

Property Specification: The key to an Assertion-Based Verification Platform

C. Michael Chang
President and CEO

Verplex Systems, Inc.
mchang@verplex.com

Harry D. Foster
Chief Architect

Verplex Systems, Inc.
harry@verplex.com

Abstract

Assertion-based verification—that is, user specified
properties and automatic property extraction combined
with simulation and formal techniques—is likely to be the
next revolution in hardware design verification. This
paper explores a verification break-through prompted by
multi-level specification and assertion verification
techniques. The emerging Accellera formal property
language, as well as the Open Verification Library
standards and the important roles they will play in future
assertion-based verification flows are discussed.
Furthermore, automatic property extraction techniques
are explored—and their important roles in validating
semantic consistency in the context of an RTL signoff
flow.

1 Introduction

A change is taking place in the way we design and

verify our designs that will revolutionize the industry and
result in the equivalent of a synthesis productivity
breakthrough in verification. This change demands that
we move from natural language forms of specification to
forms that are mathematically precise and verifiable, and
lend themselves to automation. Property specification is
the key ingredient of this revolution, whose end result is
improved verification through an intelligent testbench. An
assertion-based verification platform is an integral part of
an intelligent testbench, which consists of the following
key components:

1. verifiable testplans through property specification

(that is, functional coverage models),
2. hardware verification languages (HVLs) combined

with property specification to raise the abstraction
level of testbench generation

3. reactive coverage driven testbenches based on
property specification (assertions and functional
coverage),

4. automated block-level methodologies such as smart
block-level simulation stimulus generation based on

interface constraints (a form of property
specification),

5. exhaustive formal verification and semi-exhaustive
property checking techniques.

This paper discusses the important role of property

specification and automatic property extraction
techniques in the context of an assertion-based
verification flow.

1.1 Standards

One organization that works to support improvements
in verification methodologies is Accellera (see
www.accellera.org). Their mission is to drive worldwide
standards that enhance a language-based design
automation process. Recently, the Accellera Formal
Verification Technical Committee selected the IBM
Sugar language as the basis for its property specification
language (PSL) [Accellera 2002]. This declarative
property language supports top-down (that is, functional
specification-driven) design methodologies. Declarative
property languages are ideal for specifying architectural
and global properties, as well as defining interface
specification during block-level partitioning.

In addition to PSL, the Accellera Assertion Committee
has developed a standard for specifying RTL
implementation properties directly within the designer’s
HDL through the Open Verification Library (OVL)
[Bening and Foster 2001] and the new SystemVerilog
procedural assertion construct [Foster, et al. 2002]. The
OVL provides a template for expressing a broad class of
assertions structurally within the designer’s RTL, while
the new assertion construct facilitates expression of
assertions procedurally during RTL development. Both
the OVL and the new assertion construct enable bottom-
up (that is, white-box) verifiable implementation
practices, which improve simulation-based methodologies
while providing a seamless path to formal verification.

Combined, these powerful and expressive formal
property languages enable engineers to:

• specify properties as assertions and constraints for
formal analysis,

• specify functional coverage models to measure the
quality of simulation,

• develop tools of the future, such as pseudo-random
constraint-driven simulation environments derived
from formal specifications, similar to the research
by Yuan, et al. [1999]; and Shinmizu and Dill
[2002].

1.2 Monitor-based specification

While standardizing a property language, such as PSL,
is integral to addressing increased verification
complexity, it is not the entire solution. Equally important
to this revolution in design verification is an effective
methodology that unifies traditional and formal
verification within an assertion-based verification
framework. Recently, monitor-based methodologies have
emerged as a technique for unifying traditional and formal
verification (for example, FoCs-Automatic Generation of
Simulation Checkers from Formal Specification
[Abarbanel, et al. 2000]). Other approaches include
creating a protocol bus-monitor that examines an agent’s
output signals (as the monitor’s input) and then generates
a Boolean correcti output signal, which is true when agent
i is compliant to the specification (for example, Monitor-
Based Formal Specification of PCI [Shinmizu, et al.
2000] and A Specification Methodology by a Collection of
Compact Properties as Applied to the Intel Itanium
Processor Bus Protocol [Shimizu, et al. 2001]).

An effective unifying methodology includes the
Accellera Open Verification Library (OVL), which
provides the systematic elements of the methodology. The
OVL incorporates a consistent and systematic means of
specifying RT-level implementation properties
structurally through a common set of assertion monitors.
The OVL monitors act like a template, which enables
designers to express a broad class of assertions in a
common, familiar RTL format. Furthermore, the OVL
capitalizes on the various Accellera assertion techniques
by unifying the PSL declarative form of property
specification with the new SystemVerilog (and VHDL)
procedural form of specification within the library.
Finally, these monitors address assertion-based
methodology considerations by encapsulating a unified
and systematic method of reporting, that can be
customized per project, and a common mechanism for
enabling and disabling assertions during the verification
process. The reporting and enable/disable features use a
consistent process, which provides uniformity and
predictability within an assertion-based methodology.

2 Property specification

Informally, a property is a general behavioral attribute

(that is, collection of logical and timing relationships)
used to characterize a design. When discussing properties,
it is generally easier to view their composition as three
distinct layers:

• the Boolean layer, which is comprised of Boolean

expressions (for example, Verilog or VHDL
expressions)

• the temporal layer, which describes the relationship
of Boolean expressions over time

• the verification layer, which describes how to use a
property during verification

Defining (or partitioning) a property in terms of the

abstract view (that is, layer structure) enables us to dissect
and discuss various aspects of properties. However, it is
actually quite simple to express design properties; the
three-layer view is merely a way to explain.

A property’s Boolean layer is comprised of Boolean
expressions composed of variables within the design
model. For example, if we state that “signal en1 and
signal en2 are mutually exclusive” (that is, a zero-or-one-
hot condition in which only one signal can be active high
at a time), then the Boolean layer description representing
this property could be expressed in Verilog as:

(!(en1 & en2)

Notice that we have not associated any time

relationship to the statement: “signal en1 and signal en2
are mutually exclusive”. In fact, the statement by itself is
ambiguous. Is this statement true only at time 0 (as many
formal tools infer), or is it true for all time?

To remove all time ambiguities, a property’s temporal
layer describes the Boolean expressions’ relationships to
each other over time. For example, if signal en1 and
signal en2 are always mutually exclusive (that is, for all
time), then a temporal operator could be added to the
Boolean expression to state precisely when the Boolean
expression must hold (that is, evaluate true). This could
be written in PSL as follows:

always !(en1 & en2)

There are many temporal operators in PSL (including

always, never, next, eventually, until), which permit us to
reason about very complex temporal relationships that
potentially involve multiple Boolean expressions. The
Boolean layer combined with the temporal layer form the
basis of the property.

While a property’s Boolean and temporal layers
describe general behavior, they do not state how the
property should be used during verification. In other
words, should the property be asserted, and thus checked?
Or should the property be assumed as a constraint? Or
should the property be used to specify an event used to
gather functional coverage information? Hence, the third
layer of a property, which is the verification layer, states
how the property is to be used.

Consider the following definitions for an assertion and
a constraint.

• Assertion - A given property that is expected to hold

within a specific design. An assert keyword could be
associated with the property (depending on the
property language).

• Constraint - A specific property that describes the
design’s environment and that is expected to hold. In
these cases, a constrain, assume, or restrict keyword
could be used with the property (depending on the
property language). If the constraint is violated, then
we cannot guarantee that the design will function
correctly.

Look again at signal en1 and signal en2. We can

specify this property as an assertion in PSL using the
assert keyword as shown in Figure 1. This states that the
property is to be treated as an assertion during
verification.

Figure 1: Multiple layers of a PSL assertion

assert always (!(en1 & en2));

Boolean layer

temporal layer

verification layer

2.1 Declarative versus procedural specification

Assertions (or constraints) may be expressed either
declaratively or procedurally. A declarative assertion is
always active, and is evaluated concurrently with other
components in the design. A procedural assertion, on the
other hand, is a statement within procedural code, and is
executed sequentially in its turn within the procedural
description. Hence, declarative properties, such as PSL,
are natural for specifying block-level interfaces, as well as
other properties that must hold concurrently within a

system. Similarly, a procedural assertion, such as the new
SystemVerilog assert construct, is convenient for
expressing algorithmic properties that must hold in the
context (and sequential scoping) of procedural code.

For example, using the Accellera declarative formal
property language PSL, the designer could express that
the 8-bit bus cntrl[7:0] must possess the property of zero
or one-hot as shown in Example 1, below.

Example 1: PSL declarative assertion

assert always ((cntrl & (cntrl – 1))==0) @(posedge (clk))

property hos.

In Example 2, the zero or one hot assertion (using the
new Accellera SystemVerilog procedural assert
construct) is embedded directly within some procedural
code.

Example 2: SystemVerilog procedural assertion

always (en or cntrl) begin
 if (en)
 assert @(posedge clk) ((cntrl & (cntrl – 1));
end

A key difference between the declarative assertion

(shown in Example 1) and the procedural assertion
(shown in Example 2) is that the declarative assertion
concurrently monitors the assertion expression, while the
procedural assertion only validates the assertion
expression during sequential visits through the procedural
code. If the ‘en’ signal is never TRUE in Example 2, then
the procedural assertion will never be validated. This
might be the intended behavior. However, care must be
taken when assertions are deeply nested within case and
if constructs in procedural code to prevent over
constraining the assertion expression.

Alternatively, if the ‘en’ signal is a required condition
on the assertion, then a declarative assertion must include
this as part of the assertion expression. For example, we
would require Example 1 to be re-written as shown in
Example 3.

Example 3: PSL declarative assertion.

assert always (en -> ((cntrl & (cntrl – 1))==0))
@(posedge clk);

To continue this progression, Example 4 demonstrates

how to structurally express the same property shown in
Example 3 using the Open Verification Library:

Example 4: OVL structural assertion.

assert_zero_or_one_hot #(0,8) (clk, en, cntrl);

2.2 Top-down versus bottom-up specification

The previous section introduced the work of Accellera

that promotes improved top-down and bottom-up
verification methodologies with the PSL declarative
property language and the OVL and SystemVerilog
procedural constructs. This section discusses a usage
model for combining these multiple forms of
specification.

In a specification-driven design and verification
methodology, the design architect begins by creating a
high-level specification for key characteristics of the
design (such as communication protocols or complex
arbitration schemes) using a declarative property language
like PSL. This enables specification consistency-checking
prior to design and implementation, and eliminates
architectural bugs.

As the architect partitions the design (top down) into
block-level components, prior to RTL implementation,
block-level interfaces should be specified to form
verifiable contracts between multiple block-level
components. The Accellera PSL formal property
language declarative form of specification is ideal for this
type of specification. These formal interface
specifications serve as constraint models during block-
level formal analysis, as well as interface monitors during
simulation. Furthermore, through this process, interface
misconceptions between multiple engineers are resolved
prior to RTL coding.

As the engineers begin RTL-development, they should
take advantage of assertions and add this form of
specification for any potential corner case concerns. For
example, using the OVL assertions the designer can

specify that a queue or FIFO will never over or underflow
(see Example 5)—or that a set of signals is one hot—or
that a specified expression (condition) will never occur.
Engineers should embed these specifications directly
within the RTL.

The declarative block-level interface specification
(developed during top-down specification) combined with
RTL implementation assertion (created during bottom-up
RTL development) facilitates block-level formal analysis.
Similarly, the designer will leverage the block-level
interface specification in the future for pseudo-random
constraint-driven simulation vector generation.

3.0 Automatic property extraction
Commercially available formal verification tools are

emerging as a key advancement in the design verification
revolution. These tools enhance verification
methodologies by automatically extracting many design
properties from the engineer’s HDL model. The tool then
exhaustively verifies the properties using formal
techniques. This enables the engineer to verify many
design properties early in the design cycle without the
need to create testbenches and test vectors. The following
sections provide examples of properties that are
automatically extracted and verified by tools such as
BlackTie. This set of properties includes bus contention,
bus floating, set/reset conflicts, RTL (Verilog) X-
assignment “don’t care” checks, full or parallel case
“don’t care” checks, and clock-domain crossing checks.

Example 5: FIFO Over and Underflow OVL Assertion

module fifo (clk, fifo_clr_n, fifo_reset_n, push, pop, data_in, data_out);
 parameter fifo_width = `FIFO_WIDTH;
 parameter fifo_depth = `FIFO_DEPTH;
 parameter fifo_cntr_w = `FIFO_CNTR_W;
 input clk, fifo_clr_n, fifo_reset_n, push, pop;
 input [fifo_width-1:0] data_in;
 output [fifo_width-1:0] data_out;
 wire [fifo_width-1:0] data_out;
 reg [fifo_width-1:0] fifo[fifo_depth-1:0];
 reg [fifo_cntr_w-1:0] cnt; // count items in FIFO

// RTL FIFO Code Here

 ‘ifdef ASSERT_ON
// OVL Assert that the FIFO cannot overflow
 assert_never no_overflow (clk,(fifo_reset_n & fifo_clr_n),
 ({push,pop}==2'b10 && cnt==fifo_depth));

// OVL Assert that the FIFO cannot underflow
 assert_never no_underflow (clk,(fifo_reset_n & fifo_clr_n),
 ({push,pop}==2'b01 && cnt==0));
 ‘endif
endmodule

3.1 Semantic consistency property checking

Transformation verification, using formal

combinatorial equivalence checking, has become
mainstream for many design projects over the last few
years. This process is a critical component of the design
and verification flow that ensures logical consistency
between transformed models within the flow.
Transformation verification minimizes the need for gate-
level simulation. However, when creating an RTL signoff
methodology, the process of ensuring semantic
consistency between the pre- and post-synthesis model
must be addressed as well [Bening and Foster 2001].

The following definitions offer some insight into the
significance of addressing logical and semantic
consistency and X-state optimism.

Definition: Logical consistency
Referenced and revised design models are logically
consistent if their combinational logic cones driving the
next state latches and the output ports are functionally
equivalent, modulo their don't-care space.

Definition: Semantic consistency
Referenced and revised design models are semantically
consistent if, for all possible sequences of input vectors,
the simulation results observed at all the latches and
output ports are the same.

To illustrate the impact of semantic consistency, consider
a particularly insidious situation in which design errors
cannot be demonstrated during RTL simulation, yet are
easily revealed using gate level simulation for logically
equivalent circuits [Bening and Foster 2001]. This occurs
because it is possible for an RTL and gate-level model to
exhibit logical consistency, yet behave semantically
inconsistent. That is, an equivalence checker proves that
the two circuits are equivalent from a Boolean
perspective. However, the pre- versus post-synthesis
simulation results differ. To comprehend this
phenomenon requires an understanding of RTL X-state
optimism, which is explained below.

Definition: X-state optimism
Optimistically exercising the default (or else) branch,
from multiple alternative branches, within a procedural
case (or if) statement due to an X evaluation of the
statement’s test expression.

The following Verilog code demonstrates RTL X-state
optimistic behavior:

case (d)
 2’b01: e = 2’b10;
 2’b10: e = 2’b01;
 default: e = 2’b00;
endcase

If ‘d’ evaluates to 2’bXX, the case statement will

optimistically evaluate the default branch, assigning e the
known value 2’b00. Given an XX initialization state for
d, then only one of the four possible branches during the
start-up condition is tested, which can result in missing a
functional bug.

The functional class of bugs hidden by RTL X-state
optimism is generally the result of coding styles that yield
semantic inconsistency, and include: (a) X assignment
usage; (b) bit-vector select range overflow; and (c)
synthesis pragmas, such as full_case and parallel_case.
Semantic inconsistency problems for (c) are discussed in
the following section.

3.2 Full case semantic problem

Example 6 illustrates a full case semantic problem.

Examine the following RTL code, which contains a
full_case synthesis pragma.

Example 6: RTL code for one-hot mux

module mux (a,b,S,q);
 output q;
 input a, b;
 input [1:0] s;
 reg q;

 always @(a or b or s)
 begin
 case (s) //synthesis full_case
 2’b01: q = a;
 2’b10: q = b;
 endcase
 end
endmodule

a

b

s[1]

q

Figure 1: Synthesized gate for mux

Notice the RTL code in Example 6. If the s input

variable ever assumes the unspecified values of 2’b00,
2’b11 or 2’bXX (due to a functional bug in the logic
driving s), then the q output variable will improperly
behave as a latch during RTL simulation (that is, retain its
previous, valid assignment). However, the synthesized
logic in Figure 1 does not contain a latch.

For Example 6 and Figure 1, notice the case when
s==2’b11. The circuits are semantically inconsistent
since the RTL q output simulates to a, while the gate q
output simulates to b. However, these two circuits will
prove to be logically equivalent, since the full_case
pragma instructs the equivalence checker (and synthesis
tool) to treat any value of s other than 2’b01 or 2’b10 as
a don’t care.

It is possible to automatically extract properties
derived from the designer’s HDL code, and then apply
formal techniques to validate the designer’s intent. For
example, in Figure 1 the property—‘s’ will never equal
2’b00 and ‘s’ will never equal 2’b11—can be
automatically extracted from the RTL code, and then
formally verified to ensure semantic consistency.

Note that some designers might be tempted to assign
the q variable in example 6 a default value of X.
However, this can result in optimistic behavior further
down stream in the RTL during simulation—which means
that a bug might go undetected. Automatic property
extraction is a better technique for validating the safety of
all X assignment, since formal verification will not
encounter X-state optimism.

3.3 Parallel case semantic problem

Even if the case statements are fully specified, it is still

possible to encounter semantic inconsistencies due to the
general use of synthesis pragmas within the RTL.
Example 7 demonstrates a dangerous semantic
inconsistency problem when a parallel_case pragma
appears in the RTL. The problem occurs if there is a
functional bug in the logic outside the module, that
generates illegal values for the variables a and b (for
example, {a, b} == 4’b1111). The RTL simulation
always behaves as a priority encoder, while the
synthesized gate-level model would encode both y and z
in parallel (since synthesis uses the pragma to identify
don’t care values for optimization). Hence, the functional
bug could be missed during RTL simulation since the
RTL model optimistically behaves as a priority encoder,
while the gate-level model behaves differently (as shown
in Figure 2).

In Example 7, the designer’s intent can be formally
verified by automatically extracting the property—it is
not possible for both ‘a’ to equal 2’b11 and ‘b’ to equal
2’b11.

Example 7: RTL Code

module encoder (y, z, a, b);
 output y, z;
 input [1:0] a, b;
 reg y, z;

 always @(a or b) begin
 {y, z} = 2'b00;
 casez ({a, b}) //parallel_case
 4’b11??: z = 1'b1;
 4’b??11: y = 1'b1;
 endcase
 end
endmodule

Examples 6 and 7 demonstrated semantic problems
that you may encounter through pragma use. In addition
to these problems, general variable X assignments can
exhibit optimistic behavior when evaluated as a test
expression within a case or if statement. This can result in
semantic inconsistency between the RTL and gate-level
models.

Ensuring semantic consistency is a key component
within an RTL signoff methodology. Hence, automatic
extraction and formal analysis of RT-level design intent
properties complements Boolean equivalence checking to

ensure that both logical consistency and semantic
consistency are preserved during design flow
transformations—minimizing the designer’s dependency
on gate-level simulation.
Figure 2: Synthesized Gates

4.0 Automatic property extraction results

In addition to semantic consistency properties, many

other design intent properties can automatically be
extracted from the user’s RTL or gate level design, such
as tri-state bus related properties (as shown in Figure 3)
and Set/Reset register conflict properties (as shown in
Figure 4). This section illustrates actual results of
property extraction and analysis using the Verplex
Systems, Inc. BlackTie™ Functional Checker.

Table 1, provides data for a 560K block-level
contained within a large networking ASIC. This testcase
was executed on a Sun® UltraSPARC® Enterprise™
4000. The combined automatic property extraction and

a[0]

a[1]

b[0]
b[1]

formal analysis completed in 1.7 hours using 420Mbytes
of memory.

Table 1: Automatic Property Extraction and Verification

Design A Pass Fail Bounded
Pass

Semantic 2308 43 72
Bus 50 635 0
Set / Reset 57983 0 0
Total 60431 678 72

Bus Checks

◆ Bus floating: Bus is not driven by any tri-state
◆ Tri-state: stuck-at problem with enable signal

of tri-state drivers
◆ Bus contention: Bus driven by conflicting data

Requires formal
sequential analysis

0

qq

Example of Bus Contention
Automatically determine if
bus contention can occur

1

1

1

.

.

.

.

Figure 3: Automatic Bus Property Extraction

◆ Set / Reset Check
Automatically determine if SET
and RESET pins of flip-flops or
latches can be enabled at the
same time

Other Structural Checks

◆ Multi-Port Latch Check
Automatically determine if
multi-port latches can be loaded
with different values

D Q

Qn

S

R

1

1

En1

En2

D1

D2

Q

Qn
1

1

1

0

Figure 4: Automatic Structural Property Checks

5.0 Conclusion

In this paper we discussed the need for declarative,
structural, and procedural mechanisms for expressing
assertions. The emerging Accellera PSL, OVL, and
SystemVerilog procedural assertions were introduced.
Techniques for combining these languages were
proposed, creating a top-down interface specification
methodology with a bottom-up RTL implementation
assertion methodology, which creates an effective

assertion-based verification flow. This flow facilitates
formal analysis, while improving traditional simulation
methodologies. Finally, we demonstrated the important
role automatic property extraction (and verification) plays
within an RTL-signoff methodology.

New and powerful formal verification tools will
become a key component within an assertion-based
verification framework. These new tools, such as the
Verplex Systems, Inc. BlackTie™ functional checker,
will enable the designer to verify a set of user defined
properties (specified with the new Accellera Sugar and
OVL standards)—while supporting automatic property
extraction and verification techniques. Formal verification
of these combined properties will dramatically improve
the overall design verification quality.

References

[Abarbanel, et al. CAV 2000] Y. Abarbanel, I. Beer, L. Glushovsky, S.

Keidar, Y. Wolfsthal, “FoCs: Automatic Generation of Simulation
Checkers from Formal Specifications,” Proceedings of the
Computer-Aided Conference (CAV), pp. 538-542, 2000.

[Accellera 2002] Accellera Formal Specification Language (Sugar)
www.accellera.org

[Bening and Foster 2001] L. Bening, H. Foster, Principles of Verifiable
RTL Design, Kluwer Academic Publishers, May 2001.

 [Foster and Coelho 2001] H. Foster, C. Coelho, “Assertions Targeting
A Diverse Set of Verification Tools,” Proceedings of the 10-th
Annual International HDL Conference, March, 2001.

[Foster et al. 2002] H. Foster, P. Flake, T. Fitzpatrick, “Adding Design
Assertions to SystemVerilog”, Proceedings of the 11-th Annual
International HDL Conference, March 2002.

[Shinmizu et al. 2000] K. Shimizu, D. Dill, A. Hu, “Monitor-Based
Formal Specification of PCI,” Proceedings of the Third
International Conference on Formal Methods in Computer-Aided
Design, pp. 335-353, November 2000.

[Shimizu et al. 2001] K. Shimizu, D. Dill, C-T Chou, “A Specification
Methodology by a Collection of Compact Properties as Applied to
the Intel Itanium Processor Bus Protocol,” In CHARME’00,
Springer Verlag, pp. 340-354, 2001.

[Shimizu and Dill 2002] K. Shimizu, D. Dill, “Deriving a Simulation
Input Generator and a Coverage Metric From a Formal
Specification,” Proceedings of the 39-th Design Automation
Conference, June, 2002.

[Yuan, et al. 1999] J. Yuan, K. Shultz, C. Pixley, H. Miller, A. Aziz,
“Modeling Design Constraints and Biasing in Simulation Using
BDDs, “ Proceedings of the IEEE International Conference on
Computer Aided Design, pp. 584-589, November 1999

