
Application Note #0108 
 

Developing TNET Applications with the MSCOMM Control  
 
Introduction  
Many TNET data collection applications have been (and will continue to be) written using the popular 
Visual Basic development system.  The “Professional” and “Enterprise” versions of Visual Basic provide 
the MSCOMM control to simplify serial communications with a COM port.  This application note will 
explain some basic concepts for using the MSCOMM control when developing an application for the 
TIM1B TNET controller based on Visual Basic version 6 (VB6).  It is assumed the reader is already 
familiar with the TNET system, the TIM1B controller, VB6 programming, and the Windows operating 
system.  No attempt will be made to explain VB6 programming or application software design. 
 
TIM1B Setup 
The heart of the TNET data collection system is the TIM1B controller module.  This device connects to a 
host computer via an RS-232 serial port.  A utility program (TIM1BUP.EXE) is provided with the controller 
which is used to configure the TIM1B and test the connected TNET devices. Typically, the TIM1B is 
configured for the default host/controller protocol (SR3 = 1).  Each device on the TNET network has a 
unique address and must be included in the TIM1B polling list (see the TIM1B documentation for 
information on the controller). 
 
Host/TIM1B Protocol 
Communications between the TIM1B and the host computer is accomplished using a simple ASCII string 
packet protocol.  Each packet consists of device address, a field delimiter (default is comma), the data 
field and a string terminator (default is <CR><LF>).  The contents of the data field can include special 
characters or control codes unique to the TNET device receiving the data (see the individual TNET 
device documentation for details).   
 
Transmitting data to a TNET device from the host application is accomplished by simply sending the 
TIM1B controller the ASCII packet.  To display the message “Hello World” on a TransTerm terminal 
device the data field would normally include a “clear screen” code (hex 0C <FF>) and a “terminal 
reenable” code (hex 0F <SI>).  For example, if the terminal device address is 65 the packet string would 
be: 
  
 65,<FF>Hello World<SI><CR><LF> 
 
The TIM1B receives data packets from the attached TNET devices and forwards them one at a time to 
the host computer.  Each received device packet sent by the TIM1B to the host computer must be 
acknowledged by the application software using the <ACK> (hex 06) code.  When the TIM1B receives 
the acknowledgement from the host it is free to forward the next available packet.  This provides a simple 
communications protocol between the TIM1B and the applications software. 
 
MSCOMM Initialization 
The MSCOMM control can be initialized at design time or at run time under program control.  Several 
properties must be set before the port is opened for use.  Typically, as a minimum, the following 
properties must be initialized: 
 
 MSComm1.ComPort = 1 
 MSComm1.Settings = “9600,N,8,1” 
 MSComm1.InputLen = 1 
 MSComm1.DTREnable = True 
 MSComm1.RTSEnable = True 
 



In addition, the programmer must decide if the received data packets will be captured using an event 
driven model or a polled model.  Normally, the event driven model would be preferred and the receive 
buffer threshold is set to trigger an event when one or more bytes arrive in the receive buffer. 
  
 MSComm1.Rtheshold = 1 
 
MSCOMM Event Function 
The MSCOMM control provides a single event function called “OnComm”.  The example below 
demonstrates a typical “OnComm” event function used to capture TIM1B packets.  This function must 
determine what event triggered the routine and process it accordingly.  When a complete packet is 
received the application software must parse out the device address and process the data field.  In this 
example, only the receive data and error events are processed, other events could be included as 
needed.  
 
Private Sub MSComm1_OnComm() 
    Static srx As String 
    Dim cx As String 
     
    Select Case MSComm1.CommEvent 
        Case comEvReceive               ‘Receive buffer has at least 1 byte 
            Do While MSComm1.InBufferCount > 0 
                cx = MSComm1.Input      'Get one byte 
                Select Case cx 
                    Case Chr(13)               ‘<CR> packet terminator 
                        TnetInput srx            ‘process packet 
                        srx = ""                     ‘reset packet buffer 
                        MSComm1.Output = Chr(6)             'send <ACK> 
                    Case Chr(10)               'ignore <LF> terminators 
                    Case Else 
                        srx = srx & cx           ‘capture packet bytes 
                End Select 
            Loop 
       Case Is > 1000                          ‘detected port error 
            ComError MSComm1.CommEvent 
    End Select 
End Sub 
 
Send TNET Packets 
Sending a packet to a TNET device is very easy with the MSCOMM control.  The example below shows a 
simple subroutine used to create an output packet and send it to the TIM1B controller for delivery to the 
specified device.  Notice that this example includes the “terminal reenable” code as part of the packet. 
 
'Tnet Output 
'On Call: 
'   ida = device address (1 - 250 or 255) 
'   src = string to deliver 
Public Sub TnetOutput(ida As Integer, src As String) 
    Dim cs As String 
     
    cs = ida & "," & src & Chr(15) & vbCr 
    MSComm1.Output  cs 
End Sub 
 
Opening the Serial Port 
The MSCOMM control must be “opened” at run time before any serial communications can take place.  
After it is fully initialized (either at design time or run time) it can be opened as follows: 



 
 MSComm1.PortOpen = True 
 
If for any reason the MSCOMM control can not open the port a error event will be triggered.  As a matter 
of good programming practice the port should be “closed” when the application program terminates or the 
port is no longer needed.  This can be accomplished as follows: 
 
 MSComm1.PortOpen = False 
 
 


