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RÉSUMÉ. Le but de ce travail est d’appliquer des outils de contrôle aux systèmes de population de
pêche. on construit un observateur pour un modèle continu structuré en age de population de pêche
exploitée qui tient compte des pré-recrutés. Les variables du modèle, l’effort de pêche, les classes
d’age et la capture sont considérés respectivement comme contrôleur, états du systèmes et sa sortie
mesurée. Le changement de variables basé sur les dérivés de Lie nous a permis de mettre le système
sous une forme canonique observable. La forme explicite de l’observateur est finalement donnée.

ABSTRACT. Our aim is to apply some tools of control to fishing population systems. In this paper
one constructs a non linear observer for the continuous stage structured model of an exploited fish
population, using the fishing effort as a control term, the age classes as a state and the quantity of
caught fish as a measured output. Under some biological satisfied assumptions, we formulate the
observer corresponding to this system and show its exponential convergence. With the Lie derivative
transformation, one shows that the model can be transformed to a canonical observable form; then
one gives the explicit gain of the estimation.
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1. INTRODUCTION

In fish population science, one evolves in a dubious world where the observation and
the direct experimentation are practically impossible. The resources cannot be counted
directly, except with acoustic method which is not generalized yet. It is thus necessary to
estimate the stock abundance through available data, captured quantity and fishing effort.
In literature the stock estimation state has received a less deal of attention, and some au-
thors are interested in the observer synthesis for the fish population systems. Ouahbi and
al [1] consider the discrete time model to develop a global observer which doesn’t require
any non linear transformation, and it doesn’t depend on any expression of recruitment
function. J.L Gouze et al [4] present a technic for the dynamic estimation of bounds and
no-measurable variables of an uncertain dynamical systems. They show the applicability
of these method only to the model of three stages. In this work we are interested in provi-
ding the estimation of the state for the model with n stages using the known input and the
measured output, having recourse to some global results found out by Gauthier et al[6],
Farza et al[8] .
The paper is organized as follows. We first consider the description of the continuous
stage structured model, under some biological satisfied assumptions. Next we give a state
transformation in order to make our system in a canonical observable form relying on the
Lie derivative transformation. Then we investigate the technic for the estimation of the
abundance in an invariant domain. In section4, simulation results are shown forn = 4 .
Finally in section 5, a conclusion is given.

2. PROBLEM FORMULATION AND ASSUMPTIONS

One considers here the nonlinear model derived in [10] and which describes the fish
population dynamics of abundanceX i and exploited by the fleet represented by the total
catchY and the fishing effortE.This model is described by the following state equation.



Ẋ0 = −α0X0 +
∑n

i=1 filiXi −
∑n

i=0 piXiX0

Ẋ1 = αX0 − (α1 + q1E)X1

...
...

Ẋn = αXn−1 − (αn + qnE)Xn

Y = q1EX1 + q2EX2 + ...+ qnEXn

[1]

wherep0 andpi represent respectively, the juvenile competition parameter and predation
of classi on class 0.
fi andli are, respectively, the fecundity rate, and reproduction efficiency of classi.
The natural mortality class ratei isMi, and the relative catchability coefficient isqi.
the linear aging coefficientα, is supposed to be constant.α i is defined asαi = α+Mi

.Suppose the system [1] satisfies assumptions as below :
Assumption 2.1 (one non linearity at least must be considered)

∑n
i=0 pi �= 0

Assumption 2.2 (the spawning coefficient must be big enough so as to avoid extinction)∑n
i=1 filiπi > α0 where πi = αi∏

i

j=1
(αj+qjĒ)

.
andĒ is a constant fishing effort.

Assumption 2.3(all age classes are subject to catch and the oldest one yields eggs)
for all i = 1 . . . n qi > 0 andfnln �= 0
Assumption 2.4 (each predator lays more eggs than it consumes) X0 < µ = mini=1...n(fili

pi
)

.



for filipi �= 0.
Assumption 2.5 The fishing effort is subject to the constraint :0 < Emin ≤ E ≤ Emax

The system [1] has two equilibrium points : the originX = 0 corresponds to an ex-
tincted population and the nontrivial equilibriumX ∗, w hereX∗

i = πiX
∗
0 andX∗

0 =∑n

1
filiπi−α0

p0+
∑n

1
piπi

In [2] it was shown that the system [1] controlled by any positive constant feedback law
E is asymptotically stable.
To facilitate the design of the observer the fishing effort is considered constant.

3. NON LINEAR OBSERVER DESIGN

3.1. State transformation

The system [1] can be rewritten with standard control notation :{
Ẋ = A1X +BXu+ ζ(X)
Y = C1X

[2]

where :
A1 =




0 0 0 . . . 0
α 0 0 . . . 0
0 α 0 . . . 0

0 0
. . .

. . . 0
0 0 0 α 0




B =




0 0 0 . . . 0
0 −q1 0 . . . 0
0 0 −q2 . . . 0

0 0
. . .

. . . 0
0 0 0 0 −qn




ζ(X) =




−α0X0 +
∑n

i=1 filiXi −
∑n

i=0 piXiX0

−α1X1

...
αnXn


 C1 = [0, q1u, q2u, . . . , qnu]

In order to get asymptotic results. We restrict Our Study to the Set D defined as fol-
lowsD = Πn

1 [ai, bi] whereai can be chosen as small as one need andbi = (µ + υi)πi

with υ0 = 0 < υ1 < ... < υn < 1. it is shown in [10] thatai andbi are bounded by some
function of the parameterfi,li andπi and that D is an invariant domain by system [1]
Let us prove thatζ is liptshitz in D
By the mean value theorem there exist a pointz on the line segment joiningX 1 ∈ D and
X2 ∈ D such that :
ζ(X1) − ζ(X2) = ∂ζ

∂X (Z)(X1 −X2)
thus
‖ζ(X1) − ζ(X2)‖ = ‖ ∂ζ

∂X (Z)(X1 −X2)‖
≤ ‖ ∂ζ

∂X (Z)‖‖(X1 −X2)‖
≤ (2p0µ+

∑n
1 pibi +

∑n
1 fili + (α2

0 + α2
1 . . .+ α2

n)
1
2 )‖X1 −X2‖

Soζ is lipschitz in the invariant domain D with the liptschitz constantL=2p0µ+
∑n

1 pibi+∑n
1 fili + (α2

0 + α2
1 . . .+ α2

n)
1
2 .

Let f(X) = A1X , andg(X) = BX
To facilitate the design of the nonlinear observer, perform a nonlinear state transforma-
tion : φ : X −→ Z = (h(X), Lfh(X), . . . , Ln

fh(X))

L denotes the Lie derivative operator :Lfh(X) = ∂h(X)
∂X f(X) andLn

fh(X) = LfL
n−1
f h(X)



Z = (Z0, Z1, ..., Zn) can be expressed as :Z = φ(X) = MX where

M =




0 q1u q2u . . . qnu
q1uα q2uα . . . qnuα 0
q2uα

2 . . . qnuα
2 0 0

... . 0 0 0
qnuα

n 0 0 0 0




One shows easily that∀ (u, qn) �= (0, 0) detM = qn+1
n un+1α

n(n+1)
2 �= 0

Thusφ is a Diffeomorphism in D
Having recourse to some global results found out by Gauthier et al[6] and Farza et al[8]
φ transform [2]to :

{
Ż = AZ + ψ(Z)u+ ϕ(Z) + ω(Z)
Y = CZ

[3]

Where

A =




0 1 . . . . . . 0
0 0 1 . . . 0

0 0 0
. . . 0

0 0 0 0 1
0 0 0 0 0


 , C = [1, 0, 0, . . . , 0] ϕ(Z) =




0
...
0

Ln+1
f h(φ−1(Z))


 = 0

(Ln+1
f h(φ−1(Z)) = C1A

n+1
1 X = 0)

ψ(Z) =



LgL

0
fh(φ−1(Z))

LgL
1
fh(φ−1(Z))

...
LgL

n
fh(φ−1(Z))


 = BZ

ω(Z) = ∂φ
∂X (φ−1(Z))ζ(φ−1(Z))

= Mζ(φ−1(Z))

ω is lipschitz in the invariant domain D with the constantL(ζ is liptschitz with the constant
L)

3.2. Nonlinear Estimation Design

Our goal is to design an asymptotic state ObserverX̂ with inputsE and Y its output,
such that‖X̂ −X‖ tends to zero as t goes to infinity.
LetSθ the solution of the algebraic equation :θSθ +A′Sθ + SθA− C′C = 0
anddθ be a definite diagonal matrix defined by :dθ = diag(1, 1

θ , . . . ,
1

θn ) whereθ > 0
it is proved thatSθ = 1

θdθS1dθ[8]
whereS1 is the solution of the algebraic equation fourθ = 1 andS1(i, j) = (−1)i+jCj−1

i+j−1

S−1
1 C′ = [C1

n+1, C
n
n+1, . . . , C

n+1
n+1 ]′

3.2.1. proposition

Forθ large enough the dynamical system modeled by :

˙̂
X = f(X̂) + ug(X̂) + ζ(X̂) − θM−1d−1

θ S−1
1 C′(C1X̂ − Y ) [4]

wheref(X̂) = A1X̂ andg(X̂) = BX̂ is an exponential observer for the system[2].



3.2.2. Lemma

Forθ large enough the dynamical system modeled by :˙̂
Z = AẐ + ψ(Ẑ)u+ ω(Ẑ) −

θd−1
θ S−1

1 C′(CẐ − Y ) is an exponential observer for the system [3].

Proof of the Lemma

Let e = Ẑ − Z
ė = (A− θd−1

θ S−1
1 C′C)e+ (ψ(Ẑ) − ψ(Z))u + (ω(Ẑ) − ω(Z))

taking into accountθd−1
θ Adθ = A andCC ′dθ = C′C it follows

ė = θd−1
θ (A− S−1

1 C′C)dθe+ (ψ(Ẑ) − ψ(Z))u+ (ω(Ẑ) − ω(Z))
Let eθ = dθe
So ėθ = θ(A − S−1

1 C′C)eθ + dθ(ψ(Ẑ) − ψ(Z))u + dθ(ω(Ẑ) − ω(Z))
Consider the lyapunov function defined as :V (eθ) = e′θS1eθ

V̇ = θ(e′θ(S1A+A′S1)eθ −2e′θC
′Ceθ)+2e′θS1dθ((ψ(Ẑ)−ψ(Z))u+(ω(Ẑ)−ω(Z)))

SoV̇ = θe′θ(S1A+A′S1 − 2C′C)eθ + 2e′θS1dθ((ψ(Ẑ) − ψ(Z))u+ (ω(Ẑ) − ω(Z)))
from the algebraic equation we obtain :
V̇ = e′θ(−θS1 − θC′C)eθ + 2e′θS1dθ((ψ(Ẑ) − ψ(Z))u+ (ω(Ẑ) − ω(Z)))
ThenV̇ = −θV − θe′θC

′Ceθ + 2e′θS1dθ((ψ(Ẑ) − ψ(Z))u + (ω(Ẑ) − ω(Z)))
consequentlẏV ≤ −θV + 2λmax(S1)

√
n+ 1(L+ Lm)‖eθ‖2 WhereLm = ‖B‖umax

thus V̇ ≤ (2λmax(S1)
√

n+1(L+Lm)
λmin(S1)

− θ)V

By the Bellman-Gronwall lemma we deduce that :

V (t) ≤ V (0) exp(−(θ − 2λmax(S1)
√

n+1(L+Lm)
λmin(S1)

)t)
So
‖eθ(t)‖ ≤

√
V (0)

λmin(S1)
exp(−(θ − 2λmax(S1)

√
n+1(L+Lm)

λmin(S1)
) t
2 )

≤
√

λmax(S1)
λmin(S1)

‖eθ(0)‖ exp(−(θ − 2λmax(S1)
√

n+1(L+Lm)
λmin(S1) ) t

2 )

≤ σ(S1)‖eθ(0)‖ exp(−(θ − 2λmax(S1)
√

n+1(L+Lm)
λmin(S1)

) t
2 )

(σ(S1) =
√

λmax(S1)
λmin(S1)

)
Using the following inequality :
‖e(t)‖

θn ≤ ‖eθ(t)‖ ≤ ‖e(t)‖
one deduces

‖e(t)‖ ≤ θn‖eθ(t)‖
≤ θnσ(S1) exp(−(θ − 2λmax(S1)

√
n+1(L+Lm)

λmin(S1)
) t
2 )‖e(0)‖ [5]

Thus
for all θ ≥ 2λmax(S1)

√
n+1(L+Lm)

λmin(S1) ‖e(t)‖ tends to zero
Which ends the proof of the lemma
Proof of the proposition
We have :
˙̂
X = M−1 ˙̂

Z
Thus

˙̂
X = M−1(AẐ + ψ(Ẑ)u+ ω(Ẑ) − θdθS

−1
1 C′(CẐ − y))

= f(X̂) + g(X̂)u+ ζ(X̂) − θM−1dθS
−1
1 C′(C1X̂ − y)

= f(X̂) + g(X̂)u + ζ(X̂) − θM−1dθS
−1
1 C′(C1X̂ − Y )



We can prove that D is also invariant by the system [4]
However the gainM−1d−1

θ S−1
1 C′(C1X̂ − Y ) of the observer [4] could be explicitly

written as :

-θM−1d−1
θ S−1

1 C′(C1X̂ − Y ) =



P0(θ)C1(X̂ −X)
P1(θ)C1(X̂ −X)

...
Pn(θ)C1(X̂ −X)




WherePi(θ) is a polynomial of degree n+1
From the inequality [5] we getlimθ �−→+∞ Pi(θ)C1(X̂ −X) = 0 So

∀εi > 0∃θi > 0∀θ > θi‖Pi(θ)C1(X̂ −X)‖ < εi [6]

By choosing appropriateεi we can findθi such that∀θ > θi
˙̂
Xi(a0, a1, . . . , an) > 0 and ˙̂

Xi(b0, b1, . . . , bn) < 0
Then D is also invariant by the system (4)

3.3. observer for the model of three stages(n=2)

the equation of the model is expresed as :


Ẋ0 = −α0X0 +
∑2

i=1 filiXi −
∑2

i=0 piXiX0

Ẋ1 = αX0 − (α1 + q1E)X1

Ẋ2 = αX1 − (α2 + qnE)X2

Y = q1EX1 + q2EX2

[7]

The observer is given as :


˙̂
X0 = −α0X̂0 +

∑2
i=1 filiX̂i −

∑2
i=0 piX̂iX̂0 + θ3

α2
1
q2

(q1X̂1 + q2X̂2 − Y )
˙̂
X1 = αX̂0 − (α1 + q1E)X̂1 + (3 q1θ2

q2α − 3 q2
1θ3

q2
2α2 ) 1

q2
(q1X̂1 + q2X̂2 − Y )

˙̂
X2 = αX̂1 − (α2 + q2E)X̂2 + (3θ − 3 q1θ2

q2α + q2
1θ3

q2
2α2 ) 1

q2
(q1X̂1 + q2X̂2 − Y )

Y = q1EX1 + q2EX2

[8]

4. SIMULATION RESULTS AND DISCUSSION

One considers here a population with five stages age (n=4) :
Stage0 represents the abundance of juvenile ; stage1 represents the young adults abun-
dances without reproduction and cannibalism ; the stages2,3 and4 are adults abundances
with the same term of predation and the same proportion on the female mature but have
different reproduction rate (l2 ≤ l3 ≤ l4).).
The results obtained from the observer are illustrated by the example characterized by the
parameter value inspired from literature data [10]given in table1. one simulates two cases
with the inputE(t) = E. In order to show the effect of high gain, we first simulate the
proposed system with the high gainθ = 5 and the results are presented in figures 1 which
give time evolution of the stage ageXi and theirs estimateŝXi respectively fori = 0 to 2
. Then in Figures2 we give the simulation results with the high gainθ = 15. Both the two
values ofθ guarantees asymptotic convergence, and the second one shows good tracking
performances than the first.



stage i 0 1 2 3 4 stage i 0 1 2 3 4
pi 0.2 0 0.1 0.1 0.1 Mi 0.5 0.2 0.2 0.1 0.05
fi 0.5 0.5 0.5 α 0.8
li 0 10 20 15 αi 1.3 1 1 0.9 0.85
mi 0.5 0.2 0.2 0.2 0.2 Ē 1
qi 0 0 0 0.1 0.15 Xini 5 8 10 10 8
X̂ini 6 4 5 10 8

Tableau 1. simulation data
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(a)X0 andX̂0 time evolution forθ = 5
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(b)X1 andX̂1 time evolution forθ = 5
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(c)X2 andX̂2 time evolution forθ = 5

Figure 1. Convergence asymptotic of the observer with the high gain θ = 5 ("_ ") corresponds Xi and (". . .")

corresponds to X̂i
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(a)X0 andX̂0 time evolution forθ = 15
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(a)X1 andX̂1 time evolution forθ = 15
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(c)X2 andX̂2 time evolution forθ = 15

Figure 2. Convergence asymptotic of the observer with the high gain θ = 15 ("_ ") corresponds Xi and (". . .")

corresponds to X̂i



5. CONCLUSION

We are interested in constructing a simple observer for the harvested fish population
model structured in n ages classes, in an invariant domain using the Lie Derivative trans-
formation. The asymptotic state observer is explicitly formulated.
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