

Securing Data at Rest:
Database Encryption Solution using Empress RDBMS

By: Srdjan Holovac
© Empress Software Inc.
January 2006 White Paper

Contents

Introduction
Terminology
Different Concepts of Empress Database Encryption Solution

Implementing Encryption outside Empress RDBMS
Implementing Encryption inside Empress RDBMS

How It Works
Encrypting Binary Large Objects/ Character Large Objects
Encrypting Indexed Data
Type of Encryption
Key Management
Cipher Key Verification
Key Rotation/ Key Change
Unit of Encryption

One Key vs. Multiple Key Consideration
Performance and Resource Consumption Considerations
Future Developments
In Summary
Literature

Introduction

Importance of security

Enforcing data security is a top priority for both governments and businesses worldwide.
Recent legislation set new standards for protecting customer information, such as
standards for the security of medical records and standards for the financial industry
regarding the privacy and security of customers’ personal financial information. How can
this confidential data be protected? Organizations may protect data through data security
approaches that account for host, application or network security, to mention only a few.

New technology advances, including encryption, offer significant security value for this
purpose.

Protecting data at rest

This paper focuses on a security solution for protection of data at rest, specifically
protection of data that resides in databases. Most databases are deployed and stored in
some kind of a persistent storage device such as a disk. Periodically, even in-memory
databases have the need to backup data, hence data could end up in a persistent storage
device in plaintext. Many embedded devices that contain an embedded database hold
sensitive data that must be protected.

Encryption, the process of disguising data in such a way to hide its substance, is a very
effective way to achieve security for data at rest. Implementation of a database encryption
strategy raises several important factors that must be taken into consideration including:
Should the encryption be performed inside the database engine, in the application where
the data is generated or in a hardware device? Should encryption keys be kept inside the
database or somewhere else where it is more secure? Should the granularity of encrypting
data be applied to a database, a table or a column level? What are performance and the
size considerations of different approaches?

This paper describes the implementation of the encryption solution using Empress
RDBMS, summarizes the benefits of this solution for users, and discusses the issues
mentioned above.

Terminology

The definitions of the basic terms are simplified for the usage in this paper. The consulted
terminology sources were: [PKCS], [FIPS] and [BRUCE] (see Bibliography).

Encryption: The process of disguising data in such a way to hide its substance.

Cipher (Cryptographic Algorithm): The mathematical function used for encryption
and decryption.

Cipher Key (Cryptographic Key, Encryption, Key): A parameter used in conjunction
with a cipher that determines:

• the transformation of plaintext data into ciphertext data,
• the transformation of ciphertext data into plaintext data.

Plaintext (Cleartext): A block of data that has not been encrypted.

Ciphertext: A block of data that has been encrypted.

Decryption: The process of transforming ciphertext back into plaintext.

Padding: A string, typically added when the plaintext block is short. For example, if the
block length is 4 bytes and the cipher requires 16 bytes, then 12 bytes of padding must be
added. The padding string may contain zeros, alternating zeros and ones, or some other
pattern.

Figure 1. Encryption and Decryption

Figure 1 describes the process of encrypting and decrypting data. There are two general
types of key-based algorithms: public-key and symmetric. In the case of most symmetric
ciphers, the encryption and decryption keys are the same (as shown in Figure 1).
Empress utilizes symmetric ciphers for its encryption solution.

Different Concepts of Empress Database Encryption Solution

The Empress database encryption solution is based on performing the
encryption/decryption process either:

A) Outside the RDBMS by using a hardware device/appliance (Figure 2);
Empress RDBMS can be configured with DataSecure appliances, dedicated
hardware systems provided by Ingrian Networks [INGR]);

or

B) Inside the RDBMS (pure software solution) using a Security Library that

contains an encryption algorithm (Figure 3); Empress RDBMS can be
configured with libgcrypt, a general purpose library that contains various
cryptographic algorithms [GNUPG].

Implementing Encryption outside Empress RDBMS

Empress RDBMS incorporates C API calls from the Public Key Cryptography Standard
(PKCS #11) that interface with the Security Adapter inside its Database Engine so that
the encryption/decryption process is hidden from users [PKCS].

PKCS is a suite of specifications developed by RSA Security in conjunction with
industry, academic, and government representatives. PKCS #11 is the specification for
the cryptographic token interface standard, defining a technology-independent
programming interface for cryptographic applications.

Using the PKCS #11 standardized approach Empress RDBMS is effectively integrated
with the Ingrain Security Adapter – NAE PKCS #11 Provider [NAE]. Ingrian NAE
Provider initiates encrypt and decrypt operations inside the Ingrain Security
Device/Appliance, such as DataSecure. Both cipher key and cipher are contained inside
the Security Device. DataSecure offers support for leading, standards-based ciphers: AES,
3DES, RSA and others.

Figure 2 describes the overall concept and placement of the Security Adapter in different
Empress application scenarios. Empress standalone applications and Empress utilities,
such as empsql or empclean, are directly linked to the Security Adapter. In the client-
server scenario, such at the ODBC and JDBC applications in Figure 2, the Security
Adapter is linked to the Empress Connectivity Server.

Figure 2. Concept A: Database Encryption Concept with a Security Device

Implementing Encryption inside Empress RDBMS

Figure 3 describes the second concept of adding the encryption capability to the Empress
RDBMS. This is a pure software solution that involves a Security Library, which
contains a cipher. Empress RDBMS is effectively integrated with libgcrypt, which
performs data encryption and decryption. A cipher key is held either in a protected place
in the file system, application/process environment or with a user.

Empress standalone applications and Empress utilities, such as empsql or empclean, are
directly linked to the Security Library. In the client-server scenario, such as the ODBC
and JDBC applications in Figure 3, the Security Library is linked to the Empress
Connectivity Server.

Figure 3. Concept B: Database Encryption Concept with a Security Library

How It Works

The following are the basic postulates regarding adding encryption to the Empress
RDBMS. They apply to both concepts described above.

The encryption is done on a column level. Users have the capability to define which
columns are to be encrypted.

Lets assume a scenario where the database table customer has four columns cust_no,
name, ssn and address, where customer number cust_no and social security number ssn
have to be encrypted. To create such a table in an Empress database one would use the
SQL CREATE TABLE command:

CREATE TABLE customer (
 cust_no LONGINTEGER NOT NULL ENCRYPTED,
 name CHAR(20),
 ssn CHAR(9) ENCRYPTED,
 address TEXT);

Since the column cust_no requires being searchable, an index has to be created too:

CREATE UNIQUE INDEX customer_index ON customer(cust_no);

Empress RDBMS will encrypt data for the columns cust_no and ssn that need encryption
and decrypt data from those columns when the application needs it.

User applications that access table customer need NO changing. The same scenario
works for all interfaces that Empress offers and also for Empress utilities.

Furthermore, users are given the ability to toggle between an encrypted and an
unencrypted form by altering database schema, changing the column that needs to be or
not to be encrypted. For example:

ALTER TABLE customer CHANGE ssn NOT ENCRYPTED;

Or to define the encryption on the column again:

ALTER TABLE customer CHANGE ssn ENCRYPTED;

One ALTER command can be issued in order to define encryption on multiple columns
at once.

Users do NOT have to change the data type or the size of the encrypted column.

Unit of Encryption

How much data must be encrypted to provide security? Empress encryption provides
flexibility to accommodate for the varying levels of encryption granularity. Users do not
have to encrypt the whole database or the whole table.

Encryption is done on a column level in the database table.

Empress groups all encrypted columns in a table record.

Padding is done on the group of encrypted columns instead of padding on every
encrypted column.

An Empress database is a directory in a file system. Users can have multiple databases on
the same machine and switch databases as needed.

The unit of encryption varies depending on the type of file. Types of files that contain
table column data in an Empress database are: main data (.rel) files, overflow data (.dtf)
files, index data (.ix) files, transaction logs, recovery logs, backup files and temporary
files.

File headers are not encrypted, as they contain no user data.

Figure 4 illustrates an example scenario that describes encrypted parts and non-encrypted
parts of the files related to the table customer in the Empress database.

Figure 4. Encrypted and Unencrypted Parts of the Empress Database Table customer

There will be NO data from encrypted columns stored on the disk in plaintext.

Empress allows encryption on any column data type available in Empress RDBMS (e.g.
CHAR, TEXT, BULK, INTEGER, LONGINTEGER, REAL, DOUBLE PRECISION,
DECIMAL, DATE, TIME, MICROSECONDTIMESTAMP, etc.).

Encrypting Binary Large Objects/ Character Large Objects

Particular data types require more work to encrypt or decrypt data. Those kinds of data
types are Empress BULK (for storing Binary Large Objects – BLOBs) and Empress
TEXT and NLSTEXT (for storing Character Large Objects). The amount of data stored
in the columns of these data types is expected to be large. Empress RDBMS does not
impose limits on the size of those objects, eg: forcing users to split data into chunks when
dealing with large volumes of binary or text data.

Encrypting Indexed Data

Users have the ability to create indexes on the encrypted columns of any Empress data
type that can be normally indexed. Empress has designed encryption in its indexes in
such a way to make indexes usable for all kinds of searches, not only for equality
searches. Hence, there is no difference in the usability of indexes for searches on
encrypted or unencrypted columns.

Type of Encryption

For encrypting and decrypting data, symmetric cipher keys are used.

Various public domain ciphers, including AES are standard with Empress and are user-
selectable.

Empress also provides the means to embed user-defined ciphers.

The recommended cryptographic algorithm is Advanced Encryption Standard (AES).
AES uses one of the 3 key lengths: 128, 192 and 256. The larger the key length the more
computation it requires, and the greater security it provides.

All data in encrypted columns in a database is encrypted with the same cipher.

All the encrypted columns in a database are encrypted with one cipher key

Encryption is specified for a database when it is created. The cipher is selected at the time
of creation and the selection is stored in the database. The cipher and the key should not
be changed thereafter except by using the special Empress Key Rotation (Key Change)
Utility.

Key Management

The Empress RDBMS engine has the basic need to obtain a cipher key for a given
database. One of the essential key management questions is: Where should a cipher key
reside? Some options are to store a cipher key: in a database, outside of a database in
persistent storage (e.g. access-protected files), in memory, or prompt for it each time
encryption is needed.

An additional option for exceptionally strong protection is to store a cipher key in the
hardware security device (see Concept A). All cipher keys are stored in the Ingrian
DataSecure Appliance. In order to encrypt/decrypt data in the Empress database, Empress
RDBMS must obtain key info (i.e. user name, password, key name) to pass to the Ingrian

DataSecure Appliance in order to authenticate itself and gain access to the requested
cipher key.

In the Concept B, Empress RDBMS must obtain a cipher key to pass to a Security
Library.

The following options address the need for both concepts.

1) The MS (Empress) variable MSCIPHERKEYINFO can be set to <database, key info>
pairs (Concept A) or to <database, key> pairs (Concept B). Hence, key info or key
resides in memory (i.e. environment of the Empress Application/Utility/Server).

2) The MS variable MSCIPHERKEYINFOFILE can be set to the name of a file
containing either key info (Concept A) or cipher key (Concept B). The file is called
credentials file.

3) An additional very secure option is for a user to input key info or a key itself each time
Empress application/utility is restarted.

Cipher Key Verification

A means of verifying that a cipher key is correct for a database is highly desirable so that
meaningless data is not produced with an incorrect cipher key.

Concept A

During database creation, key info is encrypted with the cipher key it relates to and stored
in the database. Thereafter, a given key info is encrypted with the cipher key it relates to
and compared to the copy in the database to verify that it is correct for that database. If
the key info is incorrect, a sleep period of several seconds is enforced before reporting the
error.

Concept B

During a database creation, the cipher key is encrypted with itself and stored in the
database. Thereafter, a given cipher key is encrypted with itself and compared to the copy
in the database to verify that it is correct for that database. If the key is incorrect, a sleep
period of several seconds is enforced before reporting the error.

Key Rotation/ Key Change

Empress provides a utility for off-line key rotation. The utility is callable via a stand-
alone interface and may be used for key rotation, either periodic or as needed.

The assumption is made that the database needs to be off-line in order to re-encrypt all of
the sensitive data within the database with a new cipher key. The following steps occur:

1. A second key is generated in the Security Device or in the credentials file.
2. A utility reads the encrypted data from the database, decrypts the information

using the first key, encrypts with the second key, and writes the new encrypted
data back to the database.

3. The key parameters are updated in the database to reflect the usage of the second
key.

One Key vs. Multiple Key Consideration

“One Key”
Pros:
 Uses less C API calls when communicating with the Security Device
 Efficient solution. Requires padding only once on a group of encrypted columns

Cons:

• Less flexible solution

“Multiple Key”
Pros:
 Provides flexibility
 Users need the ability to associate a different key for different columns in

database tables

Cons:
 Introduces additional complexity
 Requires padding on every encrypted column
 Greater increase of the size of a database table

Performance and Size Considerations

What is an acceptable trade-off between data security and application performance?

The Empress encryption strategy includes multiple design and optimization consideration
in order to ease the trade-off between data security and application performance.

Empress encryption initiates encrypt/decrypt API calls inside the Empress Engine. This
preferable design offers a more efficient solution and requires much less overhead than
other design alternatives such as via stored procedures/triggers.

Size Considerations

Furthermore, as an additional optimization, Empress groups columns that are to be
encrypted at the record level to optimize the encryption process, thus decreasing the
number of times it has to encrypt/decrypt data. See Figure 5 for sample Internal Empress
Record Layout Optimization.

Figure 5. Internal Empress Record Layout Optimization

Empress encryption solution also saves space. Space is an issue with column encryption
because, in general, encrypted columns are larger than unencrypted columns.

For example, the cust_no column of the data type LONGINTEGER and 4 bytes in size
might need 12 bytes of padding.

The overhead in an encrypted database size compared to the unencrypted database size is
largely dependant on the cipher used. Let’s assume that cipher requires padding to the
nearest 16 bytes. Hence, a record of 508 bytes would have to be extended to 512 bytes,
making the overhead insignificant.

This internal optimization with grouping of encrypted columns is not visible to users.
Hence, the original order of table columns is preserved. If for example, a user displays a
table definition or retrieves data from a table, the user still get the original column order:

1* display customer all;
*** Table: customer ***

 Attributes:
 cust_no longinteger Not Null Encrypted
 name character(20,1)
 ssn character(9,1) Encrypted
 address text(20,1024,1024,1)

 Creator: srdjan
 Indices: UNIQUE BTREE customer_index ON (cust_no)

. . .
2* select from customer;
 cust_no name ssn address
. . .

Future Developments

Multiple Key Approach

The current security strategy is to use a single cipher key for each database. This
simplifies key management and allows for performance optimizations when Empress
issues encrypt/decrypt calls.

A future solution will be implemented where a key per database column can be specified.
This will allow users to tighten their overall security policy when encrypting additional
data types.

On-Line Key Rotation Utility

The current Empress Key Rotation Utility is an off-line tool where the database has to be
quiescent. Empress plans to upgrade this utility with the option to perform an on-line key
rotation where the database can remain available to applications. The on-line process will
perform a similar re-encryption process as the off-line tool, updating the new encrypted
data along with the meta information that indicates which key has been used to encrypt a
specific field.

In Summary

In summary, the main benefits for implementing the encryption solution using Empress
RDBMS are emphasized:

• Secure all database data. A solution for protecting user data in a database
including protection of all logs and backup files.

• Eliminate the potential for lost data that could be read by another party and all of
the serious ramifications that accompany it, including bad press, loss of customers,
government intervention.

 An efficient security solution. Insignificant performance overhead when

performing the encryption/decryption process inside the RDBMS (pure software
solution) and a small performance overhead when performing the
encryption/decryption process outside the RDBMS by using a hardware
device/appliance. Furthermore, Empress has implemented additional provisions
to keep the size of the database increase minimal.

• No need for application code changes. This solution does not impact already

written applications that use the data in an unencrypted Empress database.

• No need for adding external provisions in the database to accommodate
encryption such as stored procedures, triggers, views, etc. The Empress solution
painless for users who choose to convert their non-secure database solution to a
secure one.

Literature

[BRUCE] Bruce Schneier: Applied Cryptography (Second Edition), John Wiley &

Sons, 1996 ISBN 0-471-11709-9

[FIPS] FIPS PUB 140-2, Security Requirements for Cryptographic Modules,

NIST, 2001.

[PKCS] PKCS #11 v2.11: Cryptographic Token Interface Standard, RSA

Laboratories, Revision 1 November 2001

[INGR] www.ingrian.com

[GNUPG] The GNU Privacy Guard, www.gnupg.org

[NAE] NAE Developer Guide for the PKCS #11 Provider, Ingrian Networks,

2005.

	Securing Data at Rest:
	Database Encryption Solution using Empress RDBMS

	Contents
	Introduction
	Implementing Encryption outside Empress RDBMS
	Implementing Encryption inside Empress RDBMS
	Encrypting Binary Large Objects/ Character Large Objects
	Encrypting Indexed Data
	Type of Encryption
	Key Management
	Cipher Key Verification
	Key Rotation/ Key Change
	Unit of Encryption
	One Key vs. Multiple Key Consideration
	Performance and Resource Consumption Considerations

	Future Developments
	In Summary
	Literature
	Introduction
	Implementing Encryption outside Empress RDBMS
	Unit of Encryption
	Encrypting Binary Large Objects/ Character Large Objects
	Encrypting Indexed Data
	Type of Encryption
	Key Management
	Cipher Key Verification
	Concept A
	Concept B

	Key Rotation/ Key Change
	One Key vs. Multiple Key Consideration
	
	“One Key”
	“Multiple Key”

	Performance and Size Considerations
	Size Considerations

	Future Developments
	In Summary
	Literature

