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Abstract
 

Assertion-based verification—that is, user specified 
properties and automatic property extraction combined 
with simulation and formal techniques—is likely to be the 
next revolution in hardware design verification. This 
paper explores a verification break-through prompted by 
multi-level specification and assertion verification 
techniques. The emerging Accellera formal property 
language, as well as the Open Verification Library 
standards and the important roles they will play in future 
assertion-based verification flows are discussed. 
Furthermore, automatic property extraction techniques 
are explored—and their important roles in validating 
semantic consistency in the context of an RTL signoff 
flow. 
 
1 Introduction 

 
A change is taking place in the way we design and 

verify our designs that will revolutionize the industry and 
result in the equivalent of a synthesis productivity 
breakthrough in verification. This change demands that 
we move from natural language forms of specification to 
forms that are mathematically precise and verifiable, and 
lend themselves to automation. Property specification is 
the key ingredient of this revolution, whose end result is 
improved verification through an intelligent testbench. An 
assertion-based verification platform is an integral part of 
an intelligent testbench, which consists of the following 
key components: 

 
1. verifiable testplans through property specification 

(that is, functional coverage models), 
2. hardware verification languages (HVLs) combined 

with property specification to raise the abstraction 
level of testbench generation 

3. reactive coverage driven testbenches based on 
property specification (assertions and functional 
coverage), 

4. automated block-level methodologies such as smart 
block-level simulation stimulus generation based on 

interface constraints (a form of property 
specification),  

5. exhaustive formal verification and semi-exhaustive 
property checking techniques. 

 
This paper discusses the important role of property 

specification and automatic property extraction 
techniques in the context of an assertion-based 
verification flow. 

 
1.1 Standards 
 

One organization that works to support improvements 
in verification methodologies is Accellera (see 
www.accellera.org). Their mission is to drive worldwide 
standards that enhance a language-based design 
automation process. Recently, the Accellera Formal 
Verification Technical Committee selected the IBM 
Sugar language as the basis for its property specification 
language (PSL) [Accellera 2002].  This declarative 
property language supports top-down (that is, functional 
specification-driven) design methodologies. Declarative 
property languages are ideal for specifying architectural 
and global properties, as well as defining interface 
specification during block-level partitioning. 

In addition to PSL, the Accellera Assertion Committee 
has developed a standard for specifying RTL 
implementation properties directly within the designer’s 
HDL through the Open Verification Library (OVL) 
[Bening and Foster 2001] and the new SystemVerilog 
procedural assertion construct [Foster, et al. 2002]. The 
OVL provides a template for expressing a broad class of 
assertions structurally within the designer’s RTL, while 
the new assertion construct facilitates expression of 
assertions procedurally during RTL development.  Both 
the OVL and the new assertion construct enable bottom-
up (that is, white-box) verifiable implementation 
practices, which improve simulation-based methodologies 
while providing a seamless path to formal verification. 

Combined, these powerful and expressive formal 
property languages enable engineers to:  



• specify properties as assertions and constraints for 
formal analysis, 

• specify functional coverage models to measure the 
quality of simulation, 

• develop tools of the future, such as pseudo-random 
constraint-driven simulation environments derived 
from formal specifications, similar to the research 
by Yuan, et al. [1999]; and Shinmizu and Dill 
[2002]. 

 
1.2 Monitor-based specification 
 

While standardizing a property language, such as PSL, 
is integral to addressing increased verification 
complexity, it is not the entire solution. Equally important 
to this revolution in design verification is an effective 
methodology that unifies traditional and formal 
verification within an assertion-based verification 
framework. Recently, monitor-based methodologies have 
emerged as a technique for unifying traditional and formal 
verification (for example, FoCs-Automatic Generation of 
Simulation Checkers from Formal Specification 
[Abarbanel, et al. 2000]). Other approaches include 
creating a protocol bus-monitor that examines an agent’s 
output signals (as the monitor’s input) and then generates 
a Boolean correcti output signal, which is true when agent 
i is compliant to the specification (for example, Monitor-
Based Formal Specification of PCI [Shinmizu, et al. 
2000] and A Specification Methodology by a Collection of 
Compact Properties as Applied to the Intel Itanium 
Processor Bus Protocol [Shimizu, et al. 2001]).  

An effective unifying methodology includes the 
Accellera Open Verification Library (OVL), which 
provides the systematic elements of the methodology. The 
OVL incorporates a consistent and systematic means of 
specifying RT-level implementation properties 
structurally through a common set of assertion monitors. 
The OVL monitors act like a template, which enables 
designers to express a broad class of assertions in a 
common, familiar RTL format.  Furthermore, the OVL 
capitalizes on the various Accellera assertion techniques 
by unifying the PSL declarative form of property 
specification with the new SystemVerilog (and VHDL) 
procedural form of specification within the library. 
Finally, these monitors address assertion-based 
methodology considerations by encapsulating a unified 
and systematic method of reporting, that can be 
customized per project, and a common mechanism for 
enabling and disabling assertions during the verification 
process. The reporting and enable/disable features use a 
consistent process, which provides uniformity and 
predictability within an assertion-based methodology.   

 

2 Property specification 
 
Informally, a property is a general behavioral attribute 

(that is, collection of logical and timing relationships) 
used to characterize a design. When discussing properties, 
it is generally easier to view their composition as three 
distinct layers: 

 
• the Boolean layer, which is comprised of Boolean 

expressions (for example, Verilog or VHDL 
expressions) 

• the temporal layer, which describes the relationship 
of Boolean expressions over time 

• the verification layer, which describes how to use a 
property during verification 

 
Defining (or partitioning) a property in terms of the 

abstract view (that is, layer structure) enables us to dissect 
and discuss various aspects of properties. However, it is 
actually quite simple to express design properties; the 
three-layer view is merely a way to explain. 

A property’s Boolean layer is comprised of Boolean 
expressions composed of variables within the design 
model. For example, if we state that “signal en1 and 
signal en2 are mutually exclusive” (that is, a zero-or-one-
hot condition in which only one signal can be active high 
at a time), then the Boolean layer description representing 
this property could be expressed in Verilog as: 

 
(!(en1 & en2) 

 
Notice that we have not associated any time 

relationship to the statement: “signal en1 and signal en2 
are mutually exclusive”. In fact, the statement by itself is 
ambiguous. Is this statement true only at time 0 (as many 
formal tools infer), or is it true for all time?  

To remove all time ambiguities, a property’s temporal 
layer describes the Boolean expressions’ relationships to 
each other over time. For example, if signal en1 and 
signal en2 are always mutually exclusive (that is, for all 
time), then a temporal operator could be added to the 
Boolean expression to state precisely when the Boolean 
expression must hold (that is, evaluate true). This could 
be written in PSL as follows: 

 

always !(en1 & en2) 

 
There are many temporal operators in PSL (including 

always, never, next, eventually, until), which permit us to 
reason about very complex temporal relationships that 
potentially involve multiple Boolean expressions.  The 
Boolean layer combined with the temporal layer form the 
basis of the property. 



While a property’s Boolean and temporal layers 
describe general behavior, they do not state how the 
property should be used during verification. In other 
words, should the property be asserted, and thus checked? 
Or should the property be assumed as a constraint? Or 
should the property be used to specify an event used to 
gather functional coverage information? Hence, the third 
layer of a property, which is the verification layer, states 
how the property is to be used.  

Consider the following definitions for an assertion and 
a constraint.  

 
• Assertion - A given property that is expected to hold 

within a specific design. An assert keyword could be 
associated with the property (depending on the 
property language). 

• Constraint - A specific property that describes the 
design’s environment and that is expected to hold. In 
these cases, a constrain, assume, or restrict keyword 
could be used with the property (depending on the 
property language). If the constraint is violated, then 
we cannot guarantee that the design will function 
correctly. 

 
Look again at signal en1 and signal en2. We can 

specify this property as an assertion in PSL using the 
assert keyword as shown in Figure 1. This states that the 
property is to be treated as an assertion during 
verification. 
 
Figure 1: Multiple layers of a PSL assertion 

assert always (!(en1 & en2)); 

Boolean layer

temporal layer

verification layer

 
2.1 Declarative versus procedural specification 

Assertions (or constraints) may be expressed either 
declaratively or procedurally.  A declarative assertion is 
always active, and is evaluated concurrently with other 
components in the design. A procedural assertion, on the 
other hand, is a statement within procedural code, and is 
executed sequentially in its turn within the procedural 
description.  Hence, declarative properties, such as PSL, 
are natural for specifying block-level interfaces, as well as 
other properties that must hold concurrently within a 

system. Similarly, a procedural assertion, such as the new 
SystemVerilog assert construct, is convenient for 
expressing algorithmic properties that must hold in the 
context (and sequential scoping) of procedural code.  

For example, using the Accellera declarative formal 
property language PSL, the designer could express that 
the 8-bit bus cntrl[7:0] must possess the property of zero 
or one-hot as shown in Example 1, below. 

Example 1: PSL declarative assertion 
 
assert always ((cntrl & (cntrl – 1))==0) @(posedge (clk)) 
 
property hos. 

In Example 2, the zero or one hot assertion (using the 
new Accellera SystemVerilog procedural assert 
construct) is embedded directly within some procedural 
code.  

 

Example 2: SystemVerilog procedural assertion 
 

always (en or cntrl) begin 
  if (en) 
     assert @( posedge clk) ((cntrl & (cntrl – 1)); 
end 

 
A key difference between the declarative assertion 

(shown in Example 1) and the procedural assertion 
(shown in Example 2) is that the declarative assertion 
concurrently monitors the assertion expression, while the 
procedural assertion only validates the assertion 
expression during sequential visits through the procedural 
code.  If the ‘en’ signal is never TRUE in Example 2, then 
the procedural assertion will never be validated.  This 
might be the intended behavior.  However, care must be 
taken when assertions are deeply nested within case and 
if constructs in procedural code to prevent over 
constraining the assertion expression. 

Alternatively, if the ‘en’ signal is a required condition 
on the assertion, then a declarative assertion must include 
this as part of the assertion expression.  For example, we 
would require Example 1 to be re-written as shown in 
Example 3. 

Example 3: PSL declarative assertion. 
 

assert always (en -> ((cntrl & (cntrl – 1))==0))  
@(posedge clk); 

 
To continue this progression, Example 4 demonstrates 

how to structurally express the same property shown in 
Example 3 using the Open Verification Library: 

Example 4: OVL structural assertion. 
 
assert_zero_or_one_hot #(0,8) (clk, en, cntrl); 

 
 



2.2 Top-down versus bottom-up specification 
 
The previous section introduced the work of Accellera 

that promotes improved top-down and bottom-up 
verification methodologies with the PSL declarative 
property language and the OVL and SystemVerilog 
procedural constructs. This section discusses a usage 
model for combining these multiple forms of 
specification. 

In a specification-driven design and verification 
methodology, the design architect begins by creating a 
high-level specification for key characteristics of the 
design (such as communication protocols or complex 
arbitration schemes) using a declarative property language 
like PSL. This enables specification consistency-checking 
prior to design and implementation, and eliminates 
architectural bugs. 

As the architect partitions the design (top down) into 
block-level components, prior to RTL implementation, 
block-level interfaces should be specified to form 
verifiable contracts between multiple block-level 
components.  The Accellera PSL formal property 
language declarative form of specification is ideal for this 
type of specification. These formal interface 
specifications serve as constraint models during block-
level formal analysis, as well as interface monitors during 
simulation. Furthermore, through this process, interface 
misconceptions between multiple engineers are resolved 
prior to RTL coding.  

As the engineers begin RTL-development, they should 
take advantage of assertions and add this form of 
specification for any potential corner case concerns. For 
example, using the OVL assertions the designer can 

specify that a queue or FIFO will never over or underflow 
(see Example 5)—or that a set of signals is one hot—or 
that a specified expression (condition) will never occur. 
Engineers should embed these specifications directly 
within the RTL.  

The declarative block-level interface specification 
(developed during top-down specification) combined with 
RTL implementation assertion (created during bottom-up 
RTL development) facilitates block-level formal analysis.  
Similarly, the designer will leverage the block-level 
interface specification in the future for pseudo-random 
constraint-driven simulation vector generation.  

 

3.0 Automatic property extraction 
Commercially available formal verification tools are 

emerging as a key advancement in the design verification 
revolution. These tools enhance verification 
methodologies by automatically extracting many design 
properties from the engineer’s HDL model.  The tool then 
exhaustively verifies the properties using formal 
techniques. This enables the engineer to verify many 
design properties early in the design cycle without the 
need to create testbenches and test vectors. The following 
sections provide examples of properties that are 
automatically extracted and verified by tools such as 
BlackTie. This set of properties includes bus contention, 
bus floating, set/reset conflicts, RTL (Verilog) X-
assignment “don’t care” checks, full or parallel case 
“don’t care” checks, and clock-domain crossing checks. 
 

Example 5: FIFO Over and Underflow OVL Assertion 
 
module fifo (clk, fifo_clr_n, fifo_reset_n, push, pop, data_in, data_out); 
  parameter fifo_width = `FIFO_WIDTH; 
  parameter fifo_depth = `FIFO_DEPTH; 
  parameter fifo_cntr_w = `FIFO_CNTR_W; 
  input clk, fifo_clr_n, fifo_reset_n, push, pop; 
  input [fifo_width-1:0] data_in; 
  output [fifo_width-1:0] data_out; 
  wire [fifo_width-1:0] data_out; 
  reg [fifo_width-1:0] fifo[fifo_depth-1:0]; 
  reg [fifo_cntr_w-1:0] cnt; // count items in FIFO 
 . . . . 
// RTL FIFO Code Here 
 . . . . 
 ‘ifdef ASSERT_ON 
// OVL Assert that the FIFO cannot overflow 
     assert_never no_overflow (clk,(fifo_reset_n & fifo_clr_n), 
                      ({push,pop}==2'b10 && cnt==fifo_depth)); 
 
// OVL Assert that the FIFO cannot underflow 
     assert_never no_underflow (clk,(fifo_reset_n & fifo_clr_n), 
                      ({push,pop}==2'b01 && cnt==0)); 
 ‘endif 
endmodule 



3.1 Semantic consistency property checking 
 
Transformation verification, using formal 

combinatorial equivalence checking, has become 
mainstream for many design projects over the last few 
years.  This process is a critical component of the design 
and verification flow that ensures logical consistency 
between transformed models within the flow. 
Transformation verification minimizes the need for gate-
level simulation. However, when creating an RTL signoff 
methodology, the process of ensuring semantic 
consistency between the pre- and post-synthesis model 
must be addressed as well [Bening and Foster 2001].  

The following definitions offer some insight into the 
significance of addressing logical and semantic 
consistency and X-state optimism. 

 
Definition: Logical consistency 
Referenced and revised design models are logically 
consistent if their combinational logic cones driving the 
next state latches and the output ports are functionally 
equivalent, modulo their don't-care space. 
 
Definition: Semantic consistency 
Referenced and revised design models are semantically 
consistent if, for all possible sequences of input vectors, 
the simulation results observed at all the latches and 
output ports are the same. 
 
To illustrate the impact of semantic consistency, consider 
a particularly insidious situation in which design errors 
cannot be demonstrated during RTL simulation, yet are 
easily revealed using gate level simulation for logically 
equivalent circuits [Bening and Foster 2001]. This occurs 
because it is possible for an RTL and gate-level model to 
exhibit logical consistency, yet behave semantically 
inconsistent.  That is, an equivalence checker proves that 
the two circuits are equivalent from a Boolean 
perspective.  However, the pre- versus post-synthesis 
simulation results differ.  To comprehend this 
phenomenon requires an understanding of RTL X-state 
optimism, which is explained below. 
 
Definition: X-state optimism 
Optimistically exercising the default (or else) branch, 
from multiple alternative branches, within a procedural 
case (or if) statement due to an X evaluation of the 
statement’s test expression. 
 
The following Verilog code demonstrates RTL X-state 
optimistic behavior: 

case (d) 
  2’b01:   e = 2’b10; 
  2’b10:   e = 2’b01; 
  default: e = 2’b00; 
endcase 

 
If ‘d’ evaluates to 2’bXX, the case statement will 

optimistically evaluate the default branch, assigning e the 
known value 2’b00.  Given an XX initialization state for 
d, then only one of the four possible branches during the 
start-up condition is tested, which can result in missing a 
functional bug. 

The functional class of bugs hidden by RTL X-state 
optimism is generally the result of coding styles that yield 
semantic inconsistency, and include: (a) X assignment 
usage; (b) bit-vector select range overflow; and (c) 
synthesis pragmas, such as full_case and parallel_case. 
Semantic inconsistency problems for (c) are discussed in 
the following section. 
 
3.2  Full case semantic problem 

 
Example 6 illustrates a full case semantic problem. 

Examine the following RTL code, which contains a 
full_case synthesis pragma. 

Example 6: RTL code for one-hot mux 
 

module mux (a,b,S,q); 
  output      q; 
  input       a, b; 
  input [1:0] s; 
  reg         q; 
   
  always @(a or b or s) 
  begin 
   case (s) //synthesis full_case 
      2’b01: q = a; 
      2’b10: q = b; 
   endcase 
  end 
endmodule 

   

a

b

s[1]

q

 
Figure 1: Synthesized gate for mux 

 
Notice the RTL code in Example 6. If the s input 

variable ever assumes the unspecified values of 2’b00, 
2’b11 or 2’bXX (due to a functional bug in the logic 
driving s), then the q output variable will improperly 
behave as a latch during RTL simulation (that is, retain its 
previous, valid assignment).  However, the synthesized 
logic in Figure 1 does not contain a latch.   



For Example 6 and Figure 1, notice the case when 
s==2’b11. The circuits are semantically inconsistent 
since the RTL q output simulates to a, while the gate q 
output simulates to b. However, these two circuits will 
prove to be logically equivalent, since the full_case 
pragma instructs the equivalence checker (and synthesis 
tool) to treat any value of s other than 2’b01 or 2’b10 as 
a don’t care.  

It is possible to automatically extract properties 
derived from the designer’s HDL code, and then apply 
formal techniques to validate the designer’s intent.  For 
example, in Figure 1 the property—‘s’ will never equal 
2’b00 and ‘s’ will never equal 2’b11—can be 
automatically extracted from the RTL code, and then 
formally verified to ensure semantic consistency. 

Note that some designers might be tempted to assign 
the q variable in example 6 a default value of X.  
However, this can result in optimistic behavior further 
down stream in the RTL during simulation—which means 
that a bug might go undetected. Automatic property 
extraction is a better technique for validating the safety of 
all X assignment, since formal verification will not 
encounter X-state optimism. 

 
3.3 Parallel case semantic problem 

 
Even if the case statements are fully specified, it is still 

possible to encounter semantic inconsistencies due to the 
general use of synthesis pragmas within the RTL. 
Example 7 demonstrates a dangerous semantic 
inconsistency problem when a parallel_case pragma 
appears in the RTL. The problem occurs if there is a 
functional bug in the logic outside the module, that 
generates illegal values for the variables a and b (for 
example, {a, b} == 4’b1111). The RTL simulation 
always behaves as a priority encoder, while the 
synthesized gate-level model would encode both y and z 
in parallel (since synthesis uses the pragma to identify 
don’t care values for optimization). Hence, the functional 
bug could be missed during RTL simulation since the 
RTL model optimistically behaves as a priority encoder, 
while the gate-level model behaves differently (as shown 
in Figure 2).  

In Example 7, the designer’s intent can be formally 
verified by automatically extracting the property—it is 
not possible for both ‘a’ to equal 2’b11 and ‘b’ to equal 
2’b11.   

Example 7: RTL Code 
 
module encoder (y, z, a, b); 
  output       y, z; 
  input  [1:0] a, b; 
  reg          y, z; 
 
  always @(a or b) begin 
    {y, z} = 2'b00; 
    casez ({a, b}) //parallel_case 
      4’b11??: z = 1'b1; 
      4’b??11: y = 1'b1; 
    endcase 
  end 
endmodule 
 

Examples 6 and 7 demonstrated semantic problems 
that you may encounter through pragma use.  In addition 
to these problems, general variable X assignments can 
exhibit optimistic behavior when evaluated as a test 
expression within a case or if statement. This can result in 
semantic inconsistency between the RTL and gate-level 
models.   

Ensuring semantic consistency is a key component 
within an RTL signoff methodology. Hence, automatic 
extraction and formal analysis of RT-level design intent 
properties complements Boolean equivalence checking to 

ensure that both logical consistency and semantic 
consistency are preserved during design flow 
transformations—minimizing the designer’s dependency 
on gate-level simulation. 
Figure 2: Synthesized Gates 
 
4.0 Automatic property extraction results 

 
In addition to semantic consistency properties, many 

other design intent properties can automatically be 
extracted from the user’s RTL or gate level design, such 
as tri-state bus related properties (as shown in Figure 3) 
and Set/Reset register conflict properties (as shown in 
Figure 4). This section illustrates actual results of 
property extraction and analysis using the Verplex 
Systems, Inc. BlackTie™ Functional Checker. 

Table 1, provides data for a 560K block-level 
contained within a large networking ASIC. This testcase 
was executed on a Sun® UltraSPARC® Enterprise™ 
4000. The combined automatic property extraction and 

a[0] 

a[1] 

b[0] 
b[1] 



formal analysis completed in 1.7 hours using 420Mbytes 
of memory. 
  
Table 1: Automatic Property Extraction and Verification 

Design A Pass Fail Bounded 
Pass 

Semantic 2308 43 72 
Bus 50 635 0 
Set / Reset 57983 0 0 
Total 60431 678 72 
  

Bus Checks

◆ Bus floating: Bus is not driven by any tri-state
◆ Tri-state: stuck-at problem with enable signal 

of tri-state drivers
◆ Bus contention: Bus driven by conflicting data

Requires formal 
sequential analysis

0

qq

Example of Bus Contention
Automatically determine if 
bus contention can occur

1

1

1

. . .. . .

. . .. . .

. . .. . .

. . .. . .

  
Figure 3: Automatic Bus Property Extraction 
 

◆ Set / Reset Check
Automatically determine if SET 
and RESET pins of flip-flops or 
latches can be enabled at the 
same time

Other Structural Checks

◆ Multi-Port Latch Check
Automatically determine if  
multi-port latches can be loaded 
with different values

D Q

Qn

S

R

1

1

En1

En2

D1

D2

Q

Qn
1

1

1

0

Figure 4: Automatic Structural Property Checks 
  

5.0 Conclusion 
  

In this paper we discussed the need for declarative, 
structural, and procedural mechanisms for expressing 
assertions. The emerging Accellera PSL, OVL, and 
SystemVerilog procedural assertions were introduced.  
Techniques for combining these languages were 
proposed, creating a top-down interface specification 
methodology with a bottom-up RTL implementation 
assertion methodology, which creates an effective 

assertion-based verification flow. This flow facilitates 
formal analysis, while improving traditional simulation 
methodologies. Finally, we demonstrated the important 
role automatic property extraction (and verification) plays 
within an RTL-signoff methodology. 

New and powerful formal verification tools will 
become a key component within an assertion-based 
verification framework. These new tools, such as the 
Verplex Systems, Inc. BlackTie™ functional checker, 
will enable the designer to verify a set of user defined 
properties (specified with the new Accellera Sugar and 
OVL standards)—while supporting automatic property 
extraction and verification techniques. Formal verification 
of these combined properties will dramatically improve 
the overall design verification quality. 
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