
SWIG 4th International Python Conference

Using SWIG to Control, Prototype,
and Debug C Programs with Python

Dave Beazley

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

beazley@cs.utah.edu

June 5, 1996

1

SWIG 4th International Python Conference

Topics

• What is SWIG?

• Extending Python

• A Tour of SWIG

• Applications

• Limitations

• Work in progress and future directions

2

SWIG 4th International Python Conference

SWIG (Simplified Wrapper and Interface Generator)

• Compiler that takes ANSI C/C++ declarations and produces
bindings to interpreted languages.

• Supports almost all C/C++ datatypes

• Binds functions, variables, and constants

• C++ classes (including some inheritance)

• Run-time type-checking

• Supports modules and multiple files

• Automatic documentation generation

• Currently supports Python, Tcl, Perl4, Perl5, Guile3

• Extensible

3

SWIG 4th International Python Conference

Where am I Coming From?

Physics/
Numerical
Analysis

ML

Compilers

“Tools”

Tcl/Tk

Python Perl

Guile

Dave’s
Scripting
Language

@#**$!

Dave’s
Attitude
Problem

SWIG
Prototype

100 Gbytes
of Data

SWIG

Rapid Prototyping

Ease of Use

Debugging

DocumentationPhysicists

4

SWIG 4th International Python Conference

The Two Language Model
• Two languages are better than one

• C/C++

• Performance
• Hard-core number crunching
• Portability
• Complicated stuff

• Python

• Control language
• Cool things like lists, associative arrays, modules, etc...
• Interpreted
• Good extension language
• Rapid prototyping
• Debugging
• User interfaces (tkinter)

• Use the best features of each language

5

SWIG 4th International Python Conference

Extending Python
Suppose you wanted to add the getenv() function
to Python.

• Need to write special
“wrapper” functions.

• Fortunately, it’s
usually not too
difficult.

• But, imagine doing
this for 200 functions.

• Tedious and error
prone.

static PyObject *wrap_getenv(
PyObject *self,
PyObject *args)

{

 char *result;
 char *arg0;
 if (!PyArg_ParseTuple(args,”s”,&arg0))

return NULL;
 result = getenv(arg0);
 return Py_BuildValue(“s”,result);
}

A Python wrapper function

Procedure is about the same for most other scripting
languages (some are easier than others).

6

SWIG 4th International Python Conference

SWIG Overview

Interface file

Parser

Code
Generator

Doc.
Generator

Python
Tcl
Perl4
Perl5
Guile-iii

HTML
LaTeX
ASCII

• Interface file with
ANSI C/C++

• Generic YACC
Parser

• Target languages
are C++ classes.

• Easy to extend
(well mostly).

• Produces a C/C++
source file as output

8

SWIG 4th International Python Conference

A Simple Example

int fact(int n) {
if (n <= 1) return 1;
else return(n*fact(n-1));

}

%module example
%{
// Insert headers here
%}
extern int fact(int);

example.c example.i (SWIG Interface File)

unix% swig -python example.i
unix% gcc -c example.c example_wrap.c -I/usr/local/include/Py
unix% ld -shared example.o example_wrap.o -o example.so
unix% python1.3
Python1.3 (Apr 12 1996) [GCC 2.5.8]
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> from example import *
>>> n = fact(6);
>>> print n
720
>>>

9

SWIG 4th International Python Conference

SWIG Datatypes
• Built-in types:

int, short, long, char, float, double, void

(integers can also be signed or unsigned).

• Derived types:

• Pointers to built-in types.
• Pointers to structures
• Pointers to objects
• Well, almost any kind of pointer actually....

In fact, all derived types are pointers in SWIG (but more on that
in a minute).

• Can remap types using typedef

• The bottom line :

• Almost all C/C++ datatypes can be used.
• No pointers to functions (unless hidden via typedef).
• Arrays a little weird too...

10

SWIG 4th International Python Conference

Adding Functions
• SWIG uses ANSI C/C++ prototypes :

 int foo(int a, int b);
extern void print_data(double **);
unsigned int f1(void), f2();
extern int strcmp(const char *, const char *);
 struct tm *localtime(long *t);
 double **new_matrix(int n, int m);
 Node *get_node(char *);
 int Foo::bar();

• All built-in types and derived types allowed

• No type information needed for complex datatypes
(ie. Node or struct tm).

• Usually pretty easy to use header files.

• Parser throws out some clutter (inline code, etc...)

11

SWIG 4th International Python Conference

 Linking to C Variables and Constants
• Access global variables by declaring them

double My_variable;
extern int flag;
Node *root;

(In python this creates functions such as the following :)

double My_variable_get();
double My_variable_set(double newvalue);

• Create constants with #define, enum, or const

#define MODE 1
enum colors {red, blue, green, yellow, brown};
const int FLAGS = 0x04000020;

• Constant expressions allowed
#define STATUS 0x20 | 0x1 | 0x1000
const double PI_4 = PI/4;

12

SWIG 4th International Python Conference

Pointers
• All derived types in SWIG are pointers.

• Encoded as strings with type information

Example: _1008e124_Vector_p

(Hmmm.... perhaps a carry over from Tcl)

• Checked at run-time for validity
>>> n = new_Node()
>>> v = new_Vector(3,5,10)
>>> d = dot(v,n)
Traceback (innermost last):
 File “”, line 1, in ?
TypeError: Type error in argument 2 of dot.
Expected _Vector_p.
>>>

• Type-checker is savvy to typedef and C++.

• Prevents crashes due to stupid mistakes.

13

SWIG 4th International Python Conference

SWIG and C++
%module list
%{
#include “list.h”
%}

class List {
public:

List();
 ~List();

int search(char *item);
void insert(char *item);
void remove(char *item);
char *get(int n);
int length;

static void print(List *l);
};

List *new_List(void) {
return new List;

}

void delete_List(List *l) {
delete l;

}

int List_search(List *l,
char *item) {

return l->search(item);
}
...
int List_length_get(List *l) {

return l->length;
}

int List_length_set(List *l,
int value) {

return (l->length = value);
}

void List_print(List *l) {
List::print(l);

}

• C++ code politely translated into C

• C functions are then wrapped.

• Works independently of the
 target language.

• Can be fully customized (work in
 progress).

14

SWIG 4th International Python Conference

SWIG and C++ (cont...)
• Inheritance

• SWIG supports single public inheritance.
• Virtual functions okay.

• Use of C++ references usually works

• Limitations

• No operator overloading
• No templates.
• No multiple inheritance
• No function overloading (but you can rename things).

 List();
%name(ListItem) List(char *item);

• Thoughts

• C++ is a complicated beast. Probably pretty hard to support all of
it. I’ve tried to work with a reasonable subset.

• Wasn’t my intent to write a full C++ compiler.

15

SWIG 4th International Python Conference

Multiple Files and Modules
• Interfaces can be built from multiple files
 and libraries.

%module package
%{
#include “package.h”
%}

%include geometry.i
%include file.i
%include graphics.i
%include network.i
%include integration.i
%include mesh.i

• Module system makes it very easy to reuse
code in other packages.

• SWIG comes with a library of stuff.

• Code reuse that works??? (maybe)
16

SWIG 4th International Python Conference

Documentation System

%title “My Interface”
%module package
%{
#include “package.h”
%}

%section “Initialization”

void init();
/* Initializes the system */
void haze();
/* Initializes the system and
spawns an initiation ritual */

%section “Graphics”

void LoadMatrix(Matrix *m);
/* Loads viewing transformation matrix */
void ClearBuffer(int color);
/* Clear the frame buffer */

%section “Network”

int open_socket(char *host, int port);
/* Open up a connection with the server */

void disconnect(int fd);
/* Close connection */

My Interface

1. Initialization

void package.init()
Initializes the system

void package.haze()
Initializes the system and spawns
an initiation ritual.

2. Graphics

void package.LoadMatrix(m)
Loads viewing transformation
matrix

void package.ClearBuffer(color)
Clear the frame buffer

3. Network

int package.open_socket(host, port)
Open up a connection with the server

void package.disconnect(fd)
Close connection.

Documentation is generated automatically from
comments

17

SWIG 4th International Python Conference

Controlling C Programs
• SWIG requires virtually no modification to C code.

• Easy to use with existing applications

• Currently used at Los Alamos with the SPaSM
Molecular Dynamics code

• ~250 functions and variables

• Used on CM-5, T3D, Workstations

• SWIG is hidden in the Makefile and is completely
transparent to the users

• Simplicity of approach is particularly attractive in
research applications.

18

SWIG 4th International Python Conference

Building Python Modules and Classes
• Can build Python modules out of C/C++ libraries.

Example : MATLAB, OpenGL, etc...

• Can encapsulate C++ classes (with a little work)
%module tree
%{
#include “tree.h”
%}

class Tree {
public:

Tree();
~Tree();
void insert(char *key,char *val);
char *search(char *key);
void remove(char *key);

};

import tree

class Tree:
def __init__(self):
 self.ptr = new_Tree()
def __del__(self):
 delete_Tree(self.ptr)
def insert(self,key,val):
 Tree_insert(self.ptr,key,val)
def search(self,key):
 v = Tree_search(self.ptr,key)
 return v
def remove(self,key):
 Tree_remove(self.ptr,key)

• Combining various modules usually leads to
interesting applications

19

SWIG 4th International Python Conference

Prototyping and Debugging
• SWIG works well if you want to interact with and

debug C/C++ code.

• Example : OpenGL

%module opengl
%{
%}
%include gl.i // All of the OpenGL library
%include glu.i // Most of the GLU library
%include aux.i // Most of the GL aux library
%include help.i // A few functions added to help out

Each include file is just an edited copy of various GL header files.

Total development time ~ 20 minutes.

• 708 Constants

• 426 Functions

• > 8000 lines of wrapper code.

20

SWIG 4th International Python Conference

OpenGL Example
from opengl import *

def myinit ():
 light_ambient = newfv4(0.0, 0.0, 0.0, 1.0);
 light_diffuse = newfv4(1.0, 1.0, 1.0, 1.0);
 light_specular = newfv4(1.0, 1.0, 1.0, 1.0);
 light_position = newfv4(1.0, 1.0, 1.0, 0.0);
 glLightfv (GL_LIGHT0, GL_AMBIENT, light_ambient);
 glLightfv (GL_LIGHT0, GL_DIFFUSE, light_diffuse);
 glLightfv (GL_LIGHT0, GL_SPECULAR, light_specular);
 glLightfv (GL_LIGHT0, GL_POSITION, light_position);
 glEnable (GL_LIGHTING);
 glEnable (GL_LIGHT0);
 glDepthFunc(GL_LESS);
 glEnable(GL_DEPTH_TEST);

def display ():
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix ();
 glRotatef (20.0, 1.0, 0.0, 0.0);
 glPushMatrix ();
 glTranslatef (-0.75, 0.5, 0.0);
 glRotatef (90.0, 1.0, 0.0, 0.0);
 auxSolidTorus (0.275, 0.85);
 glPopMatrix ();
 glPushMatrix ();
 glTranslatef (-0.75, -0.5, 0.0);
 glRotatef (270.0, 1.0, 0.0, 0.0);
 auxSolidCone (1.0, 2.0);
 glPopMatrix ();
 glPushMatrix ();
 glTranslatef (0.75, 0.0, -1.0);
 auxSolidSphere (1.0);
 glPopMatrix ();
 glPopMatrix ();
 glFlush ();

21

SWIG 4th International Python Conference

Current Limitations
• Lack of variable linking in Python

Ex.
double MyVariable ----> MyVariable_get(), MyVariable_set()

• Representing pointers as strings is a little weird
(But you often don’t notice)

• Handling of C++ classes not complete. Often
have to write a Python wrapper class afterwards

• Pointer model is sometimes confusing

• No exception model

• Numerical representation problems (particularly
unsigned integers and longs)

• C++ parsing---need I say more?
23

SWIG 4th International Python Conference

A Few Projects Using SWIG

• Materials Science Simulations (Los Alamos)
• SWIG used for nearly a year.
• System has worked flawlessly.

• Defibrillation research (Univ. of Utah).
• Being used to glue together simulation, mesh

generation and visualization code using Tcl/Tk.

• Synthetic workload generation (Univ. of Utah)

• OpenGL widget (Peter-Pike Sloan, Univ. of Utah)

• ... and many other projects underway.

22

SWIG 4th International Python Conference

Future Directions
• Release of 1.0 Final (someday)

• Continued improvement to Python implementation
• Perhaps a new pointer representation
• Better method for linking with variables
• Improved C++ support.
• An exception model???

• Integration with Numerical Python?

• Python for parallel machines?
 (A little unrelated, but I’d like it)

• Support for new target languages (as appropriate)
• Java (well, maybe)
• ILU
• iTcl

• Support for non-Unix platforms (in progress)

• Whatever else comes up...

24

SWIG 4th International Python Conference

Acknowledgments

• All of the current users who have provided feedback, bug reports,
and ideas.

• The first users :

Kurtis Bleeker, Tim Germann, Brad Holian, Peter Lomdahl,
John Schmidt, Peter-Pike Sloan, Shujia Zhou

• John Buckman (non-unix platforms and lots of good ideas)

• Patrick Tullmann (automatic documentation generation)

• The Scientific Computing and Imaging Group

• Oh, and these agencies paid some of my salary and provided machines

DOE, NSF, NIH

27

SWIG 4th International Python Conference

Advertisement

The SWIG source code and user manual are
available via anonymous FTP:

ftp.cs.utah.edu/pub/beazley/SWIG

The SWIG homepage:

http://www.cs.utah.edu/~beazley/SWIG

The SWIG mailing list:

swig@cs.utah.edu

28

SWIG 4th International Python Conference

Conclusions
• SWIG Eliminates alot of the grungy details

of integrating C/C++ with Python

• Current system supports a reasonable subset of
C and C++.

• Two-language model is where it’s at.

• Many users like the easy of use and straightforward
approach.

• I developed SWIG for myself---and I find myself
using it almost all of the time (but, I’m probably
biased).

26

SWIG 4th International Python Conference

Automatic Wrapper Generation
• Most languages have tools for automatically

generating wrapper code.

ex. ILU, Modulator, Object Tcl, XS, etc...

• Most tools are specific to a single language

• Use of special syntax (or formatting)

• Difficult to use.

SWIG :

• Use ANSI C/C++ specifications (independent of
target language).

• Try to keep it simple, yet flexible.

• I hate religious wars....
7

SWIG 4th International Python Conference

Random Thoughts
• SWIG vs. hand-written modules

• SWIG was not really designed to be a generic module builder

• Performance concerns
• You don’t use interpreted languages if you want performance.
• 2 Language Module ===> Write critical stuff in C/C++

• Security and Reliability
• Type-checker eliminates alot of problems.
• Can still forge bogus pointer values.
• C++ is always a little risky (pointer casting problems for instance).

• Coding Methodology
• When used during code development, SWIG encourages modularity.
• Usually results in more reliable and flexible code.

• Why all of the Effort?
• I want to have a useful and reliable tool.

25

SWIG 4th International Python Conference

Building a SWIG Extension
• Need to supply a new language class

(about a dozen functions).

• Write a main program like this :

#include <swig.h>
#include <my_python.h>

int main(int argc, char **argv) {
PYTHON *l;

l = new PYTHON;
SWIG_main(argc,argv,l,(Documentation *) 0);
return 0;

}

• Recompile

unix > g++ my_python.C main.C -lswig -o myswig

• Unfortunately, the code in my_python.C is
pretty ugly (working on it).

