
Inmy last column, I discussed one
of the reasons why the rules by which
a compiler can place data into ROM
are a bit more complicated in C++
than they are in C.1 I have more to
say about that subject, but before I
do, I’d like to reply to the following
query I received through e-mail from
Phil Baurer at Komatsu Mining
Systems:

“We’re having an interesting prob-
lem using const with a typedef. I
hoped you could comment on this sit-
uation. I am wondering if we are
bumping into some unknown (by us)
rule of the C language.

“We are using the Hitachi C com-
piler for the Hitachi SH-2 32-bit RISC
microcontroller. We thought the fol-
lowing code:

typedef void *VP;

const VP vectorTable[]

= {..<data>..}; (1)

should be identical to:

const void *vectorTable[]

= {..<data>..}; (2)

“However, the linker places
vectorTable in (1) into the CONSTANT
section, but it places vectorTable in
(2) into the DATA section.

“Is this the proper behavior or a
bug in the compiler?”

This is proper behavior; it is not a
bug. You are indeed bumping into
some rules of the C language that
you apparently don’t know about.
Don’t feel bad; you’re not alone. I

believe many other C and C++ pro-
grammers are confused about these
rules, which is why I’m answering this
in my column.

I presented some of these rules in
an earlier column.2 However, in look-
ing back at that column, I don’t think
I emphasized strongly enough the
points which seem to be the source
of your confusion. So let me try
again.

Declarators

Here’s the first insight:

Every declaration in C and C++ has two
principal parts: a sequence of zero or more
declaration specifiers, and a sequence of
one or more declarators, separated by
commas.

For example:

A declarator is the name being
declared, possibly surrounded by
operators such as *, [], (), and (in the
case of C++) &. As you already know,
the symbol * in a declarator means
“pointer to” and []means “array of.”

Thus, *x[N] is a declarator indicating
that x is an “array of N elements of
pointer to ...” something, where that
something is the type specified in the
declaration specifiers. For example,

static unsigned long int *x[N];

declares xas an object of type “array of
N elements of pointer to unsigned
long int.” (As explained later, the key-

word static does not contribute to
the type.)

How did I know that *x[N] is an
“array of ... pointer to ...” rather than a
“pointer to an array of ...?” It follows
from this rule:

The operators in a declarator group accord-
ing to the same precedence as they do when
they appear in an expression.

For example, if you check the near-
est precedence chart for either C or
C++, you’ll see that [] has higher
precedence than *. Thus the declara-
tor *x[N] means that x is an array
before it’s a pointer.

Parentheses serve two roles in
declarators: first, as the function call
operator, and second, as grouping. As
the function call operator, ()have the
same precedence as []. As grouping,
()have the highest precedence of all.

Embedded Systems Programming FEBRUARY 1999 13

P R O G R A M M I N G P O I N T E R S

Dan Saks

const T vs.T const

Although C and C++ read mostly from top-to-

bottom and left-to-right, pointer declarations

read, in a sense, backwards.

static unsigned long int *x[N];

declaration specifiers
declarator

For example, *f(int) is a declarator
specifying that f is a “function ...
returning a pointer” In contrast,
(*f)(int) specifies that f is a “pointer
to a function”

A declarator may contain more
than one identifier. The declarator
*x[N]contains two identifiers, xand N.
Only one of those identifiers is the
one being declared, and it’s called the
declarator-id. The other(s), if any,
must have been declared previously.
For instance, the declarator-id in
*x[N] is x.

A declarator need not contain any
operators at all. In a declaration as
simple as:

int n;

the declarator is just the identifier n
without any operators.

Declaration specifiers

Some of the declaration specifiers
leading up to a declarator can be type
specifiers such as int, unsigned, or an
identifier that names a type. They can
also be storage class specifiers such as
externor static. In C++ they can also
be function specifiers such as inline
or virtual.

Here’s another insight:

Type specifiers contribute to the type of the
declarator-id; other specifiers provide non-
type information that applies directly to the
declarator-id.

For example:

static unsigned long int *x[N];

declares x as a variable of type “array
of N elements of type pointer to
unsigned long int.” The keyword sta-
tic specifies that x has statically allo-
cated storage.

The examples in your letter lead
me to suspect that you may have been
tripped up by the fact that:

The keywords const and volatile are
type specifiers.

For example, the const in:

const void *vectorTable[]

= {..<data>..}; (2)

does not apply directly to vectorTable;
it applies directly to void. This decla-
ration declares vectorTable as a vari-
able of type “array of pointer to const
void.” It appears that you were expect-
ing it to be “const array of pointer to
void.”

Here’s yet another important
insight:

The order in which the declaration speci-
fiers appear in a declaration doesn’t
matter.

Thus, for example,

const VP vectorTable[]

is equivalent to:

VP const vectorTable[]

and

const void *vectorTable[]

is equivalent to:

void const *vectorTable[]

Most of us place storage class speci-
fiers such as static as the first (left-
most) declaration specifier, but it’s just
a common convention, not a language
requirement.

The declaration specifiers const
and volatileare unusual in that:

The only declaration specifiers that can also
appear in declarators are const and
volatile.

For example, the const in:

void *const vectorTable[]

appears in the declarator. In this case,
you cannot rearrange the order of the
keywords. For example:

*const void vectorTable[]

is an error.

A clarifying style

As I explained earlier, the order of the
declaration specifiers doesn’t matter
to the compiler. Therefore, these dec-
larations are equivalent:

const void *vectorTable[] (3)

void const *vectorTable[] (4)

Almost all C and C++ programmers
prefer to write const and volatile to the
left of the other type specifiers, as in
(3). I prefer to write const and volatile
to the right, as in (4), and I recom-
mend it. Strongly.

Although C and C++ read mostly
from top-to-bottom and left-to-right,
pointer declarations read, in a sense,
backwards. That is, pointer declara-
tions read from right-to-left. By plac-
ing const to the right of the other type
specifiers, you can read pointer decla-
rations strictly from right-to-left and
get const to come out in the “right”
places. For example:

T const *p;

declares p as a “pointer to a const T,”
which is exactly what it is. Also:

T *const p;

declares p as a “const pointer to a T,”
which is also the correct interpretation.

Writing const to the right of the

PROGRAMMING POINTERS

14 FEBRUARY 1999 Embedded Systems Programming

Most of us place storage class specifiers such as static as the first (leftmost)
declaration specifier, but it’s just a common convention, not a language

requirement.

other declaration specifiers actually
makes it easier to see the effect of
combining const with a typedef name.
Using the original example in the
letter:

typedef void *VP;

const VP vectorTable[]

One interpretation is to replace VP as
follows:

which makes it appear that
vectorTablehas type “array of pointer
to const void.” This is wrong! The cor-
rect interpretation is to replace VP as:

That is, vectorTable type “array of
const pointer to void,” but it’s not at
all obvious.

Writing const as the rightmost dec-
laration specifier makes it easier to see
the correct interpretation:

Now, I realize that I’m recom-
mending a style that hardly anyone
uses. Just about everyone who uses
const places it to the left. However,
given how few C and C++ program-
mers really understand what they’re

doing when it comes to using const in
declarations, “everyone else does it” is
hardly an argument in favor of the
currently popular style. Why not buck
the trend and try using a clearer style?

As long as I’m on a roll here, I
might as well get in my digs in on a
related style point. Although most C
programmers seem to have remained
unsullied by this, many C++ program-
mers have acquired the most unfortu-
nate habit of writing:

const int* p;

rather than:

const int *p;

That is, they use spacing to join the *
with the declaration specifiers rather
than with the declarator. I really
believe C++ programmers do them-
selves and each other a disservice
when they write declarations in this
style. Sure, the spacing makes no dif-
ference to the compiler, but putting
the space after the * leaves many peo-
ple with a false impression about the
underlying structure of declarations.
Recognizing the boundary between
the last declaration specifier and the
declarator is one of the keys to under-
standing declarations. Breaking up
declarators with spaces this way only
confuses the situation.

I hope I’ve answered your question
and clarified some issues. esp

Dan Saks is the president of Saks &
Associates, a C/C++ training and consult-
ing company. He is also a contributing edi-
tor for the C/C++ Users Journal. He
served for many years as secretary of the C++
standards committee and remains an active
member. With Thomas Plum, he wrote C++
Programming Guidelines. You can write
to him at dsaks@wittenberg.edu.

References
1. “Static vs. Dynamic Initialization,”

December 1998, p. 19.

2. “Placing const in Declarations,” June

1998, p. 19.

PROGRAMMING POINTERS

16 FEBRUARY 1999 Embedded Systems Programming

const VP vectorTable[]

void *const vectorTable[]

VP const vectorTable[]

void *const vectorTable[]

const VP vectorTable[]

const void *vectorTable[]

Recognizing the boundary between the last declaration specifier and the
declarator is one of the keys to understanding declarations.

	return:

