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ABSTRACT
I develop a new mechanism for risk allocation and informa-
tion speculation called a dynamic pari-mutuel market (DPM).
A DPM acts as hybrid between a pari-mutuel market and
a continuous double auction (CDA), inheriting some of the
advantages of both. Like a pari-mutuel market, a DPM of-
fers infinite buy-in liquidity and zero risk for the market
institution; like a CDA, a DPM can continuously react to
new information, dynamically incorporate information into
prices, and allow traders to lock in gains or limit losses by
selling prior to event resolution. The trader interface can be
designed to mimic the familiar double auction format with
bid-ask queues, though with an addition variable called the
payoff per share. The DPM price function can be viewed
as an automated market maker always offering to sell at
some price, and moving the price appropriately according
to demand. Since the mechanism is pari-mutuel (i.e., redis-
tributive), it is guaranteed to pay out exactly the amount
of money taken in. I explore a number of variations on the
basic DPM, analyzing the properties of each, and solving in
closed form for their respective price functions.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Design, Economics, Theory.

Keywords
Dynamic pari-mutuel market, continuous double auction,
automated market maker, compound securities markets, com-
binatorial betting, risk allocation, information aggregation,
trading, hedging, speculating, betting, wagering, gambling.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’04, May 17–20, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-711-0/04/0005 ...$5.00.

1. INTRODUCTION
A wide variety of financial and wagering mechanisms have

been developed to support hedging (i.e., insuring) against
exposure to uncertain events and/or speculative trading on
uncertain events. The dominant mechanism used in finan-
cial circles is the continuous double auction (CDA), or in
some cases the CDA with market maker (CDAwMM). The
primary mechanism used for sports wagering is a bookie or
bookmaker, who essentially acts exactly as a market maker.
Horse racing and jai alai wagering traditionally employ the
pari-mutuel mechanism. Though there is no formal or log-
ical separation between financial trading and wagering, the
two endeavors are socially considered distinct. Recently,
there has been a move to employ CDAs or CDAwMMs for
all types of wagering, including on sports, horse racing, po-
litical events, world news, and many other uncertain events,
and a simultaneous and opposite trend to use bookie systems
for betting on financial markets. These trends highlight the
interchangeable nature of the mechanisms and further blur
the line between investing and betting. Some companies at
the forefront of these movements are growing exponentially,
with some industry observers declaring the onset of a revo-
lution in the wagering business.1

Each mechanism has pros and cons for the market insti-
tution and the participating traders. A CDA only matches
willing traders, and so poses no risk whatsoever for the mar-
ket institution. But a CDA can suffer from illiquidity in the
form huge bid-ask spreads or even empty bid-ask queues if
trading is light and thus markets are thin. A successful CDA
must overcome a chicken-and-egg problem: traders are at-
tracted to liquid markets, but liquid markets require a large
number of traders. A CDAwMM and the similar bookie
mechanism have built-in liquidity, but at a cost: the market
maker itself, usually affiliated with the market institution, is
exposed to significant risk of large monetary losses. Both the
CDA and CDAwMM offer incentives for traders to leverage
information continuously as soon as that information be-
comes available. As a result, prices are known to capture
the current state of information exceptionally well.

Pari-mutuel markets effectively have infinite liquidity: any-
one can place a bet on any outcome at any time, without
the need for a matching offer from another bettor or a mar-
ket maker. Pari-mutuel markets also involve no risk for the
market institution, since they only redistribute money from
losing wagers to winning wagers. However, pari-mutuel mar-

1
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kets are not suitable for situations where information arrives
over time, since there is a strong disincentive for placing bets
until either (1) all information is revealed, or (2) the market
is about to close. For this reason, pari-mutuel “prices” prior
to the market’s close cannot be considered a reflection of
current information. Pari-mutuel market participants can-
not “buy low and sell high”: they cannot cash out gains (or
limit losses) before the event outcome is revealed. Because
the process whereby information arrives continuously over
time is the rule rather than the exception, the applicability
of the standard pari-mutuel mechanism is questionable in a
large number of settings.

In this paper, I develop a new mechanism suitable for
hedging, speculating, and wagering, called a dynamic pari-
mutuel market (DPM). A DPM can be thought of as a hy-
brid between a pari-mutuel market and a CDA. A DPM is
indeed pari-mutuel in nature, meaning that it acts only to
redistribute money from some traders to others, and so ex-
poses the market institution to no volatility (no risk). A con-
stant, pre-determined subsidy is required to start the mar-
ket. The subsidy can in principle be arbitrarily small and
might conceivably come from traders (via antes or trans-
action fees) rather than the market institution, though a
nontrivial outside subsidy may actually encourage trading
and information aggregation. A DPM has the infinite liq-
uidity of a pari-mutuel market: traders can always purchase
shares in any outcome at any time, at some price automat-
ically set by the market institution. A DPM is also able
to react to and incorporate information arriving over time,
like a CDA. The market institution changes the price for
particular outcomes based on the current state of wagering.
If a particular outcome receives a relatively large number of
wagers, its price increases; if an outcome receives relatively
few wagers, its price decreases. Prices are computed auto-
matically using a price function, which can differ depending
on what properties are desired. The price function deter-
mines the instantaneous price per share for an infinitesimal
quantity of shares; the total cost for purchasing n shares
is computed as the integral of the price function from 0 to
n. The complexity of the price function can be hidden from
traders by communicating only the ask prices for various lots
of shares (e.g., lots of 100 shares), as is common practice in
CDAs and CDAwMMs. DPM prices do reflect current infor-
mation, and traders can cash out in an aftermarket to lock
in gains or limit losses before the event outcome is revealed.
While there is always a market maker willing to accept buy
orders, there is not a market maker accepting sell orders,
and thus no guaranteed liquidity for selling: instead, selling
is accomplished via a standard CDA mechanism. Traders
can always “hedge-sell” by purchasing the opposite outcome
than they already own.

2. BACKGROUND AND RELATED WORK

2.1 Pari-mutuel markets
Pari-mutuel markets are common at horse races [1, 22, 24,

25, 26], dog races, and jai alai games. In a pari-mutuel mar-
ket people place wagers on which of two or more mutually
exclusive and exhaustive outcomes will occur at some time
in the future. After the true outcome becomes known, all
of the money that is lost by those who bet on the incorrect
outcome is redistributed to those who bet on the correct
outcome, in direct proportion to the amount they wagered.

More formally, if there are k mutually exclusive and exhaus-
tive outcomes (e.g., k horses, exactly one of which will win),
and M1, M2, . . . , Mk dollars are bet on each outcome, and
outcome i occurs, then everyone who bet on an outcome
j 6= i loses their wager, while everyone who bet on outcome
i receives

Pk

j=1 Mj/Mi dollars for every dollar they wagered.
That is, every dollar wagered on i receives an equal share of
all money wagered. An equivalent way to think about the
redistribution rule is that every dollar wagered on i is re-
funded, then receives an equal share of all remaining money
bet on the losing outcomes, or

P

j 6=i
Mj/Mi dollars.

In practice, the market institution (e.g., the racetrack)
first takes a certain percent of the total amount wagered,
usually about 20% in the United States, then redistributes
whatever money remains to the winners in proportion to
their amount bet.

Consider a simple example with two outcomes, A and B.
The outcomes are mutually exclusive and exhaustive, mean-
ing that Pr(A ∧ B) = 0 and Pr(A) + Pr(B) = 1. Suppose
$800 is bet on A and $200 on B. Now suppose that A oc-
curs (e.g., horse A wins the race). People who wagered on
B lose their money, or $200 in total. People who wagered
on A win and each receives a proportional share of the total
$1000 wagered (ignoring fees). Specifically, each $1 wager
on A entitles its owner a 1/800 share of the $1000, or $1.25.

Every dollar bet in a pari-mutuel market has an equal pay-
off, regardless of when the wager was placed or how much
money was invested in the various outcomes at the time the
wager was placed. The only state that matters is the final
state: the final amounts wagered on all the outcomes when
the market closes, and the identity of the correct outcome.
As a result, there is a disincentive to place a wager early
if there is any chance that new information might become
available. Moreover, there are no guarantees about the pay-
off rate of a particular bet, except that it will be nonnegative
if the correct outcome is chosen. Payoff rates can fluctuate
arbitrarily until the market closes. So a second reason not
to bet early is to wait to get a better sense of the final pay-
out rates. This is in contrast to CDAs and CDAwMMs, like
the stock market, where incentives exist to invest as soon as
new information is revealed.

Pari-mutuel bettors may be allowed to switch their cho-
sen outcome, or even cancel their bet, prior to the market’s
close. However, they cannot cash out of the market early,
to either lock in gains or limit losses, if new information
favors one outcome over another, as is possible in a CDA
or a CDAwMM. If bettors can cancel or change their bets,
then an aftermarket to sell existing wagers is not sensible:
every dollar wagered is worth exactly $1 up until the mar-
ket’s close—no one would buy at greater than $1 and no one
would sell at less than $1. Pari-mutuel bettors must wait
until the outcome is revealed to realize any profit or loss.

Unlike a CDA, in a pari-mutuel market, anyone can place
a wager of any amount at any time—there is in a sense in-
finite liquidity for buying. A CDAwMM also has built-in
liquidity, but at the cost of significant risk for the market
maker. In a pari-mutuel market, since money is only redis-
tributed among bettors, the market institution itself has no
risk. The main drawback of a pari-mutuel market is that
it is useful only for capturing the value of an uncertain as-
set at some instant in time. It is ill-suited for situations
where information arrives over time, continuously updating
the estimated value of the asset—situations common in al-



most all trading and wagering scenarios. There is no notion
of “buying low and selling high”, as occurs in a CDA, where
buying when few others are buying (and the price is low) is
rewarded more than buying when many others are buying
(and the price is high). Perhaps for this reason, in most
dynamic environments, financial mechanisms like the CDA
that can react in real-time to changing information are more
typically employed to facilitate speculating and hedging.

Since a pari-mutuel market can estimate the value of an
asset at a single instant in time, a repeated pari-mutuel mar-
ket, where distinct pari-mutuel markets are run at consec-
utive intervals, could in principle capture changing infor-
mation dynamics. But running multiple consecutive mar-
kets would likely thin out trading in each individual market.
Also, in each individual pari-mutuel market, the incentives
would still be to wait to bet until just before the ending
time of that particular market. This last problem might
be mitigated by instituting a random stopping rule for each
individual pari-mutuel market.

In laboratory experiments, pari-mutuel markets have shown
a remarkable ability to aggregate and disseminate informa-
tion dispersed among traders, at least for a single snapshot
in time [17]. A similar ability has been recognized at real
racetracks [1, 22, 24, 25, 26].

2.2 Financial markets
In the financial world, wagering on the outcomes of uncer-

tain future propositions is also common. The typical market
mechanism used is the continuous double auction (CDA).
The term securities market in economics and finance gener-
ically encompasses a number of markets where speculating
on uncertain events is possible. Examples include stock mar-
kets like NASDAQ, options markets like the CBOE [13], fu-
tures markets like the CME [21], other derivatives markets,
insurance markets, political stock markets [6, 7], idea futures
markets [12], decision markets [10] and even market games
[3, 15, 16]. Securities markets generally have an economic
and social value beyond facilitating speculation or wagering:
they allow traders to hedge risk, or to insure against unde-
sirable outcomes. So if a particular outcome has disutility
for a trader, he or she can mitigate the risk by wagering
for the outcome, to arrange for compensation in case the
outcome occurs. In this sense, buying automobile insurance
is effectively a bet that an accident or other covered event
will occur. Similarly, buying a put option, which is useful
as a hedge for a stockholder, is a bet that the underlying
stock will go down. In practice, agents engage in a mixture
of hedging and speculating, and there is no clear dividing
line between the two [14]. Like pari-mutuel markets, often
prices in financial markets are excellent information aggre-
gators, yielding very accurate forecasts of future events [5,
18, 19].

A CDA constantly matches orders to buy an asset with
orders to sell. If at any time one party is willing to buy
one unit of the asset at a bid price of pbid, while another
party is willing to sell one unit of the asset at an ask price of
pask, and pbid is greater than or equal to pask, then the two
parties transact (at some price between pbid and pask). If
the highest bid price is less than the lowest ask price, then no
transactions occur. In a CDA, the bid and ask prices rapidly
change as new information arrives and traders reassess the
value of the asset. Since the auctioneer only matches willing
bidders, the auctioneer takes on no risk. However, buyers

can only buy as many shares as sellers are willing to sell; for
any transaction to occur, there must be a counterparty on
the other side willing to accept the trade.

As a result, when few traders participate in a CDA, it may
become illiquid, meaning that not much trading activity oc-
curs. The spread between the highest bid price and the low-
est ask price may be very large, or one or both queues may
be completely empty, discouraging trading.2 One way to
induce liquidity is to provide a market maker who is willing
to accept a large number of buy and sell orders at particular
prices. We call this mechanism a CDA with market maker
(CDAwMM).3 Conceptually, the market maker is just like
any other trader, but typically is willing to accept a much
larger volume of trades. The market maker may be a per-
son, or may be an automated algorithm. Adding a market
maker to the system increases liquidity, but exposes the mar-
ket maker to risk. Now, instead of only matching trades, the
system actually takes on risk of its own, and depending on
what happens in the future, may lose considerable amounts
of money.

2.3 Wagering markets
The typical Las Vegas bookmaker or oddsmaker functions

much like a market maker in a CDA. In this case, the mar-
ket institution (the book or house) sets the odds,4 initially
according to expert opinion, and later in response to the rel-
ative level of betting on the various outcomes. Unlike in a
pari-mutuel environment, whenever a wager is placed with
a bookmaker, the odds or terms for that bet are fixed at the
time of the bet. The bookmaker profits by offering different
odds for the two sides of the bet, essentially defining a bid-
ask spread. While odds may change in response to changing
information, any bets made at previously set odds remain
in effect according to the odds at the time of the bet; this
is precisely in analogy to a CDAwMM. One difference be-
tween a bookmaker and a market maker is that the former
usually operates in a “take it or leave it mode”: bettors can-
not place their own limit orders on a common queue, they
can in effect only place market orders at prices defined by
the bookmaker. Still, the bookmaker certainly reacts to bet-
tor demand. Like a market maker, the bookmaker exposes
itself to significant risk. Sports betting markets have also
been shown to provide high quality aggregate forecasts [4,
9, 23].

2.4 Market scoring rule
Hanson’s [11] market scoring rule (MSR) is a new mech-

anism for hedging and speculating that shares some proper-
ties in common with a DPM. Like a DPM, an MSR can be
conceptualized as an automated market maker always will-
ing to accept a trade on any event at some price. An MSR
requires a patron to subsidize the market. The patron’s final
loss is variable, and thus technically implies a degree of risk,
though the maximum loss is bounded. An MSR maintains
a probability distribution over all events. At any time any

2Thin markets do occur often in practice, and can be
seen in a variety of the less popular markets available on
http://TradeSports.com, or in some financial options mar-
kets, for example.
3A very clear example of a CDAwMM is the “interactive”
betting market on http://WSEX.com.
4Or, alternatively, the bookmaker sets the game line in order
to provide even-money odds.



trader who believes the probabilities are wrong can change
any part of the distribution by accepting a lottery ticket that
pays off according to a scoring rule (e.g., the logarithmic
scoring rule) [27], as long as that trader also agrees to pay
off the most recent person to change the distribution. In the
limit of a single trader, the mechanism behaves like a scor-
ing rule, suitable for polling a single agent for its probability
distribution. In the limit of many traders, it produces a com-
bined estimate. Since the market essentially always has a
complete set of posted prices for all possible outcomes, the
mechanism avoids the problem of thin markets or illiquidity.
An MSR is not pari-mutuel in nature, as the patron in gen-
eral injects a variable amount of money into the system. An
MSR provides a two-sided automated market maker, while
a DPM provides a one-sided automated market maker. In
an MSR, the vector of payoffs across outcomes is fixed at
the time of the trade, while in a DPM, the vector of payoffs
across outcomes depends both on the state of wagering at
the time of the trade and the state of wagering at the mar-
ket’s close. While the mechanisms are quite different—and
so trader acceptance and incentives may strongly differ—the
properties and motivations of DPMs and MSRs are quite
similar.

Hanson shows how MSRs are especially well suited for al-
lowing bets on a combinatorial number of outcomes. The
patron’s payment for subsidizing trading on all 2n possible
combinations of n events is no larger than the sum of subsi-
dizing the n event marginals independently. The mechanism
was planned for use in the Policy Analysis Market (PAM), a
futures market in Middle East related outcomes and funded
by DARPA [20], until a media firestorm killed the project.5

As of this writing, the founders of PAM were considering
reopening under private control.6

3. A DYNAMIC PARI-MUTUEL MARKET

3.1 High-level description
In contrast to a standard pari-mutuel market, where each

dollar always buys an equal share of the payoff, in a DPM
each dollar buys a variable share in the payoff depending on
the state of wagering at the time of purchase. So a wager
on A at a time when most others are wagering on B offers a
greater possible profit than a wager on A when most others
are also wagering on A.

A natural way to communicate the changing payoff of a
bet is to say that, at any given time, a certain amount of
money will buy a certain number of shares in one outcome
the other. Purchasing a share entitles its owner to an equal
stake in the winning pot should the chosen outcome occur.
The payoff is variable, because when few people are betting
on an outcome, shares will generally be cheaper than at a
time when many people are betting that outcome. There
is no pre-determined limit on the number of shares: new
shares can be continually generated as trading proceeds.

For simplicity, all analyses in this paper consider the bi-
nary outcome case; generalizing to multiple discrete out-
comes should be straightforward. Denote the two outcomes
A and B. The outcomes are mutually exclusive and ex-

5See http://hanson.gmu.edu/policyanalysismarket.html for
more information, or http://dpennock.com/pam.html for com-
mentary.
6
http://www.policyanalysismarket.com/

haustive. Denote the instantaneous price per share of A as
p1 and the price per share of B as p2. Denote the payoffs
per share as P1 and P2, respectively. These four numbers,
p1, p2,P1,P2 are the key numbers that traders must track
and understand. Note that the price is set at the time of the
wager; the payoff per share is finalized only after the event
outcome is revealed.

At any time, a trader can purchase an infinitesimal quan-
tity of shares of A at price p1 (and similarly for B). However,
since the price changes continuously as shares are purchased,
the cost of buying n shares is computed as the integral of a
price function from 0 to n. The use of continuous functions
and integrals can be hidden from traders by aggregating the
automated market maker’s sell orders into discrete lots of,
say, 100 shares each. These ask orders can be automati-
cally entered into the system by the market institution, so
that traders interact with what looks like a more familiar
CDA; we examine this interface issue in more detail below
in Section 4.2.

For our analysis, we introduce the following additional
notation. Denote M1 as the total amount of money wagered
on A, M2 as the total amount of money wagered on B,
T = M1 + M2 as the total amount of money wagered on
both sides, N1 as the total number of shares purchased of
A, and N2 as the total number of shares purchased of B.

There are many ways to formulate the price function. Sev-
eral natural price functions are outlined below; each is mo-
tivated as the unique solution to a particular constraint on
price dynamics.

3.2 Advantages and disadvantages
To my knowledge, a DPM is the only known mechanism

for hedging and speculating that exhibits all three of the
following properties: (1) guaranteed liquidity, (2) no risk
for the market institution, and (3) continuous incorporation
of information. A standard pari-mutuel fails (3). A CDA
fails (1). A CDAwMM, the bookmaker mechanism, and an
MSR all fail (2). Even though technically an MSR exposes
its patron to risk (i.e., a variable future payoff), the pa-
tron’s maximum loss is bounded, so the distinction between
a DPM and an MSR in terms of these three properties is
more technical than practical.

DPM traders can cash out of the market early, just like
stock market traders, to lock in a profit or limit a loss, an
action that is simply not possible in a standard pari-mutuel.

A DPM also has some drawbacks. The payoff for a wa-
ger depends both on the price at the time of the trade, and
on the final payoff per share at the market’s close. This
contrasts with the CDA variants, where the payoff vector
across possible future outcomes is fixed at the time of the
trade. So a trader’s strategic optimization problem is com-
plicated by the need to predict the final values of P1 and
P2. If P changes according to a random walk, then traders
can take the current P as an unbiased estimate of the fi-
nal P, greatly decreasing the complexity of their optimiza-
tion. If P does not change according to a random walk,
the mechanism still has utility as a mechanism for hedging
and speculating, though optimization may be difficult, and
determining a measure of the market’s aggregate opinion of
the probabilities of A and B may be difficult. We discuss
the implications of random walk behavior further below in
Section 4.1 in the discussion surrounding Assumption 3.

A second drawback of a DPM is its one-sided nature.



While an automated market maker always stands ready to
accept buy orders, there is no corresponding market maker
to accept sell orders. Traders must sell to each other us-
ing a standard CDA mechanism, for example by posting an
ask order at a price at or below the market maker’s current
ask price. Traders can also always “hedge-sell” by purchas-
ing shares in the opposite outcome from the market maker,
thereby hedging their bet if not fully liquidating it.

3.3 Redistribution rule
In a standard pari-mutuel market, payoffs can be com-

puted in either of two equivalent ways: (1) each winning $1
wager receives a refund of the initial $1 paid, plus an equal
share of all losing wagers, or (2) each winning $1 wager
receives an equal share of all wagers, winning or losing. Be-
cause each dollar always earns an equal share of the payoff,
the two formulations are precisely the same:

$1 +
Mlose
Mwin

=
Mwin + Mlose

Mwin
.

In a dynamic pari-mutuel market, because each dollar is
not equally weighted, the two formulations are distinct, and
lead to significantly different price functions and mecha-
nisms, each with different potentially desirable properties.
We consider each case in turn. The next section analyzes
case (1), where only losing money is redistributed. Section 5
examines case (2), where all money is redistributed.

4. DPM I: LOSING MONEY
REDISTRIBUTED

For the case where the initial payments on winning bets
are refunded, and only losing money is redistributed, the
respective payoffs per share are simply:

P1 =
M2

N1

P2 =
M1

N2
.

So, if A occurs, shareholders of A receive all of their ini-
tial payment back, plus P1 dollars per share owned, while
shareholders of B lose all money wagered. Similarly, if B
occurs, shareholders of B receive all of their initial payment
back, plus P2 dollars per share owned, while shareholders of
A lose all money wagered.

Without loss of generality, I will analyze the market from
the perspective of A, deriving prices and payoffs for A only.
The equations for B are symmetric.

The trader’s per-share expected value for purchasing an
infinitesimal quantity ε of shares of A is

E[ε shares]

ε
= Pr(A) · E [P1|A] − (1 − Pr(A)) · p1

E[ε shares]

ε
= Pr(A) · E

»

M2

N1

˛

˛

˛

˛

A

–

− (1 − Pr(A)) · p1

where ε is an infinitesimal quantity of shares of A, Pr(A)
is the trader’s belief in the probability of A, and p1 is the
instantaneous price per share of A for an infinitesimal quan-
tity of shares. E[P1|A] is the trader’s expectation of the
payoff per share of A after the market closes and given that
A occurs. This is a subtle point. The value of P1 does not
matter if B occurs, since in this case shares of A are worth-
less, and the current value of P1 does not necessarily matter

as this may change as trading continues. So, in order to de-
termine the expected value of shares of A, the trader must
estimate what he or she expects the payoff per share to be
in the end (after the market closes) if A occurs.

If E[ε shares]/ε > 0, a risk-neutral trader should purchase
shares of A. How many shares? This depends on the price
function determining p1. In general, p1 increases as more
shares are purchased. The risk-neutral trader should con-
tinue purchasing shares until E[ε shares]/ε = 0. (A risk-
averse trader will generally stop purchasing shares before
driving E[ε shares]/ε all the way to zero.) Assuming risk-
neutrality, the trader’s optimization problem is to choose a
number of shares n ≥ 0 of A to purchase, in order to maxi-
mize

E[n shares] = Pr(A) ·n ·E [P1|A]−(1−Pr(A)) ·
Z n

0

p1(n)dn.

(1)
It’s easy to see that the same value of n can be solved for by
finding the number of shares required to drive E[ε shares]/ε
to zero. That is, find n ≥ 0 satisfying

0 = Pr(A) · E [P1|A] − (1 − Pr(A)) · p1(n),

if such a n exists, otherwise n = 0.

4.1 Market probability
As traders who believe that E[ε shares of A]/ε > 0 pur-

chase shares of A and traders who believe that E[ε shares
of B]/ε > 0 purchase shares of B, the prices p1 and p2

change according to a price function, as prescribed below.
The current prices in a sense reflect the market’s opinion as
a whole of the relative probabilities of A and B. Assum-
ing an efficient marketplace, the market as a whole consid-
ers E[ε shares]/ε = 0, since the mechanisms is a zero sum
game. For example, if market participants in aggregate felt
that E[ε shares]/ε > 0, then there would be net demand for
A, driving up the price of A until E[ε shares]/ε = 0. Define
MPr(A) to be the market probability of A, or the probabil-
ity of A inferred by assuming that E[ε shares]/ε = 0. We
can consider MPr(A) to be the aggregate probability of A
as judged by the market as a whole. MPr(A) is the solution
to

0 = MPr(A) · E[P1|A] − (1 − MPr(A)) · p1.

Solving we get

MPr(A) =
p1

p1 + E[P1|A]
. (2)

At this point we make a critical assumption in order to
greatly simplify the analysis; we assume that

E[P1|A] = P1. (3)

That is, we assume that the current value for the payoff per
share of A is the same as the expected final value of the pay-
off per share of A given that A occurs. This is certainly true
for the last (infinitesimal) wager before the market closes.
It’s not obvious, however, that the assumption is true well
before the market’s close. Basically, we are assuming that
the value of P1 moves according to an unbiased random
walk: the current value of P1 is the best expectation of
its future value. I conjecture that there are reasonable mar-
ket efficiency conditions under which assumption (3) is true,
though I have not been able to prove that it arises naturally
from rational trading. We examine scenarios below in which



assumption (3) seems especially plausible. Nonetheless, the
assumption effects our analysis only. Regardless of whether
(3) is true, each price function derived below implies a well-
defined zero-sum game in which traders can play. If traders
can assume that (3) is true, then their optimization prob-
lem (1) is greatly simplified; however, optimizing (1) does
not depend on the assumption, and traders can still optimize
by strategically projecting the final expected payoff in what-
ever complicated way they desire. So, the utility of DPM for
hedging and speculating does not necessarily hinge on the
truth of assumption (3). On the other hand, the ability to
easily infer an aggregate market consensus probability from
market prices does depend on (3).

4.2 Price functions
A variety of price functions seem reasonable, each exhibit-

ing various properties, and implying differing market prob-
abilities.

4.2.1 Price function I: Price of A equals payoff of B

One natural price function to consider is to set the price
per share of A equal to the payoff per share of B, and set
the price per share of B equal to the payoff per share of A.
That is,

p1 = P2

p2 = P1. (4)

Enforcing this relationship reduces the dimensionality of
the system from four to two, simplifying the interface: traders
need only track two numbers instead of four. The rela-
tionship makes sense, since new information supporting A
should encourage purchasing of shares A, driving up both
the price of A and the payoff of B, and driving down the
price of B and the payoff of A. In this setting, assumption
(3) seems especially reasonable, since if an efficient market
hypothesis leads prices to follow a random walk, than payoffs
must also follow a random walk.

The constraints (4) lead to the following derivation of the
market probability:

MPr(A)P1 = MPr(B)p1

MPr(A)P1 = MPr(B)P2

MPr(A)

MPr(B)
=

P2

P1

MPr(A)

MPr(B)
=

M1

N2

M2

N1

MPr(A)

MPr(B)
=

M1N1

M2N2

MPr(A) =
M1N1

M1N1 + M2N2
(5)

The constraints (4) specify the instantaneous relation-
ship between payoff and price. From this, we can derive
how prices change when (non-infinitesimal) shares are pur-
chased. Let n be the number of shares purchased and let m
be the amount of money spent purchasing n shares. Note
that p1 = dm/dn, the instantaneous price per share, and

m =
R n

0
p1(n)dn. Substituting into equation (4), we get:

p1 = P2

dm

dn
=

M1 + m

N2

dm

M1 + m
=

dn

N2
Z

dm

M1 + m
=

Z

dn

N2

ln(M1 + m) =
n

N2
+ C

m = M1

h

e
n

N2 − 1
i

(6)

Equation 6 gives the cost of purchasing n shares. The in-
stantaneous price per share as a function of n is

p1(n) =
dm

dn
=

M1

N2
e

n

N2 . (7)

Note that p1(0) = M1/N2 = P2 as required. The derivation
of the price function p2(n) for B is analogous and the results
are symmetric.

The notion of buying infinitesimal shares, or integrat-
ing costs over a continuous function, are probably foreign
to most traders. A more standard interface can be imple-
mented by discretizing the costs into round lots of shares,
for example lots of 100 shares. Then ask orders of 100
shares each at the appropriate price can be automatically
placed by the market institution. For example, the mar-
ket institution can place an ask order for 100 shares at
price m(100)/100, another ask order for 100 shares at price
(m(200)−m(100))/100, a third ask for 100 shares at (m(300)−
m(200))/100, etc. In this way, the market looks more famil-
iar to traders, like a typical CDA with a number of ask
orders at various prices automatically available. A trader
buying less than 100 shares would pay a bit more than if
the true cost were computed using (6), but the discretized
interface would probably be more intuitive and transparent
to the majority of traders.

The above equations assume that all money that comes in
is eventually returned or redistributed. In other words, the
mechanism is a zero sum game, and the market institution
takes no portion of the money. This could be generalized so
that the market institution always takes a certain amount,
or a certain percent, or a certain amount per transaction, or
a certain percent per transaction, before money in returned
or redistributed.

Finally, note that the above price function is undefined
when the amount bet or the number of shares are zero. So
the system must begin with some positive amount on both
sides, and some positive number of shares outstanding on
both sides. These initial amounts can be arbitrarily small in
principle, but the size of the initial subsidy may affect the
incentives of traders to participate. Also, the smaller the
initial amounts, the more each new dollar effects the prices.
The initialization amounts could be funded as a subsidy from
the market institution or a patron, which I’ll call a seed
wager, or from a portion of the fees charged, which I’ll call
an ante wager.

4.2.2 Price function II: Price of A proportional to
money on A

A second price function can be derived by requiring the
ratio of prices to be equal to the ratio of money wagered.



That is,

p1

p2
=

M1

M2
. (8)

In other words, the price of A is proportional to the amount
of money wagered on A, and similarly for B. This seems like
a particularly natural way to set the price, since the more
money that is wagered on one side, the cheaper becomes a
share on the other side, in exactly the same proportion.

Using Equation 8, along with (2) and (3), we can derive
the implied market probability:

M1

M2
=

p1

p2

=

MPr(A)

MPr(B)
· M2

N1

MPr(B)

MPr(A)
· M1

N2

=
(MPr(A))2

(MPr(B))2
· M2N2

M1N1

(MPr(A))2

(MPr(B))2
=

(M1)
2N1

(M2)2N2

MPr(A)

MPr(B)
=

M1

√
N1

M2

√
N2

MPr(A) =
M1

√
N1

M1

√
N1 + M2

√
N2

(9)

We can solve for the instantaneous price as follows:

p1 =
MPr(A)

MPr(B)
· P1

=
M1

√
N1

M2

√
N2

· M2

N1

=
M1√
N1N2

(10)

Working from the above instantaneous price, we can de-
rive the implied cost function m as a function of the number
n of shares purchased as follows:

dm

dn
=

M1 + m√
N1 + n

√
N2

Z

dm

M1 + m
=

Z

dn√
N1 + n

√
N2

ln(M1 + m) =
2

N2
[(N1 + n)N2]

1
2 + C

m = M1

"

e
2

r

N1+n

N2
−2

r

N1
N2 − 1

#

. (11)

From this we get the price function:

p1(n) =
dm

dn
=

M1
p

(N1 + n)N2

e
2

r

N1+n

N2
−2

r

N1
N2 . (12)

Note that, as required, p1(0) = M1/
√

N1N2, and p1(0)/p2(0)
= M1/M2. If one uses the above price function, then the
market dynamics will be such that the ratio of the (instan-
taneous) prices of A and B always equals the ratio of the
amounts wagered on A and B, which seems fairly natural.

Note that, as before, the mechanism can be modified to
collect transaction fees of some kind. Also note that seed or
ante wagers are required to initialize the system.

5. DPM II: ALL MONEY REDISTRIBUTED
Above we examined the policy of refunding winning wa-

gers and redistributing only losing wagers. In this section
we consider the second policy mentioned in Section 3.3: all
money from all wagers are collected and redistributed to
winning wagers.

For the case where all money is redistributed, the respec-
tive payoffs per share are:

P1 =
M1 + M2

N1
=

T

N1

P2 =
M1 + M2

N2
=

T

N2
,

where T = M1 + M2 is the total amount of money wagered
on both sides. So, if A occurs, shareholders of A lose their
initial price paid, but receive P1 dollars per share owned;
shareholders of B simply lose all money wagered. Similarly,
if B occurs, shareholders of B lose their initial price paid,
but receive P2 dollars per share owned; shareholders of A
lose all money wagered.

In this case, the trader’s per-share expected value for pur-
chasing an infinitesimal quantity ε of shares of A is

E[ε shares]

ε
= Pr(A) · E [P1|A] − p1. (13)

A risk-neutral trader optimizes by choosing a number of
shares n ≥ 0 of A to purchase, in order to maximize

E[n shares] = Pr(A) · n · E [P1|A] −
Z n

0

p1(n)dn

= Pr(A) · n · E [P1|A] − m (14)

The same value of n can be solved for by finding the number
of shares required to drive E[ε shares]/ε to zero. That is,
find n ≥ 0 satisfying

0 = Pr(A) · E [P1|A] − p1(n),

if such a n exists, otherwise n = 0.

5.1 Market probability
In this case MPr(A), the aggregate probability of A as

judged by the market as a whole, is the solution to

0 = MPr(A) · E[P1|A] − p1.

Solving we get

MPr(A) =
p1

E[P1|A]
. (15)

As before, we make the simplifying assumption (3) that
the expected final payoff per share equals the current payoff
per share. The assumption is critical for our analysis, but
may not be required for a practical implementation.

5.2 Price functions
For the case where all money is distributed, the con-

straints (4) that keep the price of A equal to the payoff of B,
and vice versa, do not lead to the derivation of a coherent
price function.

A reasonable price function can be derived from the con-
straint (8) employed in Section 4.2.2, where we require that
the ratio of prices to be equal to the ratio of money wagered.
That is, p1/p2 = M1/M2. In other words, the price of A is
proportional to the amount of money wagered on A, and
similarly for B.



Using Equations 3, 8, and 15 we can derive the implied
market probability:

M1

M2
=

p1

p2

=
MPr(A)

MPr(B)
· T

N1
· N2

T

=
MPr(A)

MPr(B)
· N2

N1

MPr(A)

MPr(B)
=

M1N1

M2N2

MPr(A) =
M1N1

M1N1 + M2N2
(16)

Interestingly, this is the same market probability derived in
Section 4.2.1 for the case of losing-money redistribution with
the constraints that the price of A equal the payoff of B and
vice versa.

The instantaneous price per share for an infinitesimal quan-
tity of shares is:

p1 =
(M1)

2 + M1M2

M1N1 + M2N2

=
M1 + M2

N1 + M2

M1
N2

Working from the above instantaneous price, we can de-
rive the number of shares n that can be purchased for m
dollars, as follows:

dm

dn
=

M1 + M2 + m

N1 + n + M2

M1+m
N2

dn

dm
=

N1 + n + M2

M1+m
N2

M1 + M2 + m
(17)

· · ·

n =
m(N1 − N2)

T
+

N2(T + m)

M2
ln

»

T (M1 + m)

M1(T + m)

–

.

Note that we solved for n(m) rather than m(n). I could not
find a closed-form solution for m(n), as was derived for the
two other cases above. Still, n(m) can be used to determine
how many shares can be purchased for m dollars, and the
inverse function can be approximated to any degree numer-
ically. From n(m) we can also compute the price function:

p1(m) =
dm

dn
=

(M1 + m)M2T

denom
, (18)

where

denom = (M1 + m)M2N1 + (M2 − m)M2N2

+T (M1 + m)N2 ln

»

T (M1 + m)

M1(T + m)

–

Note that, as required, p1(0)/p2(0) = M1/M2. If one uses
the above price function, then the market dynamics will be
such that the ratio of the (instantaneous) prices of A and B
always equals the ratio of the amounts wagered on A and
B.

This price function has another desirable property: it acts
such that the expected value of wagering $1 on A and simul-
taneously wagering $1 on B equals zero, assuming (3). That
is, E[$1 of A + $1 of B] = 0. The derivation is omitted.

5.3 Comparing DPM I and II
The main advantage of refunding winning wagers (DPM

I) is that every bet on the winning outcome is guaranteed
to at least break even. The main disadvantage of refund-
ing winning wagers is that shares are not homogenous: each
share of A, for example, is actually composed of two distinct
parts: (1) the refund, or a lottery ticket that pays $p if A
occurs, where p is the price paid per share, and (2) one share
of the final payoff ($P1) if A occurs. This complicates the
implementation of an aftermarket to cash out of the market
early, which we will examine below in Section 7. When all
money is redistributed (DPM II), shares are homogeneous:
each share entitles its owner to an equal slice of the final
payoff. Because shares are homogenous, the implementa-
tion of an aftermarket is straightforward, as we shall see in
Section 7. On the other hand, because initial prices paid
are not refunded for winning bets, there is a chance that, if
prices swing wildly enough, a wager on the correct outcome
might actually lose money. Traders must be aware that if
they buy in at an excessively high price that later tumbles
allowing many others to get in at a much lower price, they
may lose money in the end regardless of the outcome. From
informal experiments, I don’t believe this eventuality would
be common, but nonetheless it requires care in communicat-
ing to traders the possible risks. One potential fix would be
for the market maker to keep track of when the price is going
too low, endangering an investor on the correct outcome. At
this point, the market maker could artificially stop lowering
the price. Sell orders in the aftermarket might still come in
below the market maker’s price, but in this way the system
could ensure that every wager on the correct outcome at
least breaks even.

6. OTHER VARIATIONS
A simple ascending price function would set p1 = αM1

and p2 = αM2, where α > 0. In this case, prices would only
go up. For the case of all money being redistributed, this
would eliminate the possibility of losing money on a wager on
the correct outcome. Even though the market maker’s price
only rises, the going price may fall well below the market
maker’s price, as ask orders are placed in the aftermarket.

I have derived price functions for several other cases, using
the same methodology above. Each price function may have
its own desirable properties, but it’s not clear which is best,
or even that a single best method exists. Further analyses
and, more importantly, empirical investigations are required
to answer these questions.

7. AFTERMARKETS
A key advantage of DPM over a standard pari-mutuel

market is the ability to cash out of the market before it
closes, in order to take a profit or limit a loss. This is ac-
complished by allowing traders to place ask orders on the
same queue as the market maker. So traders can sell the
shares that they purchased at or below the price set by the
market maker. Or traders can place a limit sell order at any
price. Buyers will purchase any existing shares for sale at
the lower prices first, before purchasing new shares from the
market maker.

7.1 Aftermarket for DPM II
For the second main case explored above, where all money



is redistributed, allowing an aftermarket is simple. In fact,
“aftermarket” may be a poor descriptor: buying and selling
are both fully integrated into the same mechanism. Every
share is worth precisely the same amount, so traders can sim-
ply place ask orders on the same queue as the market maker
in order to sell their shares. New buyers will accept the low-
est ask price, whether it comes from the market maker or
another trader. In this way, traders can cash out early and
walk away with their current profit or loss, assuming they
can find a willing buyer.

7.2 Aftermarket for DPM I
When winning wagers are refunded and only losing wagers

are redistributed, each share is potentially worth a different
amount, depending on how much was paid for it, so it is not
as simple a matter to set up an aftermarket. However, an
aftermarket is still possible. In fact, much of the complexity
can be hidden from traders, so it looks nearly as simple as
placing a sell order on the queue.

In this case shares are not homogenous: each share of A
is actually composed of two distinct parts: (1) the refund of
p · 1A dollars, and (2) the payoff of P1 · 1A dollars, where p
is the per-share price paid and 1A is the indicator function
equalling 1 if A occurs, and 0 otherwise. One can imag-
ine running two separate aftermarkets where people can sell
these two respective components. However, it is possible to
automate the two aftermarkets, by automatically bundling
them together in the correct ratio and selling them in the
central DPM. In this way, traders can cash out by placing
sell orders on the same queue as the DPM market maker,
effectively hiding the complexity of explicitly having two
separate aftermarkets. The bundling mechanism works as
follows. Suppose the current price for 1 share of A is p1. A
buyer agrees to purchase the share at p1. The buyer pays
p1 dollars and receives p1 · 1A + P1 · 1A dollars. If there is
enough inventory in the aftermarkets, the buyer’s share is
constructed by bundling together p1 ·1A from the first after-
market, and P1 ·1A from the second aftermarket. The seller
in the first aftermarket receives p1MPr(A) dollars, and the
seller in the second aftermarket receives p1MPr(B) dollars.

7.3 Pseudo aftermarket for DPM I
There is an alternative “pseudo aftermarket” that’s pos-

sible for the case of DPM I that does not require bundling.
Consider a share of A purchased for $5. The share is com-
posed of $5 ·1A and $P1 ·1A. Now suppose the current price
has moved from $5 to $10 per share and the trader wants to
cash out at a profit. The trader can sell 1/2 share at market
price (1/2 share for $5), receiving all of the initial $5 invest-
ment back, and retaining 1/2 share of A. The 1/2 share is
worth either some positive amount, or nothing, depending
on the outcome and the final payoff. So the trader is left
with shares worth a positive expected value and all of his or
her initial investment. The trader has essentially cashed out
and locked in his or her gains. Now suppose instead that
the price moves downward, from $5 to $2 per share. The
trader decides to limit his or her loss by selling the share for
$2. The buyer gets the 1 share plus $2 ·1A (the buyer’s price
refunded). The trader (seller) gets the $2 plus what remains
of the original price refunded, or $3 · 1A. The trader’s loss
is now limited to $3 at most instead of $5. If A occurs, the
trader breaks even; if B occurs, the trader loses $3.

Also note that—in either DPM formulation—traders can

always “hedge sell” by buying the opposite outcome without
the need for any type of aftermarket.

8. CONCLUSIONS
I have presented a new market mechanism for wagering

on, or hedging against, a future uncertain event, called a
dynamic pari-mutuel market (DPM). The mechanism com-
bines the infinite liquidity and risk-free nature of a pari-
mutuel market with the dynamic nature of a CDA, making
it suitable for continuous information aggregation. To my
knowledge, all existing mechanisms—including the standard
pari-mutuel market, the CDA, the CDAwMM, the bookie
mechanism, and the MSR—exhibit at most two of the three
properties. An MSR is the closest to a DPM in terms of
these properties, if not in terms of mechanics. Given some
natural constraints on price dynamics, I have derived in
closed form the implied price functions, which encode how
prices change continuously as shares are purchased. The in-
terface for traders looks much like the familiar CDA, with
the system acting as an automated market maker willing
to accept an infinite number of buy orders at some price.
I have explored two main variations of a DPM: one where
only losing money is redistributed, and one where all money
is redistributed. Each has its own pros and cons, and each
supports several reasonable price functions. I have described
the workings of an aftermarket, so that traders can cash out
of the market early, like in a CDA, to lock in their gains
or limit their losses, an operation that is not possible in a
standard pari-mutuel setting.

9. FUTURE WORK
This paper reports the results of an initial investigation of

the concept of a dynamic pari-mutuel market. Many avenues
for future work present themselves, including the following:

• Random walk conjecture. The most important
question mark in my mind is whether the random walk
assumption (3) can be proven under reasonable market
efficiency conditions and, if not, how severely it effects
the practicality of the system.

• Incentive analysis. Formally, what are the incen-
tives for traders to act on new information and when?
How does the level of initial subsidy effect trader in-
centives?

• Laboratory experiments and field tests. This pa-
per concentrated on the mathematics and algorithmics
of the mechanism. However, the true test of the mech-
anism’s ability to serve as an instrument for hedging,
wagering, or information aggregation is to test it with
real traders in a realistic environment. In reality, how
do people behave when faced with a DPM mechanism?

• DPM call market. I have derived the price functions
to react to wagers on one outcome at a time. The
mechanism could be generalized to accept orders on
both sides, then update the prices wholistically, rather
than by assuming a particular sequence on the wagers.

• Real-valued variables. I believe the mechanisms in
this paper can easily be generalized to multiple discrete



outcomes, and multiple real-valued outcomes that al-
ways sum to some constant value (e.g., multiple per-
centage values that must sum to 100). However, the
generalization to real-valued variables with arbitrary
range is less clear, and open for future development.

• Compound/combinatorial betting. I believe that
DPM may be well suited for compound [8, 11] or com-
binatorial [2] betting, for many of the same reasons
that market scoring rules [11] are well suited for the
task. DPM may also have some computational advan-
tages over MSR, though this remains to be seen.
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