volume form ωm:

m!dVg′ = (ω′)m >! 0 m!dVg = ωm ⇒
∫

M
(ω′)m =

∫
M
ωm. (5.6)

This means that the second version of the Calabi-conjecture states that now,
there is only one metric g′ in the same Kähler class as g, whose volume form
dVg′ fulfills (5.6).
The simplification lies in the fact that the Ricci curvature depends also on
the second derivatives of the metric tensor g′, while the volume form depends
only on g′.
But this is not yet enough to be solved with analytical methods; we would
like to have something similar, but where the thing to find is not a form
but a function. This is easily done by applying the ∂∂-Lemma to ω and ω′.
Recall that these two forms lie in the same class, which, after this lemma,
means that they differ by a Kähler potential, a smooth real function φ on
M , such that:

ω′ = ω − i∂∂φ. (5.7)

The ∂∂-Lemma also states that this function be unique up to addition of
a constant, so we will do no harm if we just ask to fix this constant by∫
M φdVg = 0.

Therefore we can now write ω′ as in (5.7), and this translates the problem of
finding a volume form ω′ fulfilling (5.6), to the problem of finding a smooth,
real function fulfilling:

Theorem 15 (The Calabi conjecture, third version) Let (M,J) be a
compact complex manifold, with metric g and Kähler form ω. Let f be a
smooth real function on M , such that

∫
M efωm =

∫
M ωm. Then there exists

a smooth real function φ on M , satisfying

(i) ω + i∂∂φ is the Kähler form of some Kähler metric g′

(ii)
∫
M φdVg = 0

(iii) (ω + i∂∂φ)m = efωm on M .

Note that, although (i) sounds quite a hard task, we have seen in chapter
four that it is enough for ω + i∂∂φ to be a positive (1, 1) form, in order to
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be the Kähler form of some Kähler metric.
Writing part (iii) explicitly, using holomorphic coordinates and the metric
tensor, leads to a non-linear, elliptic, second-order partial differential equa-
tion in φ, of a kind known as Monge-Ampère equation.
So, the Calabi conjecture is now just an analytical problem: solving this
Monge-Ampère equation and finding φ. Proving that such an equation has
a solution for every suitable function f is a very hard task, solved by Yau
using the so called continuity method. Unfortunately this lies beyond our
possibilities here.
Proving uniqueness What we can do, is prove the uniqueness of such a so-
lution, which, after our opinion, may be even of more interest for us, in the
context of this paper. This was done by Calabi and it will take us just a few
steps.
Assume that there are two different metrics ω1 and ω2, which means (after
the proof of the existence of a solution, for the third version of the Calabi
conjecture) that we have two different smooth real functions φ1 and φ2, such
that

ω1 = ω + i∂∂φ1, and ω2 = ω + i∂∂φ2 (5.8)

Since we are interested in showing that there is no difference, between two
solutions, we can, without loss of generality, assume that φ2 = 0. So, calling
φ1 = 0 and putting ωm

1 = ωm
2 (since the two volume forms must be equal,

recall the second version of the conjecture), we have

0 = ωm
2 − ωm

1

= ωn − (ω + i∂∂φ)n (5.9)

using the binomial formula leads

0 = (ω − (ω + i∂∂φ) ∧ (ωn−1 + ωn−2 ∧ ω1 + ...+ ω ∧ ωn−2
1 + ωn−1

1 )
= −i∂∂φ ∧ (ωn−1 + ωn−2 ∧ ω1 + ...+ ω ∧ ωn−2

1 + ωn−1
1 ). (5.10)

We then multiply this by φ and integrate over the whole manifold,

0 = −i
∫

M
φ∂∂φ ∧ (ωn−1 + ...+ ωn−1

1 ) (5.11)

which, after partial integration, gives

0 = i

∫
M
∂φ ∧ ∂φ ∧ (ωn−1 + ...+ ωn−1

1 ). (5.12)
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Now, recall that the condition for a (1, 1)-form ω to be Kähler, is that it has
to be positive: ω, ω1 ≥ 0. So, with V =

∫
M ωm, we get

1
V
∂φ ∧ ∂φ ∧ (ωn−1 +...+ ωn−1

1︸ ︷︷ ︸
≥0

) ≥ 1
V
∂φ ∧ ∂φ ∧ ωn−1 (5.13)

Now, using Hodge theory, it can be shown that for a general form α, we can
write

α ∧ ωm−1 = (α, (m− 1)!ω)dVg (5.14)

where the term in brackets is the scalar product of α and ω, defined using
the metric tensor. Setting α = ∂φ ∧ ∂φ, and solving the scalar product
explicitly in coordinates we find (∂φ ∧ ∂φ, ω) = 1

2 |∇φ|
2. Then, recall that

m!dVg = ωm. Put all this into (5.14) and solve

0 ≥ 1
V

∫
M
∂φ ∧ ∂φ ∧ ωn−1 =

1
2nV

∫
M
|∇φ|2ωm. (5.15)

From this we deduce that ∇φ = 0 which means that φ is constant. A
constant φ inserted in (5.8), is equivalent to ω1 = ω2. This shows the
uniqueness of a solution of the Calabi conjecture, and also finishes our proof.

♦

5.3 Example of Calabi-Yau Manifold

This time we have chosen the six dimensional torus T 6.

5.4 Calabi-Yau Spaces and string theory

String theory is a new branch of particle theoretical physics born in 1968
after an experimental observation: a number of experimental data could be
explained if the particles where assumed to be little vibrating strings.
This idea caught quickly the eye of many theoretical physicists, which liked
the idea that all the particles and the force carriers could have the same
origin: vibrating strings, which vibrational patterns give rise to different
particles.
This theory then encapsulated all the principles of mathematical beauty,
and, what was even more surprising, allowed a unification of all the forces
of nature. It isn’t just a descriptive theory, like the standard model, which
at that time was believed to describe completely nature’s properties; string
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theory goes further, it also explains why things are the way they are.
Unfortunately, the equations governing string theory are so far impossible
to solve be interpreted.
One curios feature that emerges from these equations is that they require
that the space-time we live in be a manifold M of dimension 10, 11 or 26. In
supersymmetric string theory, a popular branch of string theory, this value
is 10. The equations of string theory then impose that this manifold M be
the product M = R4×X of the well known 4-dimensional Minkowsky space-
time and a six dimensional manifold X. It turns out that this manifold X
has the shape of a Calabi-Yau 3-fold.
The reason why we don’t see any extra dimension is that they are believed
to be curled up in a radius of order 10−33cm, the so called Plank length. So
when we sweep our hand through the air, we circumnavigate these spaces
again and again, in every point of our four-dimensional space time, and,
being the Plank length so small, there is no room for an extended object
like your hand to fit in and, at the end, you will return at the starting point.
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