
1 - 1

1

DNS and BIND

Hal Pomeranz
Deer Run Associates

All material Copyright © Hal Pomeranz and Deer Run Associates, 2000-2004. All
rights reserved.

Hal Pomeranz * Founder/CEO * hal@deer-run.com
Deer Run Associates * PO Box 50638 * Eugene, OR 97405
+1 541-683-8680 (voice) * +1 541-683-8681 (fax)
http://www.deer-run.com/

More general information on DNS administration is available in the O'Reilly DNS
and BIND book, as well as at http://www.deer-run.com/~hal/dns-sendmail/

1 - 2

2

DNS/BIND Topics

! Introduction to DNS/BIND

! Split-Horizon (“Split-Brain”) DNS

! Configuring BIND for Security

! Running a Name Server chroot()ed

! Other Interesting Topics (time???)

The Introduction is a quick introduction to the Domain Name Service and BIND
plus an overview of common vulnerabilities in past and present DNS and BIND
implementations.
Split-Horizon DNS discusses the theory behind presenting one version of your DNS
information to the outside world and a completely different view internally– why
and when this is useful and some architectural issues with such a configuration.
Configuring BIND for Security presents specific configuration examples for the
DNS architecture introduced in the Split-Horizon DNS section, and introduces many
of the new security features in BIND v8/v9.
Running a Name Server chroot()ed presents additional hints on administering
BIND, including how to run BIND without superuser privileges and in a
chroot()ed environment.
Finally, there's another section with a couple of Other Interesting Topics (not
directly security related) that we can look at as time allows.

1 - 3

3

Introduction

The Introduction is a quick introduction to the Domain Name Service and BIND
plus an overview of common vulnerabilities in past and present DNS and BIND
implementations.

1 - 4

4

What is DNS?

! The Domain Name Service maps host
names to IP addresses and vice versa

! Can contain other information as well

! Global database
– Distributed
– Hierarchical

The Domain Name Service (DNS) is the mechanism that Internet hosts use to
determine the IP address which corresponds to a given hostname. For example, if
your Web browser wishes to reach the home page for the SANS Institute it must
first determine the IP address for www.sans.org. This IP address is then used as
the destination address in the packets which your client sends to communicate with
the remote server.
Conversely, the Web server at www.sans.org will receive the IP address of your
machine as the source of these packets and will most likely attempt to determine the
hostname which corresponds to this IP address. Again, DNS is the mechanism
which www.sans.org will use to make this determination.
DNS is also the mechanism which most companies use within their organization to
distribute information about hosts. DNS can contain more information than just
hostnames and IP addresses– for example DNS can store information about the type
of machine and OS platform (HINFO records), general "free-form" information
about machines (TXT records), and many other types of data. In particular, DNS
usually provides both internal and external machines with information about how e-
mail is to be routed to a given organization (MX records).
DNS is fundamentally a distributed database system– each organization maintains
its own local information. These distributed collections of information are linked in
a hierarchical fashion, which is more easily demonstrated pictorially… (see next
slide)

1 - 5

5

How It Works

Let us suppose that your local client wishes to learn the IP address of
www.sans.org. Your client contacts a local name server which has been
configured on the local client by the administrator (either statically or via DHCP,
etc.). Your local DNS server actually does all of the work required to resolve the IP
address and then will hand the result back to the client.
The local name server first attempts to contact one of the several root name servers
that have been deployed on the Internet. Root name servers maintain a mapping
between domains (sans.org) and name servers (ns1.sans.org)– when your
local name server asks for the IP address of www.sans.org, it receives a referral
from the root name servers which essentially says "unable to answer your question,
but here is the name/address of somebody who can". In order to be able to contact a
root name server, your local name server must be statically configured with the
names and IP addresses of the available root name servers. This information is
maintained by the InterNIC and downloaded by the administrator into a static file
on the local name server.
Having received the names and IP addresses of the name servers for sans.org
from the root name server, your local name server then contacts one of these
machines and asks for the IP address of www.sans.org. The name server for
sans.org returns the IP address to your local name server and the local name
server hands the information back to your client.

1 - 6

6

What is BIND?

! The Berkeley Internet Name Daemon is
the reference implementation for DNS

! Freely available, maintained by the
Internet Software Consortium

http://www.isc.org/products/BIND/

BIND stands for Berkeley Internet Name Daemon. From its creation, BIND has
been the reference implementation for DNS on the Internet and is the basis for the
DNS implementation provided with most modern operating systems.
For much of the 80s and 90s, BIND was developed and maintained by Paul Vixie.
When Paul co-founded the Internet Software Consortium, BIND was one of the first
applications to be supported by this new group. Paul continues to be the primary
maintainer for BIND v4 and BIND v8, but BIND v9 development is a team effort
under the auspices of the ISC.

1 - 7

7

Common Security Issues

! Giving away too much information

! Buffer overflows

! Cache Poisoning

The primary risk with running DNS is that you give away too much information–
information that can be used by people who wish to attack your systems and
networks. Specific examples are given in the upcoming slides.
BIND has historically had buffer overflow problems in various releases. Some have
led to root compromise attacks, others have simply been denial-of-service type
attacks. The best defense against these attacks is to stay up to date on the version of
BIND you are running, though the Running a Name Server section suggests how to
configure BIND to run in a chroot()ed environment, which can help protect you
in the event of an exploitable buffer overflow.
Cache poisoning occurs when a name server has been tricked into believing
erroneous information from some external source. Sometimes this occurs by
accident, but most often it is used by attackers who wish to embarrass an
organization or exploit trust relationships based on hostname/address information.
More on this in an upcoming slide.

1 - 8

8

Too Much Info – Public/Private

! Other organizations don’t need to know
that much about you:
– Addresses of your public servers
– How to route e-mail to you

! Other info is useful to your internal
users– and people attacking you!

Your DNS database contains information about all of the machines in your
organization. In particular, machine names and other information (HINFO and
TXT records) may help an attacker locate machines which are most critical to the
functioning of your organization or which can be easily targeted for attack– for
example, a machine called proxy.yourdomain.com might be interesting to an
attacker wishing to penetrate the interior of your network or anonymize their attacks
on other Internet hosts.
Generally, the outside world needs to know very little information about your
network. At a minimum, you need to advertise hostnames and IP addresses of a
limited set of "public" servers: name servers, e-mail servers, Web and FTP servers,
etc. In a perfect world, an organization would be able to present one set of
information to the outside and reserve a full, rich set of information for internal
consumption– this is the theory behind split-horizon DNS which will be covered in
an upcoming section.

1 - 9

9

% dig @ns1.sans.org version.bind txt chaos

; <<>> DiG 8.3 <<>> @ns1.sans.org version.bind txt chaos

; (1 server found)

;; res options: init recurs defnam dnsrch

;; got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34912

;; flags: qr aa rd ra; Ques: 1, Ans: 1, Auth: 0, Addit: 0

;; QUESTIONS:

;; version.bind, type = TXT, class = CHAOS

;; ANSWERS:

VERSION.BIND. 0 TXT "8.3.4“
[…]

Too Much Info – BIND Version

It is possible to query a running name server and retrieve the embedded version
number string from the remote machine. Since there are known vulnerabilities in
most older releases of BIND, this information can help an attacker target your
machines. As we will see, BIND v8 (and later) allows the administrator to easily
change the version number string to fool attackers.

1 - 10

10

Too Much Info – Zone Transfer
! Your backup name servers transfer

DNS info from your master servers
! Attackers try to do the same in order to

gather info about your network

Block Unauthorized Zone Transfers!

Generally, each organization runs one master DNS server and one or more slave
servers for redundancy. Periodically, the slaves must contact the master and
download any updates to the local DNS database– this is referred to as a zone
transfer. By default, name servers running BIND allow any remote system to
perform a zone transfer– whether that system is a legitimate name server for that
domain or not. Zone transfers can even be requested from the slave name servers
for your domains.
Attackers often attempt zone transfers in order to gather information about your
local network. If they succeed then they have instantly gotten all of the information
about your internal hosts and networks with very little effort. Of course, a split-
horizon DNS configuration can limit the amount of information an attacker will
receive, but it is still a good idea to prevent unauthorized hosts from downloading
your zone databases. In a later section we will see how to configure BIND to
restrict zone transfers, but it is also a good idea to block this activity at your firewall
as well.

1 - 11

11

Cache Poisoning – Old Style

The classic cache poisoning attack is triggered when a vulnerable name server
makes a query against some evil name server owned by the attacker. The attacker
often triggers this initial query externally by connecting to some service on the
vulnerable name server (or one of the hosts which use the vulnerable name server as
their local name server)– this can cause an IP address to hostname lookup against
the evil name server.
The vulnerable name server makes an innocent query against the evil name server
and the evil name server hands back the proper response plus some extra
information. Older versions of BIND (yet another reason to stay up to date on
BIND releases) would put this extra information in their cache– potentially
overwriting information that they had learned from their own local zone databases.
In the example above, the evil name server has poisoned the cache on
ns1.sans.org, convincing this machine that the IP address of www.sans.org
is 10.10.10.10 (an invalid IP address). When any other machine queries
ns1.sans.org for the IP address of www.sans.org they will get the invalid
address and be unable to reach the real Web server for sans.org. Imagine, however,
that the attacker had used an address which corresponded to a hard-core
pornographic site (embarrassment) or an IP address which corresponded to a Web
site owned by the attacker (man in the middle attack).
Note: the idea for the design of this slide comes from Judy Novak (thanks Judy!)

1 - 12

12

Cache Poisoning – Spoofing

Generally, the way to poison DNS caches these days is with a simple spoofing
attack. DNS responses are essentially unauthenticated, so if an attacker can create
and send a legitimate looking response before the "real" name server that was
queried can respond, then the host doing the lookup will happily accept the forged
response containing bogus information.
The only problem from the attacker's perspective is that each DNS query goes out
with a unique query ID number– the attacker's bogus response must include this ID.
So, the attacker must typically first sniff the outgoing request and then incorporate
the stolen query ID number into the bogus request. Obviously, the attacker must
also forge the source IP address of the bogus response to make it appear that the
packet comes from the remote name server that was queried.
Early releases of BIND used very predictable query ID numbers– making it possible
for attackers to spoof responses without first sniffing the outgoing query. More
recent releases of BIND have better randomization algorithms (so stay up-to-date!).
One of the draft standards working its way through the IETF is the "DNSSec"
standard which implements digital signatures for authenticating DNS responses.
Once DNSSec becomes widely implemented (BIND v9 actually includes a working
DNSSec implementation), this spoofing issue should go away.
Zodiac is a tool which actually implements this sort of DNS spoofing. For more
information on Zodiac, see:

http://www.team-teso.net/projects/zodiac/

1 - 13

13

Split-Horizon DNS

Split-Horizon DNS discusses the theory behind presenting one version of your DNS
information to the outside world and a completely different view internally– why
and when this is useful and some architectural issues with such a configuration.

1 - 14

14

What Is Split-Horizon?

! Present one version of DNS info to the
outside, keep a different copy inside
– Outside gets “bare-minimum” information
– Inside sees complete set of DNS records

! Implies that you are running two
different sets of name servers

! Can be combined with DNS proxying

As discussed earlier, giving away too much DNS information to the outside world
can help attackers map your networks or choose vulnerable or otherwise
"interesting" machines to target for initial attacks. Split-horizon (sometimes called
split-brain) DNS is a DNS configuration where an organization presents one set of
DNS information to external organizations and reserves a second, separate set of
DNS information for internal use. This is generally done by maintaining two
different collections of name servers: an "external" set which publishes the limited
amount of DNS information that external organizations need to interact with your
company, and an "internal" set which holds your complete, rich set of DNS
information. Note that while the separate DNS zone databases are generally
maintained on two different sets of physical machines (and this is the configuration
we shall describe in this course) it is possible under BIND v8 to run to different
name servers with different zone databases on the same machine.
When your internal name servers wish to resolve external host names they must
contact root name servers and name servers at other Internet-connected sites. This
can open up your internal name servers to attack from the outside. For this reason,
many organizations that run split-horizon DNS also employ a sort of DNS proxying
(slave forwarding name servers) to "hide" their internal name servers completely
from the outside world.

1 - 15

15

Digression: IP-Based Auth…

! Remote server receives your IP address
as the source of a connection

! Remote server does a DNS lookup to
map your IP address to a hostname

! Server then does a DNS lookup to map
that hostname to an IP address

! If this address doesn’t match the
original address, access is denied

One common simple form of authentication used by some Internet servers (often
FTP daemons, and services protected with TCP Wrappers) uses a combination of
reverse (IP to hostname) and forward (hostname to IP) DNS lookups. A remote
server will take the IP address it receives as the source of a connection and reverse
that address to a hostname. Looking up this hostname yields an IP address. If the
original address received as the source of the connection doesn't match the IP
address retrieved from DNS, then the remote server assumes the connection comes
from an attacker trying to spoof IP addresses and/or DNS information and will not
allow the remote machine to connect.

1 - 16

16

… Split-Horizon Implications

! You must advertise all hosts which are
able to connect directly to the Internet

! Thus, split-horizon is generally useful
only if NAT or proxy servers are used

! Split-horizon is sometimes useful even
when all hosts must be advertised

The implication of this form of authentication is that sites should maintain both
forward and reverse DNS information for all hosts that are capable of connecting
directly to the Internet. This information must be made available in your "external"
DNS database in a split-horizon configuration.
Unfortunately, if all of your hosts can connect directly to the Internet, that means
that you have to advertise information about all of your machines in your external
split-horizon database– largely nullifying the usefulness of a split-horizon
configuration. On the other hand, if your organization uses Network Address
Translation (NAT) or proxy servers, you generally only have to advertise
information about your NAT pool or proxy servers and split-horizon is useful.
Note that even if you have to advertise information about all of you internal hosts,
you don't need to tell the outside world your HINFO or TXT records, so split-
horizon can be somewhat useful. It is also sometimes useful to present one set of
mail routing information (MX records) to the outside world and have a different
configuration internally.

1 - 17

17

Typical Firewall Architecture

Here is a diagram of a simple, but fairly typical firewall configuration in use at
many organizations today. The organization has a multi-legged firewall which
connected the external Internet to both a semi-private de-militarized zone (DMZ)
network and a private internal corporate network. The DMZ network is where an
organization would put its Web and FTP servers and any other machines that the
outside world needed to reach– and for purposes of this example a machine called
bastion which will be the "external" DNS server for our split-horizon example.
On the internal network there is a machine mailhub which acts as the primary
server for the "internal" DNS.

1 - 18

18

Most Restrictive Assumptions

! Architecture prevents Internet hosts
from connecting to internal machines

! All inward packets are stopped on DMZ
! Internal hosts can't reach Internet hosts
! mailhub can reach bastion
! bastion has a hardened OS
! mailhub may be hardened

For purposes of example, we shall assume the most restrictive possible firewall
configuration– assuming you have a working configuration for this environment,
you can easily adapt the configuration for your own (less restrictive) firewall setup.
In particular, we assume that hosts on the Internet can only route packets to hosts on
the DMZ network and that the DMZ is the only network that is allowed to
communicate with the internal corporate network. Internet machines are not
allowed to communicate with "internal" machines and vice versa.
It’s a good idea to spend effort removing dangerous services (read: everything not
absolutely needed for mail and DNS transport) from the bastion host.
Everybody in the world will be trying to break into this system. But it's also a good
idea to harden your internal infrastructure servers (like the mailhub machine in
this example) against both potential remote attacks and against the insider threat.

1 - 19

19

DNS – Goals

! bastion is DNS for external hosts:
– Contains limited zone information
– MX records to force mail to bastion

! mailhub is internal name server:
– Contains richer set of information
– Internal-only subdomains may exist

Again, the idea is that the external DNS for your organization will contain the bare
minimum necessary for your organization to successfully conduct business on the
Internet. It should not advertise internal hostnames, hardware or operating system
information (HINFO and TXT records), and the like since this information could be
useful to crackers trying to penetrate your network.
The internal DNS information at your site will contain complete information for
your domain including useful host aliases, subdomain information, and system
information. This DNS information will only be visible to hosts owned by your
organization.

1 - 20

20

DNS – Gotchas

! mailhub may not be able to reach
external DNS– must rely on bastion

! bastion may need to resolve local
domain from mailhub to handle mail

! If so, mailhub must be authoritative for
all subdomains of local domain

This is a very restrictive environment to work in (remember that there is a trade-off
between security and ease-of-use). Since your internal hosts aren’t able to reach
other hosts on the Internet, they have to rely on the bastion host to make proxy
DNS requests on their behalf.
On the other hand, bastion may not have enough DNS information locally to
properly deliver inbound mail. It needs to be able to query the name server on the
internal mailhub in order to get at the richer set of DNS information available to
internal hosts. Note that there is no difficulty in having a host run a name server
locally but get DNS information from a completely different machine.
One very unexpected item is that whatever internal DNS server your external
mailhub relies on must have complete and authoritative information for every
domain and subdomain in your organization. Because most of your DNS
information will be for internal consumption only, the standard mechanisms for
tracking down authoritative zone information break down, and so your external
mailhub must be able to get authoritative information on its first query.
In reality, if the bastion is only exchanging mail with mailhub, you could put
mailhub in bastion's /etc/hosts file and have bastion just use its own
name server for all other queries (for hosts outside the company). It's likely,
however, that your mail architecture may change in the future and allowing
bastion to resolve any internal hostname is probably a good idea for long-term
maintainability.

1 - 21

21

Configuring BIND

Configuring BIND presents specific configuration examples for the DNS
architecture introduced in the Split-Horizon DNS section, and introduces many of
the new security features in BIND v8/v9.

1 - 22

22

BIND v8 or BIND v9?

! BIND v8 is the "stable" release train
! BIND v9 is the "engineering" version:

– New features (DNSSec, IXFR, IPv6, …)
– Easier to chroot() (no named-xfer)
– Feels slower/fatter than BIND v8

! Probably easiest to stick with the one
that comes with your OS…

There are actually three different versions of BIND running around currently. BIND v4 is
deprecated and only updates for critical security fixes are being produced. If you are still using
BIND v4 for some reason, you should definitely upgrade to a newer version.
BIND v8 is the current "stable" release of BIND that ships with many of the commercial Unix
distributions. BIND v9, on the other hand, is the version where new extensions to the DNS protocols
are being implemented (although in some cases, this functionality is being back-ported to BIND v8
as well). Most of the Open Source operating systems seem to be shipping with BIND v9.
Generally speaking BIND v9 is "less stable" than BIND v8, but it seems to run with few or no
problems. BIND v9 does appear to be noticeably slower and more resource intensive than BIND v8,
though I've not done any formal benchmarking between the two versions.
As a minor note, it's generally easier to chroot() BIND v9 servers. This is because BIND v8
requires the external named-xfer program for doing zone transfers when you're a slave name
server. So not only do you need to copy this program into your chroot() directory, but you also
need the shared libraries that this program depends on. BIND v9 has the named-xfer
functionality built into the master daemon, so there's no need for an extra program in the chroot()
directory structure.
The reality is that it's probably easiest for most sites to use the version of BIND supplied by their OS
vendor. If you prefer to build your own version from source, my recommendation is to run BIND v8
unless you particularly need the new features in BIND v9. I'm not convinced we've flushed as many
security problems out of the BIND v9 source base as we have in BIND v8.

1 - 23

23

bastion– named.conf (1)

options {
directory "/etc/namedb";

version "like nothing you have ever seen";
allow-transfer { 207.90.181.1; 207.90.181.2; };

allow-recursion { 10.1/16; 216.15.51/24; };
use-id-pool yes;

};

zone "." {

type hint;
file "named.ca";

};

(slide 1 of 3)
This is the new BIND v8 syntax configuration file. If you have old v4
named.boot files, you can convert them to v8 named.conf files with the
named-bootconf.pl script provided in the src/bin/named directory. Note
that the format of the zone database files did not change, so you can keep using any
old zone files you have lying around.
The options block applies globally to the rest of the configuration. The
directory statement means that all other filenames are relative to
/etc/namedb (e.g. /etc/namedb/named.ca). In fact, directory
actually changes the value of DESTRUN, the default working directory for BIND.
As demonstrated earlier, it is possible for outsiders to query your running name
server and find out what version of BIND you are running. Since certain versions of
BIND have known vulnerabilities, you want to hide what version your name servers
are running. The version option allows the administrator to specify an arbitrary
string instead of the actual BIND version number. In this example the attacker will
know you're running at least BIND v8, but not what version– theoretically, you
could change the version string to be a valid version string for an earlier version
(e.g. "4.9.7") to confuse attackers.
You should use the allow-transfer option to restrict zone transfers to only
those machines which are legitimate secondary servers for your domains. Note that
you should also configure your firewall to block zone transfers from the outside
world as an extra layer of security.

1 - 24

24

bastion– named.conf (2)

options {
directory "/etc/namedb";

version "like nothing you have ever seen";
allow-transfer { 207.90.181.1; 207.90.181.2; };

allow-recursion { 10.1/16; 216.15.51/24; };
use-id-pool yes;

};

zone "." {

type hint;
file "named.ca";

};

(slide 2 of 3)
Normally a name server receives a request from an external name server, responds
with the best information it has, and does no further work-- this is a non-recursive
(sometimes referred to as an iterative) query. However, client resolvers (and
sometimes other name servers as we'll see in a moment) generally do recursive
queries when communicating with their local name server– that is, they rely on their
local name server to do all the work required to look up a given piece of information
(including contacting root name servers and name servers at other organizations).
Generally, only machines that you own should be making recursive queries via your
name server– the allow-recursion option specifies the ranges of IP addresses
which are allowed to do recursive queries via this name server. If you allow
outsiders to do recursive queries via your name servers, you make yourself more
vulnerable to certain types of cache poisoning attacks.
Note that version, allow-transfer, and allow-recursion options are
most appropriate for your external name servers. You can apply them to your
internal name servers as well, but you may find this more of an administrative
hassle than anything. Aside from having to maintain the lists of IP addresses in the
allow-transfer and allow-recursion options, it is occasionally useful to
be able to query your own internal name servers and find out what version of BIND
they're running (so you know which ones to upgrade).

1 - 25

25

bastion– named.conf (3)

options {
directory "/etc/namedb";

version "like nothing you have ever seen";
allow-transfer { 207.90.181.1; 207.90.181.2; };

allow-recursion { 10.1/16; 216.15.51/24; };
use-id-pool yes;

};

zone "." {

type hint;
file "named.ca";

};

(slide 3 of 3)
The use-id-pool option became available in BIND v8.2. It causes your name
server to use a better randomization algorithm for choosing query ID numbers (this
is the default for BIND v9, so this option is not needed on BIND v9 servers).
Remember that attackers sometimes try and guess query ID numbers as part of DNS
spoofing attacks, so anything you can do to make their jobs harder is a good idea.
The latest version of the named.ca file is available from the InterNIC as

ftp://ftp.rs.internic.net/domain/named.ca

1 - 26

26

More of named.conf on bastion

zone "sysiphus.com" {

type master;

file "sysiphus.hosts";

};

zone "51.15.216.in-addr.arpa" {

type master;

file "sysiphus.rev";

};

Now, for each zone, we specify whether this name server is the master server for
the domain (primary server in BIND v4 speak) or a slave (secondary
server). Then we give a filename (again, relative to /etc/namedb) where the
zone data can be found.
The in-addr.arpa domain is where you maintain the mappings between IP
addresses you own and hostnames. Read the domain from right to left– we are
saying that bastion is the master server for all addresses in the 216.15.51.0
network.
Note that sysiphus.com is an example domain used in this course. Be sure to
replace it with your local domain name when you get back to the office!

1 - 27

27

bastion– sysiphus.hosts

; Local domain configuration for external DNS
@ IN SOA bastion.sysiphus.com. hostmaster.sysiphus.com. (

1999031300 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily
3600 ; Retry after failure - hourly

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS bastion.sysiphus.com.
IN NS ns1.alameda.net.

IN NS ns2.alameda.net.

IN MX 10 bastion.sysiphus.com.
* IN MX 10 bastion.sysiphus.com.

The SOA (“Start of Authority”) record defines global properties for your domain
and lists contact information for the domain (hostmaster.sysiphus.com
instead of hostmaster@sysiphus.com since @ is a restricted character).
Generally speaking, the values in the SOA record above are appropriate for sites that
don't make a great deal of DNS updates-- your external DNS should be relatively
static. Don't forget to increment the serial number value every time you make
changes to your DNS information (here we're using a date-based serial number: the
last two digits are provided in case you make more than one update on a given day).
You should always have at least two advertised name servers for your domain, just
in case the network partitions. If these hosts can be situated on two different major
service provider networks, so much the better. Note that the name servers listed
above belong to the author's (former) ISP– please do not advertise these name
servers as slave servers for your domain!
The MX (“Mail Exchanger”) records are sending all mail for sysiphus.com and
*.sysiphus.com to bastion. Wildcard MX records are dangerous if you're
not using split-horizon DNS, but administratively convenient unless you have some
automated mechanism for maintaining your DNS tables.

1 - 28

28

sysiphus.hosts (2)

; host info below

bastion IN A 216.15.51.194

ns IN CNAME bastion

mail IN CNAME bastion

server IN A 216.15.51.195

www IN CNAME server

ftp IN CNAME server

Here are some standard forward address records that might appear in your external
DNS information. A CNAME (canonical name) record is a mechanism for setting up
an alias for a given machine. Note that we use CNAMEs to associate functional
names with specific machines– we could just as easily have configured multiple A
records all pointing at the same IP address. While religious debate runs hot and
heavy about whether CNAMEs or A records should be used in these situations, the
reality is that it fundamentally doesn't matter– there is no substantial technical
reason to prefer one over the other.

1 - 29

29

bastion– sysiphus.rev

; Reverse address lookups for external DNS

@ IN SOA bastion.sysiphus.com. hostmaster.sysiphus.com. (

1999031300 ; Serial - year/month/date/revision
86400 ; Refresh from server - daily

3600 ; Retry after failure - hourly

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS bastion.sysiphus.com.

IN NS ns1.alameda.net.

IN NS ns2.alameda.net.
195 IN PTR server.sysiphus.com.

194 IN PTR bastion.sysiphus.com.

This file is very similar to the sysiphus.hosts file except that it contains PTR
records instead of A and CNAME records. Note that the leftmost column of the PTR
record entries reverses the order of the octets of the hosts’ addresses. The trailing
dot at the end of the PTR record is vitally important.

1 - 30

30

mailhub– named.conf

options {

directory "/etc/namedb";

forwarders { 216.15.51.194; 216.15.51.194; };

forward only;

};

zone "." {

type hint;

file "named.ca";

};

Remember that we are assuming our internal name server is unable to reach Internet
connected hosts for DNS information. The forwarders lines cause the internal
name server to send all external DNS queries to bastion to be resolved. In the
event the query fails, the local server would normally attempt to contact a remote
name server, but the "forward only" directive prevents this behavior.
Note that we are listing the IP address of bastion twice in the forwarders
directive. The timeout on forwarders queries is actually shorter than the
timeout on the normal DNS queries made by the external machine bastion.
Hence we list the IP address of bastion twice so that the local server will retry in
the event it fails to get a response to its first query.
In the "real world" of course, you would probably have multiple external name
servers to forward queries to in order to provide some redundancy. If you had name
servers A, B, and C to list in your forwarders directive, you are probably better
off listing their IP addresses { A; B; C; A; B; C; } rather than { A; A;
B; B; C; C; }. After all, the most likely reason to not get a response to your
first query is that machine A is down, so you want to try another name server first
before re-trying server A.
All other configuration statements in this part of the file are the same as they were
on the bastion host.

1 - 31

31

mailhub– named.conf (2)

zone "sysiphus.com" {

type master;

file "sysiphus.hosts";

};

zone "1.10.in-addr.arpa" {

type master;

file "sysiphus.rev";

};

This section of the file defines the zone files for the internal copy of the
sysiphus.com zone and the in-addr.arpa domain for the internal network
(remember the zone file names are relative to /etc/namedb). The main
drawback to split-horizon DNS is that some information is necessarily duplicated
between the internal and external versions of the sysiphus.com zone–
primarily address information for the external "public" servers. Some sites choose
to develop scripts which automatically dump out the "external" zone information
from the internal zone files in order to avoid mistakes where one copy of the
information is updated and not the other.

1 - 32

32

mailhub– named.conf (3)

zone "eng.sysiphus.com" {

type slave;

file "eng.zone";

masters { 10.1.64.254; };

};

zone "corp.sysiphus.com" {

type slave;

file "corp.zone";

masters { 10.1.128.2; };

};

In this section of the file we see some internal domains that are not known to the
outside world. In this case mailhub is a slave server of these domains and gets
its zone information from some other internal master nameserver.
Remember the zone file names are relative to /etc/namedb.

1 - 33

33

Running chroot()ed

Running a Name Server presents additional hints on administering BIND, including
how to run BIND without superuser privileges and in a chroot()ed environment.

1 - 34

34

Configuration Options

! BIND v8 and later allows named to run
without superuser privileges

! BIND v8+ can also be run chroot()ed

! Can help protect against buffer overruns
and other compromise attacks

! More difficult setup and management

One of the improvements that appeared with the release of BIND v8 was the ability
to run your name server as some user other than root. This means that in the event
of a successful buffer overflow attack or other remote compromise, the attacker will
only have the privileges of some non-root user. This is a significant security
enhancement.
BIND v8 and later also allow the name server to be run in a captive chroot()ed
environment. This means the attacker will only be able to manipulate files in the
chroot()ed environment even if they successfully subvert your name server
daemon.
As we will see, setting up this environment is somewhat complicated– but not that
bad if somebody figures it out for you!

1 - 35

35

Prepare Base Directory

cd /var

mkdir bind

cd bind

mkdir –p dev etc var/run maps/master

chown –R root:root /var/bind

chmod –R 111 /var/bind

mkdir –p var/run/named maps/slave

chown named:named var/run/named maps/slave

chmod 700 var/run/named maps/slave

Note that in this section we will be showing a Red Hat Linux specific configuration
procedure using BIND v9 (the default version that ships with Red Hat). Note also
that this procedure assumes you have already set up an unprivileged named user
and group ID, which is the default for Red Hat. You will need to be the super user
to perform these configuration steps.
First we need to create the basic chroot()ed directory hierarchy we will be using
for the name server. You can put this directory structure anywhere in your file
system that you wish– in this case, we will be rooting our tree under /var/bind.
We wish to make the directory permissions as restrictive as possible. In particular,
any directories that we don't want the name server to write into should be owned by
root (since the name server will be running as our unprivileged named user).
Also, most directories should simply be mode 111 (only the execute bit set) so that
the named user can read files inside the directories, but not get directory listings.
However, there will need to be a couple of directories where the named user can
actually write data. /var/run/named will be used as a default working
directory for the name server (core files and debugging info go here) and is where
the Red Hat named drops its named.pid file. We also need a directory where
slave zone files can get written (assuming we're a slave name server– otherwise this
directory is not needed).

1 - 36

36

Some Other Basic Items

cd /var/bind/etc

cp /etc/rndc.key rndc.key

chown named:named rndc.key

chmod 400 rndc.key

cp /etc/localtime localtime

chown root:root localtime

chmod 444 localtime

cd /var/bind/dev

mknod random c 1 8

chown root:root random

chmod 644 random

The name server needs some additional configuration files to function properly.
The localtime file contains information about the machine's local time zone and
ensures that log file time stamps appear to be correct for the local time zone. The
rndc.key file is a random session key used by the secure DNS administration utility
that ships with BIND v9. These files should just be copied out of the standard
system configuration directories.
The name server also needs a copy of the system /dev/random device to function
properly. The arguments to mknod are a c indicating that this is character-special
device file (don't worry about what this means) and the major and minor device
numbers appropriate for the device. All of this information (plus the proper
permissions and ownership for this device) can be gathered by doing an ls –l
/dev/random and then copying the parameters into the mknod command.

1 - 37

37

Dealing with Logging

! Logging normally happens via the
/dev/log pseudo device

! Need syslogd to create a copy of this
device in the chroot() area:
– Edit /etc/sysconfig/syslog
– Add "–a /var/bind/dev/log" to
SYSLOGD_OPTIONS

– Run /etc/init.d/syslogd restart

On many Unix systems, local logging happens via the /dev/log "device".
Actually this is not a real device file at all, but instead is a named pipe created by
the Syslog daemon. So for logging to happen in our chroot() directory, we need
Syslog to create a copy of this device under /var/bind/dev.
Use the –a option to specify the location of an extra copy of this pseudo-device
(any number of –a options can be specified on the command line). For Red Hat
systems at least, this option can be specified via the SYSLOGD_OPTIONS variable
in /etc/sysconfig/syslog. Once this file has been updated, just restart
syslogd.

1 - 38

38

Final Setup

cd /var/bind

mv /etc/named.conf etc

chmod 644 etc/named.conf

chown root:root etc/named.conf

mv /etc/namedb/* maps/master

chmod 644 maps/master/*

chown root:root maps/master/*

We need to move named.conf to the chroot()ed hierarchy since named
chroot()s itself before even opening the named.conf file. It turns out we will
have to make some modifications to named.conf for the directory structure in
chroot()ed environment (see next slide).
We want to make sure that the primary zone files (stored in
/var/bind/maps/master) and the named.conf file cannot be overwritten
in the event of a name server compromise, so we make them owned by root and
not the named user. However, these files must be readable by the named user, so
that the name server can load information from them when it starts up.

1 - 39

39

Change named.conf

options {
directory "/var/run/named";

version "like nothing you have ever seen";
allow-transfer { 207.90.181.1; 207.90.181.2; };
allow-recursion { 10.1/16; 216.15.51/24; };

};

zone "." {
type hint;

file "/maps/master/named.ca";

};

[…]

Recall earlier we mentioned that the directory option actually changes the default
working directory for BIND (the value of DESTRUN that was compiled into the
binary). If we want our chroot()ed name server to write its debugging files in
some particular location, we need to set the directory option appropriately.
However, changing the directory option means we need to use absolute
pathnames in all of our zone declarations, rather than relative pathnames.
Note that since named chroot()s prior to reading named.conf, all of the
pathnames listed here are rooted within the /var/bind directory– i.e.,
/var/bind/var/run/named and /var/bind/maps/master/named.ca.

1 - 40

40

Starting the Name Server

! Starting the server by hand for testing:
/usr/sbin/named -u named –t /var/bind

! Making the change "permanent":
– Edit /etc/sysconfig/named
– Set ROOTDIR=/var/bind
– The "-u named" option is on by default
– Be sure to "chkconfig named on"

You can start the chroot()ed named from the command line as shown above.
The –u option specifies the user ID that the name server should run under, and –t
specifies the root of the chroot()ed hierarchy.
Note that you will have to make appropriate modifications to your boot scripts so
that the chroot()ed name server is started at boot time as well. On Red Hat
systems, you can set the chroot() directory path using the ROOTDIR variable in
/etc/sysconfig/named. On Red Hat systems at least, starting the name
server as an unprivileged user is the default configuration– you might have to make
modifications on other Unix variants to run named as a non-root user.

1 - 41

41

Other Topics

Just a couple of other quick hacks that you might find useful…

1 - 42

42

Non-Security Related Matters

1. Handling reverse lookups when you've
got less than a /24 address block

2. Using DNS to block web advertising

As Internet address space becomes more scarce, you see people getting smaller and
smaller netblocks from their ISPs. One question I get frequently is how to handle
reverse DNS lookups (IP address to hostname mappings in the in-addr.arpa
domain) in this situation. So we'll look at the standard hacks for dealing with that.
I've recently gotten fed up with all the blinking, flashing, singing, dancing web
advertising and pop-up windows on most Internet web sites. If you run your own
local DNS servers, you can actually use DNS to filter out a huge amount of this
nonsense. More on this at the end of this section.

1 - 43

43

Classless in-addr.arpa
Delegations (i.e., "The Problem")

! The in-addr.arpa domain must be
delegated on octet boundaries

! Nobody is giving out /24 ("Class C")
chunks of address anymore

! How can you manage your own reverse
lookups in this case?

OK, suppose you've been handed a /27 netblock by your ISP (32 addresses) but you want to
control your own reverse lookup domain. The bad news is that normal in-addr.arpa
delegations can only happen on octet boundaries, so unless you've got a /24 or better, you're
in trouble. However, some interesting hacks have developed over the years to deal with this
issue…

1 - 44

44

Possible Solutions

! ISP permits customers to edit reverse
lookup entries via Web page, etc.

! Use method documented in RFC2317

! Use simpler method presented here…

Some ISPs just set up a web form (or other mechanism) to allow customers to
manage their own reverse lookups. Basically this is a web form that results in
information being changed on the remote ISP's servers. Assuming such access is
handled in a secure fashion, this is not an unreasonable approach.
However, sometimes the ISP would prefer to not be bothered and offload the upload
responsibility to the customers' servers. Customers may prefer to be more in charge
of their own destiny as well. RFC2317 documents one mechanism that allows ISPs
to offload this problem onto their customers. This RFC documents a procedure that
is really just an updated version of a technique that's been around for some time.
Frankly, I think the procedure as documented in the RFC is unnecessarily tricky. Or
maybe I just prefer the first way I learned to do this…

1 - 45

45

The "Old School" Method
! Assume you've got 192.168.1.0/27

! In 1.168.192.in-addr.arpa (ISP):
0 IN CNAME 192-168-1-0.sysiphus.com.

1 IN CNAME 192-168-1-1.sysiphus.com.

…

31 IN CNAME 192-168-1-31.sysiphus.com.

! In sysiphus.com (you):
foo IN A 192.168.1.1

192-168-1-1 IN PTR foo.sysiphus.com.

Let's suppose you've been given the netblock 192.168.1.0/27– in other words, you
own IP addresses 192.168.1.0 through 192.168.1.31.
Now your ISP controls the DNS reverse lookup domain for this network, which is
part of the 1.168.192.in-addr.arpa zone. Your ISP populates their DNS
zone file for this domain with a CNAME record for each individual IP address, which
points to a record with a particular naming convention in their customer's normal
DNS domain. The result is that when somebody goes to look up one of your IP
addresses like 192.168.1.1 (aka 1.1.168.192.in-addr.arpa), they get
referred to a forward lookup in your site's normal domain.
Now in your normal domain zone file, whenever you add a host, you add not only
the normal A record that associates a hostname with an IP address, but also a PTR
record that matches the name listed in your ISP's in-addr.arpa file. This PTR
record associates the weird CNAME from the ISP's configuration with the actual
hostname of the machine.
In other words, reverse lookups of your IP address range now require remote sites to
first contact your ISP's name server, get referred via the CNAME to do a lookup of
your organization's local name servers, where they finally get the PTR record that
they were expecting to complete the reverse lookup. While it seems strange to see a
PTR record in a forward lookup file, it's perfectly legal.

1 - 46

46

Blocking Web Ads Via DNS

! Most banners come from server farms
run by a small group of companies

! Trick is to supply your local DNS server
with bogus info for these domains

! Web banners will now appear as
"broken links"

! Web surfing speed goes way, way up
and visual noise goes way, way down

Web advertising has really started to annoy me recently. There are more pop-up ads than ever,
and it seems like the normal web banners are not only taking up more an more screen real estate
but are also getting more annoying (more flashing, more movement, more distraction).
What's interesting is that most of these advertisements do not originate on the web sites that
you're browsing. There are a relatively small number of companies that run massive server farms
that make these ads available. So any particular web page you view may actually require you to
do multiple DNS lookups and multiple HTTP connections, just for the purpose of downloading
ads from some other site!
But the good news is that you can use DNS to stop this behavior. Basically, the trick is to put
bogus zone entries for the domains that these advertising servers use into your local DNS server
(if you don't run your own DNS servers, you could set up a caching-only server on your local
machine and point your local resolv.conf file at that server). Now you can essentially black-hole
all attempts to contact these ad servers by returning the loopback address (127.0.0.1) for any
lookup in these domains. Since your local machine won't be running a web server, (or at least
won't be running a web server that actually has the requested banner ad) you'll just get a "broken
link" marker instead of the ad.
Plus, the name resolution happens on your local name servers (fast) and the HTTP connection
happens over the loopback interface (very fast), so browsing speeds up enormously. And, of
course, you're using less bandwidth because you're not actually downloading ads anymore.
Hmm, less ads, faster web page loads, and more bandwidth for other tasks… what's not to like?

1 - 47

47

In /etc/named.conf
zone "adimages.go.com" { type master; file "dummy-block"; };

zone "admonitor.net" { type master; file "dummy-block"; };

zone "ads.specificpop.com" { type master; file "dummy-block"; };

zone "ads.web.aol.com" { type master; file "dummy-block"; };

zone "ads.x10.com" { type master; file "dummy-block"; };

zone "advertising.com" { type master; file "dummy-block"; };

zone "amazingmedia.com" { type master; file "dummy-block"; };

zone "clickagents.com" { type master; file "dummy-block"; };

zone "commission-junction.com" { type master; file "dummy-block"; };

zone "doubleclick.net" { type master; file "dummy-block"; };

zone "go2net.com" { type master; file "dummy-block"; };

zone "infospace.com" { type master; file "dummy-block"; };

zone "kcookie.netscape.com" { type master; file "dummy-block"; };

zone "linksynergy.com" { type master; file "dummy-block"; };

zone "msads.net" { type master; file "dummy-block"; };

zone "qksrv.net" { type master; file "dummy-block"; };

zone "yimg.com" { type master; file "dummy-block"; };

zone "zedo.com" { type master; file "dummy-block"; };

… [email hal@deer-run.com for a larger list] …

The first step is to set up the bogus domain entries in your named.conf file. Here's
an initial list that's worked pretty well for me, though if you want a larger list, drop
me an email.
Each of the domains shown above is being pointed at the zone information in the
same dummy-block file. The contents of this file are shown on the next slide.
Note that it's perfectly acceptable for multiple zones to all point at the same zone
file, you just need to be careful how you write the zone file.

1 - 48

48

The dummy-block File

@ IN SOA ns.sysiphus.com. hm.sysiphus.com. (

2003100100 86400 300 604800 3600)

@ IN NS ns.sysiphus.com.

@ IN A 127.0.0.1

* IN A 127.0.0.1

So the real trickery happens in the dummy-block file. Note that we make liberal
use of the "@" symbol so that no matter which domain we specify in the
named.conf file, the various records in the dummy-block file get expanded
with the correct domain name.
But the really wacky part is the wildcard A record in the last line above. You don't
normally see this in practice (and you should never use this in a normal zone file),
but in this case it means that no matter what hostname gets looked up in the given
domain, your name server will always return 127.0.0.1. This is exactly what we
want in this case.

1 - 49

49

Final Thoughts on Ad Blocking

! Some sites set up special Web server
w/ custom error page returning 1x1 GIF

! Finding other domains to block
– Turn on debugging in your name server
– Check out http://accs-net.com/hosts/

If the "broken link" tags bother you, you could redirect all of the lookups to the IP
address of one of your local web servers, rather than 127.0.0.1. Then configure
your web server to return a custom error page that is a 1x1 clear GIF or something
similar. Expect this web server to see quite a bit of traffic…
You may be wondering how I figured out which domains to block. In my case, I
simply turned on debugging on my local name server (kill –USR1 `cat
/etc/named.pid`) and then watched the debugging logs to see what domains
were being queried as I was browsing. Note that the debugging logs get big pretty
quickly, so be sure to turn debugging off when you're through (kill –USR2
`cat /etc/named.pid`).
The good folks at the Gorilla Design Studio (http://accs-net.com/hosts/) have been
maintaining a static hosts file that contains entries for various ad servers. You could
either use this information by incorporating it into your local hosts file, or extract
the domain names for use with the DNS technique presented here. Actually, the
GDS folks also provide a Win32-based tool called DNSKong to allow you to use a
similar DNS-based technique on Windows systems.

1 - 50

50

That's It!!!

Final questions?
Thanks for listening!

This space intentionally left blank…

