
Neural Networks: Multi-Layer Perceptron and Hopfield
Network

CSI 2004
Sylvain Berlemont, Nicolas Burrus, David Lesage, Francis Maes,

Jean-Baptiste Mouret, Benoît Perrot, Maxime Rey, Nicolas
Tisserand, Astrid Wang

The ability of neural networks to derive meaning from complicated or imprecise data make them a pow-
erful tool to extract hidden correlations between patterns or to recognize noised patterns. This report is
dedicated to the study of Multi-Layer Perceptrons (MLP) and Hopfield networks. In particular, two appli-
cations are detailed. MLP possibilities are illustrated through an image compression software and Hopfield
networks are studied through a character recognizer. For both applications, theoretical principles, heuristic
and algorithmic improvements are discussed thanks to various experiments.

Keywords
Multi-layer perceptron, Hopfield network, compression, pattern recognition

Laboratoire de Recherche et Développement de l’Epita
14-16, rue Voltaire – F-94276 Le Kremlin-Bicêtre cedex – France

Tél. +33 1 53 14 59 47 – Fax. +33 1 53 14 59 22
lrde@epita.fr – http://www.lrde.epita.fr

lrde@epita.fr
http://www.lrde.epita.fr

2

Copying this document

Copyright c© 2001 LRDE.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.

Contents

I Multi-layer Perceptron 7

1 Useful numerical algorithms 9

1.1 Principal Components Analysis (PCA) . 9

1.1.1 Power and deflation methods . 9

1.1.2 Neuron-based algorithms . 10

1.1.3 QL/QR algorithm . 13

1.1.4 Comparisons of the PCA methods . 15

1.2 Gauss-Newton method . 18

2 MLP Learning Process 20

2.1 Standard back-propagation algorithms . 20

2.1.1 Stochastic back-propagation algorithm . 20

2.1.2 Batch back-propagation algorithm . 24

2.2 Speeding up the learning process . 24

2.2.1 Different activation functions . 27

2.2.2 Different error functions . 27

2.2.3 Derivate fudge . 28

2.3 Improving the results of the learning process . 28

2.3.1 Over-fitting phenomenon and bad generalization 30

2.3.2 Network size . 30

2.3.3 Error threshold . 31

2.3.4 Regularization and weight decay . 31

2.3.5 Weight Pruning and Cross-Validation . 33

2.4 Learning algorithms . 34

2.4.1 Existing studies . 34

2.4.2 Benchmarking rules . 35

2.4.3 Silva-Almeida algorithm . 36

CONTENTS 4

2.4.4 Super Self-Adaptive back-propagation algorithm (SuperSAB) 40

2.4.5 Delta-Bar-Delta algorithm . 45

2.4.6 Resilient back-propagation algorithm . 51

2.4.7 Quick back-propagation algorithm . 55

2.4.8 Cascade correlation algorithm . 57

2.4.9 Other existing algorithms . 58

2.4.10 Comparison and discussion . 58

3 Application to image compression 61

3.1 Framework . 61

3.2 Data analysis . 61

3.2.1 Linear correlation . 62

3.2.2 Principle components analysis . 63

3.2.3 Back to the compression issue . 64

3.2.4 Size of blocks . 65

3.3 Multi Layer Perceptron for image compression . 66

3.3.1 Network’s topology . 66

3.4 Experiments . 67

3.4.1 Learning . 67

3.4.2 Generalization on other images . 70

3.4.3 Compression of other kind of images . 72

4 Conclusion 76

II Hopfield network 77

5 Theory 79

5.1 Description of the Hopfield network . 79

5.1.1 Auto-associative memories . 79

5.1.2 Architecture of Hopfield network . 79

5.2 Learning methods . 80

5.2.1 Hebb rule . 80

5.2.2 Storkey/Valabregue . 83

5.2.3 Pseudo-Inverse . 83

5.3 The generalization stage . 83

5.4 Convergence . 84

5 CONTENTS

6 Hopfield experimental results 85

6.1 Network performance using Hebb learning rule . 86

6.1.1 Experimental framework . 86

6.1.2 Neuron count . 87

6.1.3 Spurious states . 88

6.1.4 Correlation between fundamental memories 89

6.2 Learning rules . 90

6.2.1 Experimental framework . 91

6.2.2 Hebb with or without unlearning . 92

6.2.3 Storkey/Valabregue learning rule . 93

6.2.4 Pseudo-inverse learning rule . 93

6.2.5 Summary . 96

Introduction

Inspired by animal brains, artificial neural networks simulate their biological equivalent. Through
a set of mathematical operations, the behavior of a biological neuron is modeled: input signals
are weighted, summed and thresholded to obtain an output signal. These output signals then
become inputs for other neurons, creating a network. By processing a database of examples,
neural networks may adapt themselves to recognize patterns or to classify data. Their ability to
derive meaning from complicated or imprecise data make them a powerful tool to extract hidden
correlations between patterns or to recognize noised patterns.

The aim of this study is to evaluate the potential of Multi-Layer Perceptrons (MLP) and Hop-
field neural networks. To illustrate the different paradigms and algorithms manipulated, a con-
crete application was built for each network kind. We applied MLP to an image compression
software, and Hopfield networks to an automatic character recognizer. Both applications were
developed in CamL. The theoretical parts have been compiled from the neural networks class of
EPITA, the books Neural Networks, A Comprehensive Foundation (13), Neural Networks for Pattern
Recognition (4), Réseaux de neurones, Méthodologie et applications (8) and research papers that can be
found in the bibliography.

The analysis of these two kinds of neural networks was driven in an experimental manner.
When a new algorithm was studied then implemented, observations were made on its perfor-
mance and the accuracy of learning and generalization that it leaded to. Theory was then con-
firmed by experimental results.

The first part of this report focuses on Multi-Layer Perceptrons. Various learning algorithms
and improvement techniques are studied and the corresponding experimental results are ana-
lyzed. In particular, MLP application to image compression is detailed.

The second part presents a study of Hopfield networks applied to a character recognizer. Dif-
ferent learning rules are exposed a theoretical way and then discussed through experimental
results.

Part I

Multi-layer Perceptron

7

Notations

Figure 1: Typical topology of a multilayer peceptron.

n number of layers
nb(i) number of neurons on the layer i

layers are numbered from 0 to n− 1
wc,i,j weight of the connection between the neuron j of layer c− 1

towards the neuron i of the layer c
wk k-th row of the matrix W
Nc,i neuron i of layer c
Ac,i activation of neuron Nc,i

Sc,i output of Nc,i

Di desired output of neuron Nn−1,i

Yi output of Nn−1,i; Yi = Sn−1,i

Xi input i of the network. Xi = S0,i

ϕc,i(x) activation function of Nc,i

N number of record in the database

For a neuron Nc,i, we have:

Sc,i = ϕc,i(Ac,i) (1)

= ϕc,i

nb(c−1)∑
j=1

wc,i,jSc−1,j

 (2)

Chapter 1

Useful numerical algorithms

These algorithms will be useful in the next part (Chapter 3) to speed up the compression process.
They will be mainly used to initialize the weights of the neural network in a good configuration.
This chapter aims at introducing their basic principles and analyzing their performance.

1.1 Principal Components Analysis (PCA)

Let x denote the n-dimensional input data vector. Without loss of generality, we can assume that
E[x] = 0. The aim of PCA is to find a set of m orthonormal vectors in an n-dimensional data
space such that they will account for as much as possible of the variance of the data. Figure 1.1
shows examples of these vectors for a two-dimensional dataset.

Let C = E[x · xt] denote the data covariance matrix, it can be shown that the m orthonormal
vectors are the m eigenvectors associated with the m largest eigenvalues of the matrix C. There-
fore the following algorithms are designed to find the eigenvectors of the matrix C. The matrix
C is symmetric and most methods will use this property, consequently it will be assumed that
the input matrix of these algorithm is symmetric.

1.1.1 Power and deflation methods

Power method

The power method can be used to find the main eigenvalue and its associated eigenvector. It is
often used in the deflation algorithm. Suppose that the eigenvalues of C are such that :

|λ1| > |λ2| ≥ · · · ≥ |λn| (1.1)

Let v a random vector, let us define the following reccurence:{
u(k+1) = Cu(k)

<Cu(k),v>

l(k) =< Cu(k),v >
(1.2)

until |l(k) − l(k−1)| < ε

where k = 0, · · · and u(0) denotes a random vector.

1.1 Principal Components Analysis (PCA) 10

Figure 1.1: Two-dimensional dataset and associated eigenvectors.

It can be proved that:
λ1 = lim

k→∞
l(k) (1.3)

x1 = lim
k→∞

u(k) (1.4)

where x1 is the normalized eigenvector associated with λ1.

Deflation

Let us suppose that λ1 and x1 have been computed before. The matrix C can be transformed into
a new matrix C(1) with the same eigenvalues that C excepted that λ1 is replaced by a null value.
The power method is the applied on the new matrix C(1).

Let w such that ‖w‖ = 1.
C(1) = C− λ1x1wt (1.5)

Using the power method, we compute λ2 and v2, where v2 is an eigenvector of C(1). x2 can be
computed as follows:

x2 = v2 +
λ1

λ2 − λ1
< w,v2 > x1 (1.6)

This iteration can be repeated to find all the eigenvalues by computing C(n) using λn and xn.

1.1.2 Neuron-based algorithms

Following (12) and (6), we chose to focus mainly on the Adaptive Learning Algorithm for Prin-
cipal Component Analysis (ALA), which is described as both powerful and easy to implement.
Another known algorithm is the Adaptive Principal component Extractor (APEX).

11 Useful numerical algorithms

Figure 1.2: Network topology of the network used by GHA.

GHA

Oja (17) proposed a one-unit learning rule to find the first principal component direction vector,
i.e. the first eigenvector of C:

∆w(t) = η(t)V (t)(x(t)− V (t)w(t)) (1.7)

where η(t) is the learning rate parameter, and V (T) denote the output of a linear neuron such
that:

V (t) = w(t)tx(t)

Assuming that η is sufficiently small, Oja proved that the weight vector w(t) will asymptotically
converge to the first normalized eigenvector of C.

To find more than one eigenvector, Sanger proposed the Generalized Hebbian Algorithm (GHA)
(22), which use a network of linear neurons instead of one linear neuron (figure 1.2). Let us de-
note by W the weight matrix and by wi the i-th line of this matrix, the GHA is based on the
following learning rule:

∆wi(t) = η(t)Vi(t)

x(t)−
i∑

j=1

Vj(t)wj(t)

 ,

j = 1, 2, · · · ,m (1.8)

where Vi(t) = wi(t)tx(t). wi(t) converge to the first m eigen vector, i.e. the vectors associated
with the i-th largest eigenvalue λi of the correlation matrix C.

ALA for PCA

The learning process of the GHA can converge very slowly if eigenvalues are small, it can diverge
if eigenvalues are large. Therefore selecting a good value for the learning rate η can be a difficult
task. To address this problem, Chen and Chang (7) introduced an adaptive algorithm (ALA)
for PCA. This algorithm uses the value of each eigenvalue to compute a good learning rate,
consequently each eigenvector is associated with a different learning rate. This algorithm can be
summarized as follows:

1.1 Principal Components Analysis (PCA) 12

Step 1 Set weight vector wi(0) ∈ Rn such that ‖wi‖2 � 1/22 and estimate of the eigenvalues
λ̂i = δ, for i = 1, 2, · · · ,m, where δ denotes a small positive number.

Step 2 Use the network to evaluate the output Vi for a random sample x(t):

Vi(t) = wi
t(t)x(t), i ∈ 1, 2, · · · ,m (1.9)

Step 3 Estimate the eigenvalues λi:

λ̂i(t) = λ̂i(t− 1) + γ(t)
(

wi
t(t)xi(t)
‖wi(t)‖2

− λ̂i(t− 1)
)

(1.10)

where xi(t) = x(t)−
∑i−1

j=1 Vj(t)wj(t) and γ(t) denote a value smaller than one an decreased
to zero as t increases.

Step 4 Modify the weights wi. Let ηi(t) = βi(t)/λ̂i(t), where βi(t) is set to be smaller than 2(
√

2−1)
and decreased to zero as t approaches∞.

wi(t + 1) = wi(t) + ηi(t)Vi(t)

x(t)−
i∑

j=1

Vj(t)wj(t)

 (1.11)

Step 5 Check the length of wi according to the rule :

wi(t + 1) =

{
1√
2

wi(t+1)
‖wi(t+1)‖ , if ‖wi(t + 1)‖2 > 1

βi(t+1) + 1
2

wi(t + 1), otherwise
(1.12)

This normalization process is required because the estimates of λi may be inaccurate during
the initial period of the learning process.

Step 6 Go back to Step 2 until all the wi are mutually orthonormal, i.e. until :
m∑

i=0

m∑
j=0

wi(t)t ·wj(t) = 0 (1.13)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 500 1000 1500 2000 2500 3000 3500 4000

ei
ge

nv
al

ue

iterations

Figure 1.3: Time histories of the first eigenvalue λ1 of data plotted on figure 1.1 during the exe-
cution of the ALA algorithm

13 Useful numerical algorithms

1.1.3 QL/QR algorithm

One of most efficient known technique for finding eigenvalues and eigenvectors (20) of a sym-
metric matrix is the combination of the Householder reduction, which reduces a symmetric real
matrix to a tridiagonal form, followed by the so called QR or a QL algorithm that can diagonalize
a tridiagonal matrix within about 30n2 steps without eigenvectors. If eigenvectors are required
then the number of operations grows to 3n3.

The QR or a QL method is an iterative method. But the orthogonal transformation employed
preserves symmetry and tridiagonal form. So zeros stay zeroed. And this means that there are
only N − 2 off-diagonal elements to kill.

The Householder reduction on the other hand is a finite procedure, i.e., not an iterative one at
all. A symmetric matrix can be reduced to a tridiagonal form within a finite well defined number
of steps: N − 2 orthogonal transformations, where N denote the sizeof the matrix.

Proof and details about these methods can be found in (20). We only present here their basic
concepts.

Householder method

Each transformation used in the Householder method annihilates the required part of a whole
column and whole corresponding row. The basic ingredient is a Householder matrix P which
has the form:

P = 1− 2w ·wt (1.14)
where w is a real vector with ‖w‖2 = 1 and 1 is the identity matrix. It can be proved that P is
orthogonal. We can use any vector u in place of w if we normalize it at the same time:

P = 1− 2u · ut

u · ut
= 1− u · ut

H
(1.15)

where H = 1
2u · u

t.

Suppose x is the vector composed of the first column of C. Let us denote by e1 the unit vector
[1; 0; · · · ; 0]t, choosing u as u = x± |x|e1 leads to:

P · x = ±|x|e1 (1.16)

This shows that the Householder matrix P acts on a given vector x to zero all its elements except
the first one.

To reduce a symmetric matrix C to tridiagonal for, we choose the vector x for the first House-
holder matrix to be the lower n − 1 elements of the first column. Then the lower n − 2 elements
will be zeroed. Thus the first Householder operator P1 is selected to rotate the sub-column of the
first column:

c21

c31

...
cn1

 onto

c′21
0
...
0

 (1.17)

where the quantity c′21 is the magnitude of the vector [c21, · · · , cn1]t. To accomplish that, the
operator has to have the following form:

P1 =

1 0 · · · 0
0
... P(n−1)

0

 (1.18)

1.1 Principal Components Analysis (PCA) 14

where P(n−1) denotes a Householder matrix with dimensions (n− 1)× (n− 1).

By multiplying C by P1 from the left and the right, we get :

P1 ·C ·P1 =

c11 c′12 0 · · · 0
c′21
0
...
0

 (1.19)

The second Householder matrix is going to look as follows:

P2 =

1 0 0 · · · 0
0 1 0 · · · 0
...

... P2(n−1)

0 0

 (1.20)

In n−2 such steps the whole matrix will become triadiagonalized. (20) uses a more computationally-
friendly formula that will not be detailed here.

QL/QR algorithm

The basic idea behind the QL algorithm is that any real matrix can be decomposed in the form:

C = Q · L (1.21)

where Q is orthogonal and L is lower triangular. For a general matrix, the decomposition is
constructed by applying Householder transformations to annihilate successive columns of C
below the diagonal.

Let C′ = L · Q. Since Q is orthogonal, we have L = Qt · C and therefore equation (1.21)
becomes:

C′ = L ·Q = Qt ·C ·Q (1.22)

Consequently the matrix RQ has the same eigenvalues than C. This is called the QL transfor-
mation of matrix C. It preserves the tridiagonal form and the symmetry of the matrix.

Algorithm now works as follows. Once you have a tridiagonal matrix C :

1. find its Q · L decomposition

2. generate C1 = L ·Q

3. find the Q1 · L1 decomposition of C1

4. generate C2 = L1 ·Q1

5. find the Q2 · L2 decomposition of C2

6. · · ·

and so on, until the off-diagonal elements vanish. The workload for this algorithm is O(n3) per
iteration for a general matrix, but only O(n) per iteration for a tridiagonal matrix.

The eigenvalues appear on the diagonal.

(20) describes some refinements which lead to a “QL algorithm with implicit shifts”. If the
eigenvectors are required, the workload is about 3n4 operations.

15 Useful numerical algorithms

1.1.4 Comparisons of the PCA methods

Speed

The figure 1.4 shows the typical amount of time required to find the first n eigenvalues of a
1024×1024 covariance matrix built using an 256×256 pixels image split into 8×8 blocks. Details
about how this matrix has been generated from an image can be found in chapter 3. The amount
of time to perform the same operation using the ALA is too large to be displayed on the same
figure, it is plotted on figure 1.5.

 0
 0.0025
 0.005

 0.0075
 0.01

 0.0125
 0.015

 0.0175
 0.02

 0.0225
 0.025

 0.0275
 0.03

 0.0325
 0.035

 0.0375
 0.04

 0.0425
 0.045

 0.0475
 0.05

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
m

ou
nt

 o
f t

im
e

(s
ec

on
ds

)

Number of eigenvalues extracted

deflation
QL

Figure 1.4: Amount of time required to find the first n eigenvalues and associated eigenvectors
of a 1024× 1024 matrix using the deflation and QL methods.

Results are conform to intuition. Since the QL method find all the eigenvalues at the same
time, it requires the same amount of time to compute one than two hundred eigenvalues. In the
other hand, the deflation method use the eigenvalues previously computed to find the next one.
Consequently if computing an eigenvalue need an amount of time t and assuming that the same
number of iterations is required for each eigenvalue, finding the nth one will need nt time units.
Figure 1.4 shows that in our case the QL method is faster than the deflation if more than about 4
eigenvectors are needed.

The QL algorithm used in our test compute the eigenvectors and the eigenvalues – we need
both since we use them for a PCA. We previously explained that the method can be significativly
faster if only eigenvalues are required. The deflation method need the computation of eigenvec-
tors, so no time will be saved if they are not needed. The QL method will per consequent be
chosen if only eigenvalues are required.

1.1 Principal Components Analysis (PCA) 16

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280

 0 1 2 3 4 5 6 7 8 9 10

A
m

ou
nt

 o
f t

im
e

(s
ec

on
ds

)

Number of eigenvalues extracted

ALA for PCA
10 seconds

Figure 1.5: Amount of time required to find the first n eigenvalues and associated eigenvectors
of a 1024× 1024 matrix using the ALA for PCA

ALA execution to find eigenvectors take a lot more time than the previously described method.
Its main advantage is its ability to be used online. This eliminates the need to compute – and store
– the covariance matrix associated with the input data, which can be very large. Furthermore,
in some practical applications of PCA the whole dataset is not known at the beginning of the
algorithm.

Figure 1.5 shows that this algorithm is computationnaly useable in our test if less than six
eigenvectors are needed, while it remains a lot slower than the deflation method.

Quality

These algorithms are iterative. Since a lot of iterative methods can accumulate errors – errors at
step n are added to the ones at step n+1–, these algorithms may not be able to compute the exact
eigenvalues and eigenvectors even if they run during an infinite amount of time. Please note
that the observed errors are mainly caused by the computer implementation and the non-infinite
precision used to represent real numbers.

It is difficult to estimate how close the found eigenvalues and eigenvectors are from the real
values since the latter are usually not known.

Our first test is based on a fundamental properties of eigenvalues and eigevectors. Let us de-
note by λ1, λ2, · · · , λn the eigenvalues, and by v(λ1),v(λ2), · · · ,v(λn) the associated eigenvectors.

17 Useful numerical algorithms

Let P and D such that:

P =

 v(λ1)1
v(λ2)1

· · · v(λn)1
...

...
...

...
v(λ1)n

v(λ2)n
· · · v(λn)1

D =

λ1 0 · · · 0
0 λn · · · 0
...

...
. . . 0

0 0 · · · λn

We must have:

C = PDP−1 (1.23)

For each algorithm, we compute PDP−1 using the found values and we compare the resulting
matrix with C. This leads to a total error computed as follows:

E =
1
n2

n∑
i=0

n∑
j=0

|Cij − (PDP−1)ij | (1.24)

Using equation (1.24) we computed E for random symmetrical matrices of different sizes. Val-
ues are in [0; 1]. The QZ method implemented in the GSL (Gnu Scientific Library) has been in-
cluded in order to compare our implementations with the algorithm currently used in scientific
packages as Matlab, Mathematica, ... Figure 1.6 presents the results of this experiment.

Matrix size QZ method Deflation method QL method
5 0.000000 0.000072 0.001522
10 0.000000 0.000113 0.051834
25 0.000000 0.000231 0.172451
50 0.000000 0.000377 0.307302
100 0.000000 0.000583 0.450959

Figure 1.6: Value of E (Equation 1.24) for random matrices of different size, with values between
0 and 1.

The QZ method seems to find perfect eigenvalues and eigenvectors. Using our implementa-
tions, the deflate method give more accurate values than the QL one.

Since the deflation method uses the n-th eigenvector to compute the n + 1-th one, we may
expect that the last eigenvectors found using this method will be worse than the first ones. The
previous experiment shown that the QZ method used in the GSL produces better results than the
methods we implemented, consequently we choose to estimate how far each eigenvalue is from
the real one by comparing each eigenvalue found with the one computed using the GSL. To that
aim, we computed Ei such that:

Ei =
λi

λiGSL

(1.25)

Results for a 150× 150 random symmetrical matrix are shown on figure 1.7. Values found using
the deflation method seems inaccurate only for the last 30 eigenvalues, whereas our implemen-
tation of the QL method provides worse values.

1.2 Gauss-Newton method 18

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Power method
QL method

Figure 1.7: Ei for each eigenvalues of a 150× 150 random symetrical matrix.

1.2 Gauss-Newton method

The Gauss-Newton method is an unconstrained optimization technique applicable to a function
E(w) of some unknown weight vector w that is expressed as the sum of error squares:

E(w) =
1
2

N∑
p=1

ei(p)2 (1.26)

where ei(p) denotes the error associated with each entry of the database. Proofs concerning this
method can be found in (13).

This method can be used to compute the weight matrix associated with the last layer of a multi-
layer perceptron; it can be especially useful if good weights have been computed on the previous
layers. In this case, using (2) we have for each output neuron i:

ei(p) = Yi(p)−Di(p) (1.27)

= ϕn−1(An−1,i) (1.28)

= ϕn−1

nb(n−1)∑
j=1

wn−1,i,jSn−2,j

−Di (1.29)

i = 1, 2, · · · , nb(n− 1)

Let m = nb(n− 2), the algorithm can be summarized as follows:

19 Useful numerical algorithms

Step 1 Compute the Jacobian matrix J :

J =

∂e1
∂w0

∂e1
∂w1

· · · ∂e1
∂wm

∂e2
∂w0

∂e2
∂w1

· · · ∂e1
∂wm

...
...

...
...

∂eN

∂w0

∂eN

∂w1
· · · ∂eN

∂wm

 (1.30)

Put differently:

Jp,k =
∂ep

∂wk
, p = 1, 2, · · · , N ; k = 1, 2, · · · ,m (1.31)

If ei(p) = Sn−1,i −Di(p) (1.29) then, if Sn−2 is computed using the p-th training example, J
can be computed as follows:

Jp,k = ϕ′n−1(An−1,i)Sn−2,k (1.32)

= ϕ′n−1

nb(n−1)∑
j=1

wn−1,k,jSn−2,j

 Sn−2,k (1.33)

Step 2 Compute the pseudo-inverse of J.

P = (Jt(n)J(n))−1Jt(n) (1.34)

The Greville’s algorithm can be used for this computation.

Step 3 Update weights for the neuron p:

wp(t + 1) = wp(t)−P · e (1.35)

Step 4 Return to Step 1 until the error stops to decrease.

Chapter 2

MLP Learning Process

This chapter presents the study of different ways to improve the learning process of a multiple-
layer perceptron. We first introduce the two variants of the base algorithm for the learning pro-
cess, the back-propagation, and study their behavior. In a second part, we study several general
techniques used to speed up the learning process. Since a quicker learning procedure does not
effectively mean better results, we also present some general heuristics to improve the conver-
gence of the network to satisfactory solutions. The last part is dedicated to the study of different
learning algorithms designed to improve both learning speed and results quality.

2.1 Standard back-propagation algorithms

2.1.1 Stochastic back-propagation algorithm

Principle

The back-propagation algorithm find the set of weights which minimizes the error E. Extensive
studies on this algorithm can be found in (13) and (4).

When a learning pattern is clamped, the activation values are forward-propagated to the out-
put units, and the actual network output is compared with the desired output values; we usually
end up with an error in each of the output neuron. The simplest method to reduce this error is to
change weights in such a way that, on the next iteration, the error will be zero for this particular
pattern. To that aim, weights are updated using a simple learning rule based on the gradient
descent principle:

wcij(t + 1) = wcij(t)− ε
∂e(i)
∂wcij

(2.1)

where ε denotes a small positive real number called the learning rate.

21 MLP Learning Process

Considering only neurons of the last layer (layer n− 1), we may express this gradient as:

∂e(i)
∂wn−1,i,j

=
∂e(i)

∂An−1,i
× ∂An−1,i

∂wn−1,i,j
(2.2)

∂e(i)
∂An−1,i

=
∂e(i)

∂Sk−1,i
× ∂Sn−1,ii

∂An−1,i
(2.3)

= 2(Sn−1,i −Di)ϕ′n−1(An−1, i) (2.4)

∂An−1,i

∂wn−1,i,j
= Sn−2,j (2.5)

This leads to the final expression of the gradient associated with the output neurons:

∂e(i)
∂wcij

= 2(Sn−1,i −Di)ϕ′n−1(An−1,i)Sn−2,j (2.6)

The gradient associated with hidden neurons (c ∈ [1, · · · , n − 2]) can be computed using the
following equations:

∂e(i)
∂wcij

=
∂e(i)
∂Aci

× ∂Ac,i

∂wcij
(2.7)

∂Ac,i

∂wc,i,j
= Sc−1,j (2.8)

∂e(i)
∂Aci

=
nb(c+1)∑

k=1

∂e(i)
∂Ac+1,k

× ∂Ac+1,k

∂Aci
(2.9)

∂Ac+1,k

Aci
=

∂Ac+1,k

∂Sci
× ∂Sci

∂Aci
(2.10)

= wc+1,k,i × ϕ′ci(Aci) (2.11)

The use of equations (2.8) and (2.11) yields

∂e(i)
∂wcij

= Sc−1,j

c+1∑
k=1

wc+1,k,iϕ
′
ci(Aci)

∂e(i)
∂Ac+1,k

(2.12)

Learning rate influence

True gradient descent requires that infinitesimal steps are taken. For practical purpose, we choose
a learning rate that is as large as possible without leading to oscillation.

Figure 2.1 shows the influence of the learning rate on the quadratic error. The benchmark used
is detailed in Section 2.4.2.

A large value for ε leads quickly to a small error but the resulting curve highly oscillates.
Intuitively, weights changes are so large that the next iteration of the algorithm will try to invert
the last move. Using small values for ε reduces oscillations but increases the number of iterations
required to reach a fixed error.

2.1 Standard back-propagation algorithms 22

ε final learning error test error classification test error
0.001 236.2 93.1 57
0.005 198.4 81.5 57
0.01 174.5 71.5 54
0.05 113.4 45.6 24
0.1 104.7 43.7 22
0.5 85.6 48.5 26

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.001
0.005
0.01
0.05
0.1
0.5

Figure 2.1: Stochastic back-propagation: Learning rate influence. The benchmark framework
used is described in Section 2.4.2.

23 MLP Learning Process

α final learning error test error classification test error
0 236.8 93.2 57

0.1 232.2 91.8 57
0.2 228.3 90.6 57
0.4 220.0 88.5 57
0.6 212.4 86.5 57
0.8 198.3 81.9 57
0.9 174.9 72.0 54

0.95 202.2 82.1 57

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0
0.1
0.2
0.4
0.6
0.8
0.9

0.95

Figure 2.2: Stochastic back-propagation: Momentum influence. The benchmark framework used
is described in Section 2.4.2

Momentum influence

One way to avoid oscillation at large learning rate is to make the current weight update depen-
dent of the last weight update by adding a momentum term:

wcij(t + 1) = wcij(t) + ∆wcij(t) (2.13)

where

∆wcij(t) = −ε
∂e(i)
∂wcij

+ α∆wcij(t− 1) (2.14)

where α denotes a small positive number.

When two consecutive changes occur in the same direction, i.e. when − ∂e(i)
∂wcij

and ∆wcij(t− 1)
have the same sign, the weight change will be larger than using the simple learning rule (Equa-
tion 2.1). By contrast, if their sign differs then − ∂e(i)

∂wcij
and ∆wcij(t − 1) will tend to cancel, and

the effective learning rate will be small.

This adds inertia to the motion trough weight space and smoothes out the oscillations. Figure
2.2 illustrates the influence of the momentum on the convergence rates and on the error.

2.2 Speeding up the learning process 24

2.1.2 Batch back-propagation algorithm

Principle

Batch back-propagation is basically similar to stochastic back-propagation. The difference relies
in the weight update. While in stochastic back-propagation an update step is performed after
each single pattern is presented, in batch back-propagation weight updates are computed after a
presentation of all training patterns (one epoch). Instead of using the error e(p) as the stochastic
back-propagation does, the batch version uses the error E(p) computed on the whole dataset.

Fast adaptive versions of the back-propagation algorithm are almost all based on the batch
back-propagation algorithm. Some of these versions are studied in Section 2.4.

Since E =
∑

p e(p) (Equation 2.28), we have:

∂E

∂wcij
=

∑
p

∂e(p)
∂wcij

(2.15)

This leads to the weight adaptation rule:

wij(t + 1) = wij(t) + ∆wij(t) (2.16)

where

∆wij(t) = −ε× ∂E

∂wij
+ α×∆wij(t− 1) (2.17)

= −ε×
∑

p

∂e(p)
∂wcij

+ α×∆wij(t− 1) (2.18)

The term ∂e(p)
∂wcij

can be computed using equation (2.6) and (2.12).

Learning rate influence

Figure 2.3 shows the error curve for different learning rates. As in the stochastic back-propagation
case, a too large learning rate leads to oscillations while a small one leads to a slower convergence.
However, these oscillations are less frequent than in the stochastic case, mainly because summing
all weight changes to compute ∆wcij is equivalent to add the mean of all changes. Oscillations
are thus “amortized”.

Momentum influence

Since almost no oscillations are visible on Figure 2.3, the momentum value does not affect a lot
the results. Nonetheless, one can note that big values for the momentum slightly improve the
convergence speed. Representative results can observed on Figure 2.4.

2.2 Speeding up the learning process

Changing the training algorithm remains the most popular way to accelerate the learning pro-
cess. Relevant algorithms are presented in Section 2.4, but there also exist some techniques for
improving learning speed independently of the training algorithm.

25 MLP Learning Process

ε final learning error test error classification test error
0.0001 166.2 68.2 53
0.0005 106.5 43.6 22
0.001 90.6 37.4 20
0.002 72.3 30.6 17
0.004 65.0 27.4 13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.0001
0.0005
0.001
0.002
0.004

Figure 2.3: Batch back-propagation: Learning rate influence. The benchmark framework used is
described in Section 2.4.2.

2.2 Speeding up the learning process 26

α final learning error test error classification test error
0. 90.6 37.4 20

0.2 85.3 35.2 19
0.4 77.9 32.5 19
0.6 66.2 28.4 13
0.8 45.3 20.5 9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0
0.2
0.4
0.6
0.8

Figure 2.4: Batch back-propagation: Momentum influence. The benchmark framework used is
described in Section 2.4.2.

27 MLP Learning Process

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

er
ro

r

iterations

1
2
3
4

Figure 2.5: Different activation functions: influence of D
The test problem is the fit of the sinus function. The learning algorithm used is a standard batch
back-propagation.

2.2.1 Different activation functions

The usual activation function used for neural networks is a sigmoid between -1 and 1:

ϕ(x) =
2

1 + exp(−D ∗ x)
− 1

Usually, one uses D = 1 or D = 2 (the popular tanh function).

By increasing D, one sharpens the activation function. Some papers report that this can sig-
nificantly accelerate the learning process (15), but there is no way to predict what value will be
the best. Figure 2.5 presents the convergence curves obtained on an artificial test (fitting a si-
nus function) with a batch back-propagation algorithm and a variable D. Generally, increasing
D speeded up the convergence for artificial tests (function fitting), but our experiments showed
that this heavily depends on the application. For example, for real problems like medical classifi-
cation ones (see Section 2.4.2), increasing D over 1 slowed down the convergence and even made
the algorithm unstable.

Additionally, one can speed up the computation of the activation function by approximating
it (3). These numerical approximation do not change the number of epoch needed but can save
computation time.

2.2.2 Different error functions

Another existing strategy to speed up the learning process is to change the error expression. The
usual error used is the quadratic one:

E =
∑

p

∑
i∈OutputUnits

(Yi −Di)2

2.3 Improving the results of the learning process 28

One can express a generalization of this error function:

E =
∑

p

∑
i∈OutputUnits

(Yi −Di)2
n

Small values of n are valuable for problems with noisy data. Increasing n makes the “extreme”
examples (i.e. the examples with the higher error) more and more preponderant. Since changing
n modifies the computation of the gradient, it is difficult to evaluate properly the impact of this
technique. Indeed, if the gradient is not computed the same way, we can not keep the same
parameters (especially the learning rate) for the learning algorithm. An empiric observation is
that n can be increased to speed up the learning process if the data are clean enough. With the
“real” (i.e., not artificial) tests we made, increasing D over 1 always degraded the results and the
stability of the learning process. Sometimes, the best value was even under 1.

2.2.3 Derivate fudge

Using the usual sigmoid as activation function, the derivate function is:

2 ∗D ∗ exp(−D ∗ x)
((1 + exp(−D ∗ x)) ∗ (1 + exp(−D ∗ x)))

In Figure 2.6, one can see that this derivate takes nearly null values for small negative and big
positive inputs. Then, if the unit activation is very high or very small, weights will be modi-
fied very slowly. This can lead to very long refinement phases. To cope with this, Fahlman (9)
proposes to add a small fixed value (generally 0.1) to the derivate in order to create artificial
dynamics.

With the batch back-propagation algorithm, using a fudged derivate can slightly accelerate the
convergence without degrading the test results. Naturally, too big fudge values can endanger the
stabilization of the results by introducing too big artificial dynamics. The test presented in Figure
2.7 was performed on the same problem and with the same benchmarking rules than presented
in Subsection 2.4.2.

The derivate fudge can be interesting for every learning rate-based algorithm, including back-
propagation, quick back-propagation, delta-bar-delta, Silva-Almeida and SuperSAB. Indeed, all
these algorithms can suffer from the so-called “flat-spot” phenomenon (9). With algorithms de-
rived from the Manhattan rule (i.e. based on a momentum step) like the Rprop algorithm, we did
not see any effective improvement.

2.3 Improving the results of the learning process

A quicker learning process does not necessarily imply better results. Indeed, the learning pro-
cedure consists only in minimizing the error on learning samples. On both artificial and real
problems, the network is always trained on a limited set of samples. Then, we expect the net-
work to be able to interpolate and/or extrapolate the other cases from this learning set. Finally,
the generalization power of the network highly depends on the way it was trained. In practice,
very low learning errors can hide catastrophic phenomenons like over-fitting.

This section presents different techniques for improving the results of the learning process.
These heuristics and adaptive training algorithms are complementary, since advanced learning
algorithms (see Section 2.4) can also help to improve the generalization results.

29 MLP Learning Process

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-10 -5 0 5 10

ph
i(x

)

x

sigmoid derivate
fudged sigmoid derivate

Figure 2.6: Derivate fudge
The derivate of the standard sigmoid can take very small values for small and big inputs. The
derivate fudge technique consists in adding a constant value (0.1) to avoid infinitesimal weight
steps.

fudge final learning error test error classification test error
0. 106.5 43.6 2

0.1 96.7 40.0 21
0.2 89.9 37.2 20
0.5 93.5 42.2 21

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

er
ro

r

iterations

0
0.1
0.2
0.5

Figure 2.7: Influence of the derivate fudge on the batch back-propagation

2.3 Improving the results of the learning process 30

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5 0 0.5 1

Y

X

training set
1000 iterations
2000 iterations

10000 iterations

Figure 2.8: Over-fitting: influence of the number of training iterations
The aim of this test was to fit the function f(x) = x + 0.1 with a 1-50-1 MLP. To simulate coarsely
a real-case problem, the training points given are alternatively over and under the theoretic line.
The algorithm used to train the network is the Resilient Back-propagation. The curves present
the result functions learned by the network w.r.t. the number of epoch.

2.3.1 Over-fitting phenomenon and bad generalization

In real problems, data are always degraded by a certain amount of noise. This makes a per-
fect learning impossible. Then, one can understand that learning “by heart” the exact training
samples will not help in getting the better generalized results and can even degrade them.

Figure 2.8 presents a simple test to illustrate the over-fitting phenomenon. The best fit of the
function f(x) = x + 0.1 is obtained after 1000 iterations of the Resilient Back-propagation al-
gorithm (see Section 2.4.6). One can note that the algorithm tends naturally to the best linear
approximation, at least during the first iterations of the algorithm. It is also interesting to notice
how the algorithm is attracted by the first and last points. Progressively, the algorithm degrades
the linear approximation, in order to reduce its learning error. After about 2000 iterations, the
over-fitting phenomenon begins. The algorithm will attempt all the possible deformations to fit
exactly the training patterns, at the risk of bad generalization. By computing complex, highly
non-linear deformations, the learning process results in a network unusable if asked on anything
else but the training samples.

2.3.2 Network size

A widely stated observation is that the best generalization results are obtained with a relatively
small number of hidden units. Indeed, increasing the number of hidden units increases the com-
putational power of the network. It becomes able to fit more complex functions and then to solve
more complex problems. Unfortunately, too much hidden units increases the risk for the network
to over-fit the learning samples and then to give bad generalization. Thus, a general recommen-
dation is to keep the network as small as possible to avoid over-fitting problems. See Figure 2.9
for the results obtained on the fitting of the function f(x) = x + 0.1 with different numbers of

31 MLP Learning Process

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

Y

X

2 hidden units
10 hidden units
50 hidden units

200 hidden units
training set

Figure 2.9: Over-fitting: influence of the number of hidden units
Fitting the function f(x) = x + 0.1 with a 1-50-1 MLP. To simulate coarsely a real-case problem,
the training points given are alternatively over and under the theoretic line. The algorithm used
to train the network is the Resilient Back-propagation. The curves present the result function
learned by the network w.r.t. the number of hidden units.

hidden units.

2.3.3 Error threshold

Fahlman (9) proposes a new error computation scheme. He introduces a threshold of 0.1 under
which the unit error is set to 0. By using this error criteria, units having a quadratic error less than
0.01 are not trained anymore. Such an error function is designed to improve the stabilization of
the results. On the problem of fitting f(x) = x + 0.1 with a 1-50-1 MLP, a threshold reduces
considerably the over-fitting phenomenon (see Figure 2.10. In our experiments on real problems,
we did not note any significant melioration with this method.

2.3.4 Regularization and weight decay

The technique of regularization encourages a smooth network mapping by adding a penalty Er

to the error function:
E∗ = Ea + λEr (2.19)

where Ea is an error function (Section 2.2.2).

The most common form of regularizer Er is called weight decay and consists in the sum of the
weights elevated at a certain power of 2. Thus, weight decay penalizes large weights:

Er =
∑
c,i,j

(wcij)2
q

, q ∈ N (2.20)

2.3 Improving the results of the learning process 32

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5 0 0.5 1

Y

X

0
0.01
0.1

Figure 2.10: Error threshold influence
Fitting the function f(x) = x + 0.1 with a 1-50-1 MLP. To simulate coarsely a real-case problem,
the training points given are alternatively over and under the theoretic line. The algorithm used
to train the network is the Resilient Back-propagation. The curves present the result function
learned by the network w.r.t. the error threshold.

The gradient ∂E
∂wcij

is now:

∂E∗

∂wcij
=

∂Ea

∂wcij
+ λ

∂Er

∂wcij
(2.21)

=
∂Ea

∂wcij
+ λ2q(wcij)2

q−1 (2.22)

33 MLP Learning Process

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5 0 0.5 1

Y

X

0.0000001
0.0001

0.05
0.0
0.2
0.5

x+0.1
input data

Figure 2.11: Influence of a regularization term, q = 2, variable λ
Fitting the function f(x) = x + 0.1 with a 1-50-1 MLP. To simulate coarsely a real-case problem,
the training points given are alternatively over and under the theoretic line. The algorithm used
to train the network is the Resilient Back-propagation. The curves present the result function
learned by the network w.r.t. the value of the λ parameter.

The weight decay technique can be considered as a security for maintaining the stability of the
convergence. In fact, it can slightly slow down the convergence, but it is also a way to cope effi-
ciently with the over-fitting phenomenon. Figure 2.11 illustrates the influence of a regularization
term λ on the problem of fitting the function f(x) = x+0.1 with a 1-50-1 MLP. Some experiments
presented in (11) show that the best results come from starting weight decay when the network
reaches a minimum on the training set.

Schiffmann et al. (24) explains that this weight regularization is needed for some algorithms,
like quick back-propagation (see Section 2.4.7). They suggest a simple decay:

∂E∗

∂wij
(t) =

∂Ea

∂wij
(t) + λ ∗ wij(t) (2.23)

This computation scheme is strictly equivalent to the former one, with q = 1.

2.3.5 Weight Pruning and Cross-Validation

Another way to cope with over-fitting and to improve the generalization power of the network
is the technique of weight pruning, usually mixed with cross-validation. The idea of weight
pruning is to eliminate excess weights during the training process. Indeed, like it was exposed
in Section 2.3.2, too numerous hidden units and then too numerous weights usually lead to over-
fitting.

The cross-validation principle is to give an estimator of the prediction risk (19) used to estimate
the expected performance of the network on future data (i.e. the generalization power). Since the
predication risk cannot be computed directly, the cross-validation technique evaluates it. Cross-
validation results in a new training scheme. The main idea is to divide the training set T into an

2.4 Learning algorithms 34

effective training set T ′ and a validation set V . The network is trained on T ′ and its generalization
power is evaluated on V . This evaluation gives an estimation of the prediction risk and drives
the training process to the best generalization. It used for example to perform some backtracking
or some pruning of excess weights.

Utans and Moody (27) study different pruning algorithms. They point out different algo-
rithms based on the cross-validation technique. Prechelt (19) gives a detailed overview of existing
weight pruning techniques.

2.4 Learning algorithms

This section presents the study of different locally adaptive algorithms used for training multi-
layer perceptrons. Basically, they can be seen as extensions of the batch back-propagation algo-
rithm presented in Section 2.1.2. Some of them are mainly based on a local adaptation of the
learning rate, while others rather adapt the momentum term.

wij(t + 1) = wij(t) + ∆wij(t) (2.24)

where ∆wij(t) is an adaptive learning step.

This section proposes the study of the following algorithms:

• algorithms based on an adaptation of the learning rate:

∆wij(t) = −ε(t)× ∂E

∂wij
+ α×∆wij(t− 1) (2.25)

– Silva-Almeida back-propagation;

– super self-adaptive back-propagation (SuperSAB);

– delta-bar-delta back-propagation.

• algorithms mainly based on the adaptation of the momentum term:

∆wij(t) = −ε× ∂E

∂wij
+ α(t)×∆wij(t− 1) (2.26)

– resilient back-propagation (RProp);

– quick back-propagation (QuickProp).

For each algorithm, the influence of its parameters is studied. We also give some general con-
siderations about performance, generalization quality and stability. We also give some pointers
to other studies and point out commonly recommended settings.

2.4.1 Existing studies

Prechelt (18) presents Proben1 , a study of different problems, artificial and real-world ones,
treated with neural networks. He designs an entire benchmarking framework and especially
stresses on benchmarking rules and test validity. Schiffmann et al. (24) focuses on the compar-
ison of different techniques for optimizing back-propagation process. The different algorithms
studied in this chapter are also discussed in this paper. Fahlman (9) stresses on back-propagation
weaknesses and finally presents his Quick Back-Propagation algorithm to cope with this difficul-
ties. Finally, other studies on specific applications can be found at the UCI repository for machine
learning databases (5).

35 MLP Learning Process

2.4.2 Benchmarking rules

Establishing relevant benchmarking rules for neural networks is a key point for proper scientific
studies (18). The validity, the reproductibility and the comparability of the tests must be ensured.

Benchmark problem used

For this study, we preferred a real-world problem to an artificial one for algorithms not to be
biased by the regularity of the problem. Like explained in (18), realistics problems are more rep-
resentative of the algorithms’ behavior than artificial ones, even if noise can be added to artificial
tests.

The database used for this study is extracted from the UCI repository of machine learning
databases (5). This Thyroid database aims at diagnosing thyroid hyper-, normal or hypo-
function thanks to 21 factors. This problem is basically a classification problem between 3 classes.
The class probabilities are 5.1%, 92.6% and 2.3% respectively. The database is composed of 972
samples.

For the purpose of this study, the database is separated into two databases:

• A training set of 729 samples (75% of the total database)

• A test set of 243 samples (25% of the total database)

The same training and test sets are used for the whole study. Training and test samples were cho-
sen randomly, but with the property that the class probabilities of the original database remain
the same in both training and test sets.

Neural network used

The network used is a 3-layer perceptron with the following characteristics:

• 21 input units, 10 units in the hidden layer, 3 output units;

• Sigmoid activation functions for all the units.

Error measures

The typical error used for evaluating both the training and the test parts is the global quadratic
error, defined by:

E =
∑

p

∑
i∈OutputUnits

(Yi −Di)2

Where p is a pattern, Yi the output of the unit i and Di the corresponding component of the
desired output vector for p.

We denote by e(i) the error associated to one learning pattern of the database:

e(p) =
∑

i∈OutputUnits

(Yi −Di)2 (2.27)

E =
∑

p

e(p) (2.28)

2.4 Learning algorithms 36

This error measure is valuated during the training process to evaluate the convergence speed.
Afterwards, it is also computed on the test set in order to evaluate the generalization quality of
the algorithm.

We also dispose of a classification error that indicates the number of test samples misclassified
by the network.

Tests performed

The curves presented in this chapter illustrate the convergence speed for a given number of
epoch. Network’s weights are initialized randomly, but the same network initialization is used
for all the test curves in order to ensure their reproducibility and comparability. Even if they
come from a unique run, we ensure their representativity thanks to numerous unpublished tests.

The result tables proposed for each test give averaged results obtained through (at least 10) ran-
domly initialized runs. They present the final learning error, the test error and the classification
test error after a fixed number of iterations of the algorithm.

2.4.3 Silva-Almeida algorithm

Silva and Almeida (25) proposed the so-called “Silva-Almeida” algorithm that performs a learn-
ing rate adaptation by sign changes. When the gradient keeps its sign, the learning rate is in-
creased by η+ (acceleration rate > 1). At the contrary, if the gradient changes its sign, the learning
rate is decreased by η− times (0 < deceleration rate < 1). Small initial values for ε0 has to be
chosen.

This algorithm can additionally perform a fixed rate momentum update α.

Learning rates are adapted as follows:

εij(0) = ε0
εij(t) = εij(t− 1) ∗ η+ if ∂E

∂wij
(t) ∗ ∂E

∂wij
(t− 1) ≥ 0

εij(t) = εij(t− 1) ∗ η− else

Connection weights are updated classically:

∆wij(t) = −εij(t) ∗ (
∂E

∂wij
(t)) + α ∗∆Wij(t− 1)

In addition to this update rule, Silva and Almeida use a global backtracking strategy which
restarts an update step if the total error increases. In this case, both acceleration and deceleration
learning rates are halved.

Our experimentations revealed that it is preferable to bound learning rates by lower and upper
limits (respectively εmin and εmax) in order to avoid over- and under-flow phenomenon.

37 MLP Learning Process

α final learning error test error classification test error
0. 16.4 8.3 2

0.2 13.6 7.8 2
0.4 10.6 7.6 2
0.6 10.9 7.8 2
0.8 8.3 4.9 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0
0.2
0.4
0.6
0.8

Figure 2.12: Silva-Almeida: Momentum influence

Recommended values for parameters

Silva and Almeida (25) recommend the following values:

α = 0.2
η+ = 1.1
η− = 0.7
εmax = 5.
εmin = 0.00001

Momentum influence (α)

In the different tests we made, small momentum values had a little influence. Increasing its value
produced a little acceleration. For some problems like this one, we managed to slightly improve
the convergence speed thanks to very high momentum rates (see Figure 2.12).

Initial learning rate influence (ε0)

Initial learning rate growth principally speeds up the beginning of the training process. After
some iterations, the initial learning rate does not have a really big influence since the learning
rate is auto-adjusted. One should note that too big values endanger the initial stability of the
algorithm and slightly slow down the convergence in the stabilization and refinement phase.
Depending on the problem, values between 0.0001 and 0.001 are recommended (see Figure 2.13).

2.4 Learning algorithms 38

ε0 final learning error test error classification test error
0.00001 16.3 8.3 2
0.0001 16.6 8.8 2
0.001 24.8 11.9 2
0.01 26.7 13.2 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.00001
0.0001
0.001
0.01

Figure 2.13: Silva-Almeida: Initial learning rate influence

Learning acceleration rate influence (η+)

With a learning acceleration rate equal to 1, the Silva-Almeida algorithm can not accelerate. Then,
it is somehow equivalent to a batch back-propagation with an ε0 learning rate (see Figure 2.14).
The difference is that Silva-Almeida can still decrease its learning rate and perform some back-
tracking. Values slightly superior to 1 naturally accelerate the learning process, but at the risk of
making the convergence unstable. Then, values under 1.2 are recommended (generally recom-
mended value: 1.1).

Learning deceleration rate influence (η−)

As shown in Figure 2.15, learning deceleration rate has a limited influence since all the tests we
made did not involve numerous gradient sign changes. Anyway, having a too big deceleration
rate forces the learning rate to stay too close to its old value, so that it can generate local pertur-
bations and result degradation.

Discussion

Even if it is not the quickest algorithm we studied, the Silva-Almeida technique always gave very
good results. It is finally one of the most natural auto-adaptive algorithm from a theoretical point
of view, using a simple acceleration/deceleration rate on the learning rate. Some studies like (24)
also report that this is the method that gives the best generalization results.

39 MLP Learning Process

η+ final learning error test error classification test error
1.0 90.6 37.4 20

1.05 21.1 10.2 2
1.1 24.8 11.9 2

1.15 23.6 12.8 3
1.2 37.8 17.6 5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

1.0
1.05
1.1

1.15
1.2

Figure 2.14: Silva-Almeida: Learning acceleration rate influence

2.4 Learning algorithms 40

η− final learning error test error classification test error
0.1 27.5 13.5 4
0.4 21.4 10.1 3
0.7 24.8 11.9 2
0.8 38.3 12.8 7

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.1
0.4
0.7
0.8

Figure 2.15: Silva-Almeida: Learning deceleration rate influence

2.4.4 Super Self-Adaptive back-propagation algorithm (SuperSAB)

T. Tollenaere’s SuperSAB algorithm (26) is quite similar to Silva and Almeida’s approach. The
SuperSAB algorithm proposes a modified update rule to perform local backtracking instead of
global backtracking (see also Subsection 2.4.6 on Rprop backtracking scheme).

Learning rate is adapted the same way than Silva-Almeida:

εij(0) = ε0
εij(t) = εij(t− 1) ∗ η+ if ∂E

∂wij
(t) ∗ ∂E

∂wij
(t− 1) ≥ 0

εij(t) = εij(t− 1) ∗ η− else

Where ε0 is the initial learning rate, η+ the acceleration rate and η− the deceleration rate.

Weight update is modified this way:

∆wij(t) = −εij(t) ∗ ∂E
∂wij

(t) + α ∗∆wij(t− 1) if ∂E
∂wij

(t) ∗ ∂E
∂wij

(t− 1) ≥ 0
∆wij(t) = −∆wij(t− 1); ∆wij(t) = 0 else

If a gradient sign change is detected, the last weight step is reverted and the current weight
update is set to 0 in order to inhibit the momentum term at the next iteration.

Like exposed in (24), we experienced some stability problems with the original algorithm. In
fact, this instability is due to too important learning rate growth. Then, the solution was to fix a
proper upper limit εmax to the learning rate. The new learning rate update rule is:

εij(t) = εij(t− 1) ∗ η+ if ∂E
∂wij

(t) ∗ ∂E
∂wij

(t− 1) ≥ 0
∧

εij(t− 1) ≤ εmax

εij(t) = εij(t− 1) ∗ η− else

41 MLP Learning Process

α final learning error test error classification test error
0. 17.7 8.7 2

0.2 19.2 8.3 2
0.4 16.1 8.8 2
0.6 13.1 8.4 2
0.8 8.3 4.5 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0
0.2
0.4
0.6
0.8

Figure 2.16: SuperSAB: Momentum influence

Recommended values for parameters

Existing papers generally recommend the same settings than for Silva-Almeida parameters, since
these two algorithms are very close:

ε0 = 0.001
α = 0.2
η+ = 1.1
η− = 0.7
εmax = 5.

Momentum influence (α)

Standard momentum values brings generally about no real improvement of the convergence
speed (see Figure 2.16). It slightly speeds up the convergence in the stabilization and refinement,
but not significantly. In addition, papers reports problems with too big momentums (26).

Maximum learning rate influence (εmax)

On classical tests like the one we present, it is difficult to see the influence of the εmax value since
learning rate limitation is needed in only few and limited cases. The principal observation we

2.4 Learning algorithms 42

εmax final learning error test error classification test error
1. 19.7 10.6 2
5 19.2 8.3 2

100 21.1 9.9 2
∞ ∅ ∅ ∅

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

1
5

100
no limitation

Figure 2.17: SuperSAB: Maximum learning rate influence

made is that this upper limit is necessary to get the algorithm working (see Figure 2.17). Without
limitation, we did not get the algorithm working properly on any problem.

Initial learning rate influence (ε0)

Like expected, initial learning rate especially influences the early steps of the algorithm by speed-
ing it up. Over the recommended value of 0.001, we generally did not obtain significant improve-
ment and even experienced critical stability difficulties in the early iterations (see Figure 2.18).

Learning acceleration rate influence (η+)

With a learning acceleration rate equal to 1, the SuperSSAB algorithm can not accelerate (see
Figure 2.19). It is only able to decrease its epsilon0 initial learning rate. Values superior to 1
significantly accelerate the learning process, but at the risk of making the convergence unsta-
ble, especially during the early iterations. Then, values under 1.2 are recommended (generally
recommended value: 1.1).

Learning deceleration rate influence (η−)

As shown in Figure 2.20, a little learning deceleration rate can slightly slow down the conver-
gence by decreasing too much the learning rate after a gradient sign change. Anyway, having a
too big deceleration rate forces the learning rate to stay too close to its old value, so that it can
generate local perturbations and result degradation.

43 MLP Learning Process

ε0 final learning error test error classification test error
0.00001 20.4 9.9 2
0.0001 19.9 8.9 2
0.001 19.2 8.3 2
0.01 21.8 10.5 2
0.012 24.8 11.5 3

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.00001
0.0001
0.001
0.01

0.012

Figure 2.18: SuperSAB: Initial learning rate influence

2.4 Learning algorithms 44

η+ final learning error test error classification test error
1.0 90.6 37.4 20

1.05 20.5 10.3 2
1.1 21.1 9.9 2
1.2 19.2 8.3 2
1.5 12.9 7.4 2
2 25.3 11.8 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

1.0
1.05
1.1
1.2
1.5

2

Figure 2.19: SuperSAB: Learning acceleration rate influence

45 MLP Learning Process

η− final learning error test error classification test error
0.1 30.2 14.4 2
0.4 22.7 10.3 2
0.7 19.2 8.3 2
0.9 41.1 18.5 5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.1
0.4
0.7
0.9

Figure 2.20: SuperSAB: Learning deceleration rate influence

Discussion

The original algorithm, as described in (26), does not include a maximum learning rate (ηmax). In
this version, the convergence was really chaotic, so that a proper ηmax became unavoidable.

The SuperSAB algorithm remains very close to Silva-Almeida’s approach. The local back-
tracking scheme it introduces appeared to improve very slightly the convergence speed without
degrading the generalization power of the network. Tollenaere (26) reports some applications
where its algorithm was among the best one. Unfortunately, both speed and generalization gains
over Silva-Almeida were not significant for all our experiments.

2.4.5 Delta-Bar-Delta algorithm

Delta-Bar-Delta is another algorithm based on a local learning rate adaptation (1). This algorithm
controls its learning rate bu observing the sign changes of an exponential averaged gradient.
Instead of increasing the learning rate by multiplying it by an acceleration rate, Delta-Bar-Delta
technique adds a constant step η+. The learning rate is classically decelerated by a deceleration
rate η−.

εij(0) = ε0
εij(t) = εij(t− 1) + η+ if ∂E

∂wij
(t) ∗ δ̃ij(t− 1) > 0

εij(t) = εij(t− 1) ∗ η− if ∂E
∂wij

(t) ∗ δ̃ij(t− 1) < 0
εij(t) = εij(t− 1) else

2.4 Learning algorithms 46

α final learning error test error classification test error
0. 23.9 11.7 2

0.2 20.0 10.2 2
0.6 11.8 6.1 2
0.8 19.8 11.7 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0
0.2
0.6
0.8

Figure 2.21: Delta-Bar-Delta: Momentum influence

Where δ̃ij(t) represents the exponential averaged gradient:

δ̃ij(t) = (1− φ) ∗ ∂E

∂wij
(t) + φ ∗ δ̃ij(t− 1)

Recommended parameters

ε0 = 0.001
α = 0.2
η+ =???
η− = 0.7
φ = 0.7

Since η+ is an acceleration step, it heavily depends on the application. Then, it is difficult to find
a proper η+. For the thyroid problem, we used η+ = 0.001.

Momentum influence (α)

Increasing the momentum induces a small acceleration of the convergence process, but can also
create critical stability problems (see Figure 2.21).

47 MLP Learning Process

ε0 final learning error test error classification test error
0.0001 20.9 11.0 2
0.001 20.0 10.2 2
0.01 24.1 11.5 3
0.02 26.2 13.3 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.0001
0.001
0.01
0.02

Figure 2.22: Delta-Bar-Delta: Initial learning rate influence

Initial Learning rate influence (ε0)

Like every other auto-adaptive learning rate algorithm, the Delta-Bar-Delta algorithm slightly
benefits from the growth of the initial learning rate. Our experimentations showed us that one
should take care of too big values that can create important perturbations in the early iterations
(see Figure 2.22). Since Delta-Bar-Delta acceleration is based on an acceleration step instead of
an acceleration rate for the other algorithms, it seems more sensitive to too big values than Silva-
Almeida and SuperSAB algorithms.

Learning acceleration step influence (η+)

The η+ parameter is probably the most difficult parameter to set because it is a fixed accelera-
tion step. Figure 2.23 illustrates the influence of η+ on our medical classification problem. We
managed to improve the convergence speed by increasing η+ up to a critical limit over which
the algorithm became locally unstable. The problem is that this limit highly depends on the
application so that a recommended η+ can not be given (24).

Learning deceleration rate influence (η−)

Figure 2.24 shows that the deceleration rate does not have a big influence under a certain limit.
With too big values, the algorithm can not decelerate enough, so that important local perturba-
tions appear.

2.4 Learning algorithms 48

η+ final learning error test error classification test error
0.0001 18.2 9.0 2
0.0005 20.3 10.1 2
0.001 20.0 10.2 2
0.005 25.4 12.2 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.0001
0.0005
0.001
0.005

Figure 2.23: Delta-Bar-Delta: Learning acceleration step influence

Exponential average gradient parameter (φ)

The φ parameter represents the importance of the last exponential averaged gradient δ̃ij(t − 1)
in the current exponential averaged gradient δ̃ij(t). Basically, if φ is set to 0, δ̃ij(t) is equal to
the actual gradient and the Delta-Bar-Delta algorithm is equivalent to Silva-Almeida’s approach.
Unfortunately, our experimentations did not reveal the benefit of this exponential averaged gra-
dient. Small values of φ (i.e. the current gradient is predominant) give very good convergence
speeds, at least in the early steps. Increasing this value, we observed a very little melioration.
When the last exponential gradient becomes too predominant, the algorithm becomes unstable
in the stabilization and refinement process. If φ is set to 1, the averaged gradient δ̃ij(t) is basi-
cally the last gradient, so that gradient sign changes are not correctly detected anymore. This
considerably degrade the training results (see Figure 2.25).

Discussion

The exponential averaged gradient of the Delta-Bar-Delta technique did not prove to be a real
improvement, even if we observed a better stabilization of the convergence on some tests. The
results were quite good without outperforming Silva-Almeida and SuperSAB algorithms. One
should also note that because of its unusual acceleration step η+, this algorithm’s setup highly
depends on the final application. In practice, this results in some difficulties in obtaining the
optimal behavior.

49 MLP Learning Process

η− final learning error test error classification test error
0.2 20.4 11.6 3
0.4 17.1 9.2 2
0.6 19.8 10.5 2
0.8 24.8 12.0 3
0.9 35.2 15.4 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.2
0.4
0.6
0.8
0.9

Figure 2.24: Delta-Bar-Delta: Learning deceleration rate influence

2.4 Learning algorithms 50

φ final learning error test error classification test error
0. 26.4 11.6 2

0.2 26.5 9.2 2
0.4 24.5 10.5 2
0.6 22.0 12.0 2
0.8 21.1 11.4 2
0.9 26.1 13.2 3
1 90.6 37.4 20

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0
0.2
0.4
0.6
0.8
0.9

1

Figure 2.25: Delta-Bar-Delta: Exponential average gradient parameter

51 MLP Learning Process

2.4.6 Resilient back-propagation algorithm

The Resilient backpropagation algorithm (RProp) can be described as an adaptive version of the
Manhattan update rule (21). In contrast to all the other algorithms presented in this report, the
Rprop algorithm is not influenced by the intensity of the gradient. It is based on an adaptive
update step controlled by the sign changes of the gradient.

Step update rates (η+ for acceleration rate and η− for deceleration rate) are controlled by upper
and lower limits (∆max and ∆min) in order to avoid oscillations, over- and underflow problems.
A small initial value for update step (∆ij(0)) has to be fixed.

Basically, the update rate is multiplied by η+ (> 1) when the gradient keeps it sign and multi-
plied by η− (< 0) when its sign changes:

∆ij(t) = ∆ij(t− 1) ∗ η+ if ∂E
∂wij

(t) ∗ ∂E
∂wij

(t− 1) > 0
∆ij(t) = ∆ij(t− 1) ∗ η− if ∂E

∂wij
(t) ∗ ∂E

∂wij
(t− 1) < 0

∆ij(t) = ∆ij(t− 1) else
∆ij(t) = ∆max if ∆ij(t) ≥ ∆max

∆ij(t) = ∆min if ∆ij(t) ≤ ∆min

Weights are then updated the following way:

wij(t + 1) = wij(t)− sign(
∂E

∂wij
(t)) ∗∆ij(t)

Optimizations of the original algorithm

Riedmiller and Braun (21) proposes a local backtracking scheme for improving the Rprop algo-
rithm. If a gradient sign change is detected, the update step is decelerated as usual, but the last
weight update is reverted and the next adaptation of the update step is skipped. This can be
implemented as follows:

wij(t + 1) = wij(t)− sign(∂E
∂wij

(t)) ∗∆ij(t) if ∂E
∂wij

(t) ∗ ∂E
∂wij

(t− 1) ≥ 0
wij(t + 1) = wij(t)−∆wij(t− 1); ∂E

∂wij
(t) = 0 else

In the case of a gradient sign change, we set the gradient value to 0. If we assume that sign(x)
returns 0 if x is null, this skips the next update of ∆ij . This local backtracking is particularly
efficient for difficult, irregular problems (21).

Igel and Hüsken (14) proposes another small optimization to the Rprop algorithm. He intro-
duces a global backtracking test to soften the local backtracking. In the case of a gradient sign
change, the last weight update is reverted only if the global energy has grown up. Thus, it allows
the algorithm to accept weight changes even if a gradient sign change occurred. Thanks to this
technique, Igel reports interesting improvement of the convergence speed. Unfortunately, our
experimentations did not reflect such impressive melioration.

Recommended values for the parameters

Literature recommends the following parameters:

∆max = 50.
∆min = 0.0001
∆0 = 0.0125
η+ = 1.2
η− = 0.5

2.4 Learning algorithms 52

∆min final learning error test error classification test error
0.00001 6.0 4.3 1
0.0001 5.5 3.3 1
0.001 15.2 8.5 2
0.01 55.7 23.9 10
0.05 176.3 61.2 16

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.00001
0.0001
0.001
0.01
0.05

Figure 2.26: Rprop: Minimum update rate influence

When not indicated, these parameters are used for the following tests.

Maximum update step influence (∆max)

In all the tests we made, the Rprop algorithm kept a remarkable stability w.r.t its update step.
Then, it was extremely rare that it had to be limited. At the contrary, a reasonably big ∆max (for
example, the standard value 50) is necessary for the algorithm to keep its acceleration properties.
We also observed that decreasing this value could increase the stability of the algorithm for some
“difficult” problems.

Minimum update step influence (∆min)

The same way than for ∆max, the Rprop algorithm rarely reached so little update step that a
∆min was necessary to maintain some dynamics. Figure 2.26 shows that a very small ∆min value
is valuable for continuing to converge when refining the final result. Higher ∆min values will
maintain an artificial agitation that will result in worse results or even in critical instability.

Update rate initialization influence (∆0)

Figure 2.27 illustrates the influence of the initialization value of the update rate on the conver-
gence speed. ∆0 especially affects the initial convergence speed: with increasing ∆0, learning

53 MLP Learning Process

∆0 final learning error test error classification test error
0.0001 5.1 5.5 1
0.001 6.1 5.8 1
0.01 7.3 6.2 1
0.1 9.8 8.0 1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.0001
0.001
0.01
0.1

Figure 2.27: Rprop: Update rate initialization influence

error decreases more quickly at the beginning, but too big values endanger the stability of the
early steps of the algorithm. With simple, regular problems, it was possible to increase consid-
erably ∆0 in order to improve the initial convergence speed. Anyway, recommended value was
always close to the optimum.

Acceleration rate influence (η+)

η+ has naturally an important influence on the convergence speed, as shown in Figure 2.28.
With η+ equal to 1, the algorithm can not accelerate. It keeps its initial learning rate ∆0 and
only adapt it by decreasing it. With values greater than 1, the algorithm accelerates significantly.
Increasing the acceleration rate quickly comes with no gain, since the algorithm is accelerating
too much. Then, deceleration (and backtracking if available) iterations occur immediately to
moderate the update rate. The algorithm proved to be remarkably stable w.r.t to the growth of
η+, especially in its backtracked versions. Since increasing η+ quickly comes with about no gain,
it is recommended to keep standard value (1.2) in order to maintain a perfect stability.

Deceleration rate influence (η−)

Figure 2.29 sums up the typical observations we made about η− influence. Too small values
slightly slow down the convergence by decreasing too much the update rate after a gradient sign
change. At the contrary, too big values endanger the convergence by forcing the update rate to
stay too close to its old value.

2.4 Learning algorithms 54

η+ final learning error test error classification test error
1 54.3 23.7 8

1.1 12.2 6.3 2
1.2 11.3 6.6 2
1.5 9.9 6.1 2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400 450 500

Q
ua

dr
at

ic
 e

rr
or

Iterations

1
1.1
1.2
1.5
1.6

Figure 2.28: Rprop: Acceleration rate influence

η− final learning error test error classification test error
0.1 8.2 5.4 1
0.5 6.1 5.8 1

0.95 10.8 8.8 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.1
0.5

0.95

Figure 2.29: Rprop: Deceleration rate influence

55 MLP Learning Process

Discussion

Basically, this is the algorithm that comes with the simplest idea: accelerating a momentum step,
totally independently of the gradient intensity, only driven by the gradient sign changes. Finally,
this simple idea makes the Rprop the best first-order, auto-adaptive method in terms of conver-
gence speed and robustness w.r.t. its parameters. In about all our tests, we obtained the quickest
convergence with the Rprop without modifying any of its “standard” parameters and without
any additional technique. Unfortunately, this convergence performance can make the over-fitting
phenomenon more visible (see Section 2.3.1). The optimizations on the backtracking scheme (14)
give an interesting way of stabilizing the results without managing to avoid totally over-fitting.
The best generalization network is obtained very quickly, so that over-fitting starts after very few
iterations. Then, we recommend to use this algorithm in collaboration with one or several of the
techniques presented in Section 2.3.

2.4.7 Quick back-propagation algorithm

This algorithm was first proposed by Fahlman (9). It is a second-order method, based heuristi-
cally on Newton’s technique. Basically, this algorithm relies on a second-order approximation of
the optimal weight step:

α̃(t) = ∆wij(t) =
∂E

∂wij
(t)

∂E
∂wij

(t− 1)− ∂E
∂wij

(t)
∆wij(t− 1)

Fahlman (9) develops the assumptions that make this approximation heuristically valuable. In
real situations, this update rule makes the algorithm particularly unstable. Some control is then
required.

First, if the step computed by this formula is too large, infinite or uphill on the current gradient,
this momentum has to be limited. Schiffmann et al. (24) proposes to control the momentum term
as follows:

α(t) = αmax if α̃(t) infinite∨
α̃(t) > αmax∨
α̃(t) ∗∆wij(t− 1) ∗ ∂E

∂wij
(t− 1) > 0

α(t) = α̃(t) else

A learning rate is also necessary to start the training or restart it after a gradient sign change:

εij(t) = ε0 if ∂E
∂wij

(t) ∗∆wij(t− 1) < 0∨
∆wij(t− 1) = 0

εij(t) = 0 else

A weight decay (see Subsection 2.3.4) can also be necessary to get the Quickprop algorithm
working properly.

Recommended values for the parameters

αmax = 1.75
ε0 = 0.001
decay = 0.00001

When not indicated (i.e. when the parameter is not the one studied), these values are used for
the following tests.

2.4 Learning algorithms 56

decay final learning error test error classification test error
0.000001 12.3 8.3 2
0.00001 9.7 5.4 2
0.0001 14.0 7.0 2
0.001 11.5 7.1 2
0.01 17.4 10.0 2
0.1 31.4 15.1 5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.000001
0.00001
0.0001
0.001
0.01
0.1

Figure 2.30: QuickProp: Weight decay influence

Weight decay influence (decay)

The need for a weight decay has been verified. In fact, with lots of tests, no convergence has been
obtained without weight decay. Figure 2.30 presents convergence curves obtained with different
values of decay. It confirms the relevance of the 0.0001 standard value. It also shows that a too
small decay value results in the instability of the algorithm and that a too big value degrades
results by maintaining artificially a too high gradient.

Learning Rate influence (ε0)

All our experimentations have confirmed the standard value for the learning rate. Small values
have little impact since quickprop algorithm is mainly based on the momentum approximation.
At the contrary, big values endanger the stability after a zero update and considerably degrade
the results. See Figure 2.31 for typical results.

Maximum momentum influence (µ)

Constraining the momentum under small values (< 1), the convergence is considerably slowed
down. With too big values (> 2) the algorithm becomes locally unstable (see Figure 2.32). The
standard value of 1.75 was valuable for about all our experimentations.

57 MLP Learning Process

ε0 final learning error test error classification test error
0.0001 8.5 6.9 2
0.001 9.7 5.4 2
0.005 33.8 15.7 5
0.008 40.6 27.5 4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.0001
0.001
0.005
0.008

Figure 2.31: QuickProp: Learning rate influence

Discussion

Quickprop’s performance is generally close to Rprop’s results, without outperforming them.
Quickprop’s adaptation rule, based on an loosely second-order approximation of the best mo-
mentum, is much more complex than the adaptive step of the Resilient back-propagation. This
approximation is even unstable, so that lots of control tests must be done to ensure the conver-
gence. This algorithm is more difficult to setup and less robust w.r.t. its parameters. Moreover,
it generally needs additional techniques like weight decay to work properly. Finally, all these
practical drawbacks make Quickprop less convenient than Rprop. Though, see (9) for some ap-
plications where this algorithm is worth to be preferred to Rprop.

2.4.8 Cascade correlation algorithm

Fahlman and Lebiere have presented a new learning architecture called cascaded correlation al-
gorithm in (10). This algorithm comes with an entire training scheme that starts with a minimal
network with only one hidden unit. Then, the algorithms tries to add new hidden units and
trains them using one of the algorithms presented before. With such an adaptation of the network
topology during the training process, this algorithm has proved to be one of the most efficient
one, for both training speed and generalization (10; 24) but is not directly comparable to the other
algorithms presented. This algorithm

This algorithm can also be viewed as a solution to the problem of choosing the size of the
network (see Section 2.3.2) but some expertise is needed to get the algorithm converging to a
relatively small topology (10).

2.4 Learning algorithms 58

µ final learning error test error classification test error
0.5 72.3 30.6 17
1 12.0 5.5 2

1.75 9.7 5.4 2
3 14.3 7.2 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

0.5
1

1.75
3

Figure 2.32: QuickProp: Maximum momentum influence

2.4.9 Other existing algorithms

There exist many other ways to speed up MLP learning process. This study focussed on lo-
cally adaptive algorithms, but algorithms based on a global adaptation of the learning rate have
proved to give good results, without outperforming the former ones. We can cite angle driven
and conjugate gradient methods, studied in detail in (24).

2.4.10 Comparison and discussion

Learning speed

If we except the cascade-correlation algorithm not studied in this report, the resilient back-propagation
appeared to be the quickest algorithm for all the tests we performed. The convergence speed
of the quick back-propagation was almost always comparable to Rprop one. The other algo-
rithms studied were slightly slower but remained significantly faster than classical batch back-
propagation.

Results quality and generalization power

All the auto-adaptive algorithms presented significantly outperform the standard batch back-
propagation in terms of convergence speed. A more interesting result is the way they also lead
to good generalization.

59 MLP Learning Process

Algorithm final learning error test error classification test error
Stochastic back-propagation 170.2 68.7 54

Batch back-propagation 85.3 35.2 19
Delta-Bar-Delta 22.6 12.5 3

Quick back-propagation 9.7 5.4 2
Resilient back-propagation 4.9 4.7 1

Silva-Almeida 16.4 8.3 2
Super Self-Adaptive back-propagation 17.7 8.7 2

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

stochastic backprop
batch backprop
Delta-Bar-Delta

QuickProp
Rprop

Silva-Almeida
SuperSAB

Figure 2.33: Comparison of the different algorithms

2.4 Learning algorithms 60

The tests published are fully representative of the general observations we made. For all the
locally adaptive algorithms tested, quadratic test error and classification test error were corre-
lated to the final learning error. With appropriate settings and limited number of iterations, none
of these algorithms engenders over-fitting phenomenons. Since all these algorithms aim to mini-
mize the training error, one should understood that they will inevitably lead to over-fitting if they
run too many iterations. Like it was already explained in Section 2.3.1, this category of algorithms
will naturally tend to the best generalization before beginning over-fitting. Different techniques,
already exposed in Section 2.3, have to be used in collaboration with these algorithms in order to
benefit from their learning performance and keep a good generalization power.

Very little difference has been observed between the algorithms w.r.t the final generalization
power of the network. Anyway, articles report that Silva-Almeida and SuperSAB algorithms can
sometimes lead to better generalization. (24; 25; 26).

Ease of use and robustness to variations of parameters

Since all the algorithms presented here are auto-adaptive, they all present good stability proper-
ties. Anyway, some of these algorithms were more difficult to setup than others. It was the case
of the Delta-Bar-Delta technique that uses an acceleration step instead of an acceleration rate.
The Quickprop algorithm was also difficult to setup and required some additional techniques
like weight decay to work properly. Since it is based on a heuristic approximation, one should
take care of setting the good control values (αmax and decay) for maintaining the stability of the
learning process when the approximation fails. Finally, the resilient back-propagation appeared
to be the most stable algorithm w.r.t. its parameters. Indeed, it is the only one presented here
that relies entirely on an adaptive learning step independent from the gradient intensity. With
the standard values proposed in this chapter, the algorithm worked fine on all the tests we per-
formed. It was even possible to significantly accelerate the convergence for some highly regular
problems.

Chapter 3

Application to image compression

3.1 Framework

There are two types of compression algorithm: loss-less data compression, that preserves all the
information, and lossy data compression, that throws away some non-essential information. The
choice of such algorithms depends on the considered data type. Considering binary or text files,
where each bit of information is essential, a loss-less compression (such as Huffman’s) must be
used. On the other hand, when manipulating sound, image or video data, which are already
lossy digitalizations of analogue phenomena, a lossy compression algorithm may be prefered.

Images are noisy signals where an important quantity of information can be pruned without
significant appearance damage. From then on, we try to reduce image’s entropy defined as:

H = −
∑

i

log2(pi)xi

where pi refers to the probability of appearance of the xi pixel. Entropy represents the quantity
of information (in terms of minimum number of bits needed to encode an image). Sparse pixels
(the noise) represent a significant part of that quantity. The main goal is to delete those pixels to
reduce image’s entropy and thus compress it with data loss but without significant quality loss.

Various destructive compression methods exist. For example, we can quote the discrete cosine
transform (DCT) used in jpeg file format or neural network approaches. This last framework will
be ours in the rest of that study.

3.2 Data analysis

In this section, we will analyze data that are contained in an image.

Consider the cut of and N ×M image into n blocks of h× w size:

X =

x1,1 x1,h×w

...
. . .

... xi,j

...
. . .

xn,1 xn,h×w

3.2 Data analysis 62

where xi,j is the j-th pixel of the i-th block. Section 3.2.4 will study the interest and the impor-
tance of such cutting up.

In the following, an image is considered as n observations of a h× w dimension random vari-
able.

3.2.1 Linear correlation

For a convenient illustration, the image is cut in blocks of only two pixels, but the results may
be generalized to upper dimensions. In order to determine whether it exists a link between two
adjacent pixels in an image, we represent each observation i as a point with coordinates (xi, yj)
in a Cartesian basis. The points cloud’ shape is given as follows:

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

"lena-blocks.dat"

Figure 3.1: A cloud of 1× 2 blocks

We notice that we are in the case of a strong linear correlation between block’s pixels ; we admit
that this tendency remains true for dimensions greater than 2.

All observations are located near the equation’s line y = x. This linear correlation can be
explained by the fact that neighbor pixels within a block have a very close grey level, which tend
to be equal. Observations that are far from that line are blocks containing noisy pixels.

To study more precisely this linear relation between pixel of a same block, we can represent
the linear correlation matrix. We consider a 64 dimension space (image is cutting up into 8 × 8
blocks). Figure 3.2 represents this matrix.

The height represents the absolute value of linear coefficient (timed by 100) between two com-
ponents of the random variable (thereby, between two pixels of a block). We notice a periodic
variation shaped as waves. Those waves can be explained by the fact that two nearby pixels tend
to have the same level of intensity. The more distant pixels are to each other, the less their in-
tensity are similar. Pick are the consequence of a line by line pixel traversal process during the
block’s construction.

63 Application to image compression

-20
 0
 20
 40
 60
 80
 100

"lena.dat" matrix

 0

 10

 20

 30

 40

 50

 60 10
 20

 30
 40

 50
 60

 70

-20
 0

 20
 40
 60
 80

 100

Figure 3.2: linear correlation matrix between pixels

3.2.2 Principle components analysis

In this section, we consider an image cut up into 4× 4 blocks. From then on, each observation is
an element of R16.

In the last paragraph, we observed that pixels have a strong linear correlation, that is to say,
we could foresee the intensity of a pixel by considering the intensity of other pixels within a block.

The objective of a principle components analysis is to obtain an approximative representation
of the n blocks cloud into a sub-space of smaller dimension. More precise information on this
method can be found in (23). The goal is to found a new basis such that it axes explain better the
cloud of blocks. These axes are the eigen vectors of X’s variance-covariance matrix. The quantity
defined as:

Zi =
λi∑

j

λj
× 100

Where λi is the i-th eigenvalue, defined the percent of explained variance of the blocks cloud.
The array below gives values of Z for several eigen values:

3.2 Data analysis 64

Eigen value Z (%) cumulated Z (%)
1 3064.100 74.807 74.807
2 478.837 11.690 86.497
3 172.723 4.216 90.714
4 129.585 3.163 93.878
...

...
...

...
13 4.676 0.114 99.827
14 3.395 0.082 99.910
15 2.395 0.058 99.968
16 1.280 0.031 100.000

Only three components are needed to represent more than 90% of cloud’s inertia. The more we
consider a large number of axes, the more we represent the whole data.

3.2.3 Back to the compression issue

The main objective of a compression with data loss is to decrease the quantity of information; in
an image, it amounts to prune noise. In our framework, noise is located into blocks that don’t
have a homogeneous intensity (intensity pixels are very far from each other).

To understand well the interest of a PCA in pruning noise, let consider figure 3.1 where we
worked on 1× 2 blocks. The diagram below shows the two axes of the new base q1 and q2:

b

a

X

Y

q1
q2

Figure 3.3: blocks cloud’s projection upon the first eigen vector

Each point of coordinates (xi, yj) in the Cartesian basis can be written as :

x =< x|q1 > ×q1+ < x|q2 > ×q2

If we consider just one principal component q1, x will be orthogonally projected upon q1.
Therefore, blocks near q1, meaning blocks that are homogeneous, undergo minor changes (point
A). On the other hand, points that are far from q1 (noisy blocks) will turn to homogeneous blocks
(point B). For that reason, considering only a small number of principle axes will contribute to-
wards turn blocks into homogeneous ones and then, prune noise and reduce significantly the
quantity of information contained into the image.

65 Application to image compression

3.2.4 Size of blocks

Notice that the more size’s block is smaller, the more they become homogeneous (within variance
decreases). The array below presents several results of explained variance of the blocks cloud by
the first axis, regarding different sizes’ block. (the input image is a 64× 64 one).

size’s block Z (%)
64× 64 undefined
32× 32 17.376
16× 16 28.834
8× 8 51.481
4× 4 74.807
2× 2 89.920
1× 2 96.880
1× 1 100.000

In the data compression framework, the case where blocks are compounded with only one
pixel isn’t very useful because there is only one axis, which resume the whole information, and
it cannot be deleted (the ability of compression is null). Concerning the other cases, the more
the blocks are smaller and the more the first axis represents blocks cloud better. However, the
compression rate, which is proportional to the reduction of dimension data’ space, decrease with
size’s block: It is more interesting going from a 64 dimension space to single one than going
from a 2 dimension space to a single one. Indeed, if we consider only one principle axis for a
32× 32 cutting up image, it allows us to hardly compress image (R1024 ← R). Nevertheless, this
compression dramatically damages the image (only 17% of information is remained). Thereby,
it exists a compromise between size’s blocks and the desired compression rate. Unfortunately,
there are only empirical methods to estimate these parameters.

Notice that size’s blocks also influences on the ability of generalization. Generalization is pre-
sented in further section.

3.3 Multi Layer Perceptron for image compression 66

3.3 Multi Layer Perceptron for image compression

3.3.1 Network’s topology

Figure 3.4: Topology of the network used.

We use a two-layer network. The layers are organized as follows:

• each neuron of the input layer corresponds to a pixel of the input block (thus 64 neurons
for 8x8 blocks);

• the neurons of the hidden layer represent the components on which the input blocks will
be projected;

• the output layer is similar to the input layer, except than its neurons corresponds to the
decompression of the compressed block.

The weights towards the hidden layer correspond to the principal components (qi). In the
compressed image file, we will store only the projection of the blocks on the principal components
(xi.qi). On the header of the file, the qi vectors are stored to permit the decompression. Thus, the
number of qi specifies the compression ratio.

The weights towards the output layer perform the decompression, and the error is then evalu-
ated by comparing the resulting pixels with the input, using the usual quadratic error.

We use the standard activation rule Ai = xi.qi, with xi the input value vector and qi the weight
vector for the neuron i. Basically, the identity function is a good candidate for the output function
Φ and is used in the remaining part of this report.

67 Application to image compression

3.4 Experiments

In the following tests, we consider this typical use case of image compression:

• greyscale photo images;

• 8x8 blocks;

• compression ratio close to 8 (which approximately corresponds to 8 neurons on the hidden
layer).

We experimented several aspects of image compression with neural networks. First, we de-
scribe the results we got for the learning phase by studying the influence of the initialization,
the back-propagation algorithm, the number of neurons on the hidden layer and the size of the
blocks. Then the results obtained by applying the trained network on another image are dis-
cussed.

3.4.1 Learning

Initialization

To compare the different initialization algorithm, we use the resilient propagation algorithm.
Similar results were observed with other algorithms. Three initializations are discussed:

• random initialization: all the weights are initialized randomly between −0.3 and 0.3;

• initialization of some weight vectors of the first layer (two or three) with PCA;

• initialization of some weight vectors of the first layer (two or three) with PCA and initial-
ization of the same vectors on the second layer with Gauss-Newton.

Since the network will converge to the PCA of the image blocks, initializing it with a PCA give
the optimal weight values. It should be noticed that initializing the second layer weights also is
essential. If they are initialized randomly, the back-propagation algorithm will modify both the
weights of the second and the first layer during its gradient descent. Hence, the well initialized
values will be destroyed at the beginning of the process. This will even slow down the initial
convergence rate, since the values of the initialized weights will be important (probably higher
than [−0.3; 0.3]) and structured.

These statements are confirmed by Figure 3.5, which compares the convergence speed of the
three algorithm by analyzing the error in function of the number of iterations. The PCA+Gauss-
Newton initialization is by far the more efficient, requiring only a few iterations to reach the
optimal error.

Back-propagation algorithms comparison

The results observed for image compression are almost the same as in Section 2.4.10, as shown
in Figure 3.6. The resilient back-propagation remains the best one, this is why we chose it for the
experiments of this chapter.

3.4 Experiments 68

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70 80 90 100

Q
ua

dr
at

ic
 e

rr
or

Iterations

random
pca

pca + gauss newton

Figure 3.5: Comparison of initialization algorithms

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 0 100 200 300 400 500 600 700 800 900 1000

Q
ua

dr
at

ic
 e

rr
or

Iterations

backprop batch
quickprop

rprop
saprop

ssab
dbdprop

Figure 3.6: Comparison of learning algorithms

69 Application to image compression

Influence of the number of principal components

On the one hand, the more principal components (neurons of the hidden layer) we choose, the
more we get a good image quality. On the other hand, the less principal components we keep
the more we get a good compression power. The evolution of the ratio quality

numberofeigenvectors is not
linear. Indeed, the first eigen vectors express much more information than the last ones. Figure
3.7 illustrates this for a typical greyscale image. We notice that the quality grows exponentially
up to 8 eigen vectors, reaching a quality of 0.95 and then evolute slowly. This means the first
8 eigen vectors are highly representative of an image, thus adding more components has less
importance.

These observations give a first justification of the choice of 8 eigen vectors, leading to a com-
pression ratio close to 1 : 8. Other empirical justifications are given further in this chapter.

Figure 3.8 illustrates these results with several images compressed using an increasing number
of principal components.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70

Q
ua

lit
y

Number of principal components

Figure 3.7: Evolution of the quality in function of the number of principal components

Block size influence

In this chapter, we always considered 8x8 blocks. On the one hand, it may be interesting to
choose smaller blocks to increase the correlation between the pixels within a block. On the other
hand, too small blocks may not reproduce the global image properties by analyzing too reduced
portions of it. Figure 3.9 shows the quality of the compressed image at a fixed ratio of 1:8 in
function of the size of the blocks. The number of principal components to keep was computed
with the following equation:

ncomp ∗ (bsize +
imgsize

bsize
) =

imgsize

ratio

3.4 Experiments 70

Figure 3.8: Original image and compressed images with 4, 6, 8, 10 and 12 eigen vectors

with ncomp the number of components, imgsize the size of the image and bsize the size of
the block in pixels. This equation takes in consideration the fact that we need to store the eigen
vectors in the compressed image to perform the decompression.

The best compromise for a greyscale image appears to be 8x8 blocks. This size keeps a good
correlation between pixels while preserving the properties of the image.

3.4.2 Generalization on other images

The principle of PCA compression is to analyze the correlation between neighbors pixels. There
is no fundamental reason for two structurally similar images (eg: photographs) to have different
pixel correlations. Thus, we can hope to keep a good quality by compressing an image using
eigen vectors computed on another image. This section reports our experiments about this pro-
cess.

Image characteristics comparison

A first point to determine whether generalization could be good or not is to analyze the differ-
ences of pixel correlations between grey-scale photographs. Figure 3.10 shows the evolution of
the correlation in function of the distance between pixels for three images. The overall evolution
remains almost the same.

The similarities of pixel correlations between different images is confirmed by the eigen vec-
tors. Figure 3.11 confronts the eigen vectors of two images. The eigen vectors are almost similar
even if their order may vary.

71 Application to image compression

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 5 10 15 20 25 30

Q
ua

lit
y

Block size

Figure 3.9: Blocks’ size influence

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7

Li
ne

ar
 c

or
re

la
tio

n
(p

er
ce

nt
)

Pixel distance

Figure 3.10: Linear correlation in three greyscale photographs

3.4 Experiments 72

Figure 3.11: Eigen vectors for two greyscale photographs
Each vector is a block of 8x8 pixels. The vectors are sorted with the English reading order.

These observations give great hopes to get a good generalization power. Of course, these
observations were made under the assumption of homogeneous, regular images. Particular cases
such as sketches or noise are studied at the end of this section.

Quality

To evaluate the quality of the generalization, we compared the error of an image compressed
by direct learning (learning was performed on its own blocks) with an image compressed using
eigen vectors performed on another image. Figure 3.12 illustrates that the image computed by
generalization is barely worse than the directly learned compression. The error increases with
the number of eigen vectors selected, confirming the intuition that main components are more
similar than insignificant components.

Blocks’ size influence

We concluded that 8x8 blocks were the best compromise for direct image learning. It is not
necessarily so for image generalization. The question is to find the scale where two image appears
to be the closest. Small blocks are likely to have similar structure between images, but we face the
same problems as direct learning with too small blocks. On the other side, since the correlation
decreases with pixel distance, big blocks are particular to one image and does not represent a
generic structure.

This behavior is illustrated by Figure 3.13. 8x8 blocks is still the best choice.

3.4.3 Compression of other kind of images

Up to now, we studied only grey-scale photographs. One may wonder what the results would be
with really noisy images, sharp images (such as sketches) or regular images (computer generated
graphics). This chapter aims at giving some concrete results about these kinds of image.

73 Application to image compression

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

R
es

ul
tin

g
im

ag
e

er
ro

r

Number of principal components kept

Direct learning
By generalization

Figure 3.12: Generalization error depending on the number of principal components kept for two
greyscale images

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 5 10 15 20 25 30

R
es

ul
tin

g
im

ag
e

er
ro

r

Block size

Figure 3.13: Generalization error depending on the size of the blocks (with a fixed ratio of 1:8)

3.4 Experiments 74

Noisy images

Noise cannot be represented by a linear correlation. Thus, the noise cannot be conserved in the
compressed image. The more an image is noisy, the less the compressed image will be close to
the original image, as showed in Figure 3.14.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

Q
ua

lit
y

Degree of noise

Figure 3.14: Evolution of the fidelity of the compressed image in function of the degree of noise.

Sharp and regular images

Images with sharp shapes (such as sketches) are not homogeneous. Only really near pixels are
correlated, thus the compression rate will not be interesting.

On the opposite, regular images will have a great correlation even for distant pixels, allowing
the compression to use less eigen vectors to reach the same quality.

These statements are illustrated in Figure 3.15 and Figure 3.16.

75 Application to image compression

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7

Li
ne

ar
 c

or
re

la
tio

n
(p

er
ce

nt
)

Pixel distance

photograph
sketch

computer generated

Figure 3.15: Linear correlation for a photograph and a sketch

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

Q
ua

lit
y

Number of principal components

photograph
sketch

computer generated

Figure 3.16: Evolution of the quality of a photograph and a sketch in function of the number of
principal components

Chapter 4

Conclusion

In this report, improvements of the learning process have first been studied. Two families of
algorithms have been tested and compared. The first one regroups algorithms based on an adap-
tation of the learning rate. It includes Silva-Almeida back-propagation, super self-adaptive back-
propagation (SuperSAB) and delta-bar-delta back-propagation. The second family is composed
by algorithms that try to adapt the momentum term. Its main members are the resilient back-
propagation (RProp) and the quick back-propagation (QuickProp). For each algorithm, parame-
ters influence and general techniques to speed up the learning process have been presented.

From our experiments, conducted on a classification benchmark, best results were obtained
using the Rprop and the QuickProp.

We applied the multi-layer perceptron (MLP) to image compression, since we noticed a strong
linear correlation between adjacent pixels in images. To that aim, a two layers funnel-shaped
MLP has been built. Each input neuron is mapped to a pixel of a block extracted from the input
image and the network is trained using the input image as its output.

A standard random initialization of the network leads to interesting results but the time re-
quired to train the neural network may be reduced using a smart initialization algorithm. Actu-
ally, it has been proved that this network perform a principal component analysis (PCA).

Thus, initializing partially the network using the result of a classical PCA algorithm may im-
prove the required amount of time to compress an image. We tested three approaches: deflation
method, the QL method and the adaptive learning algorithm for PCA method. Fastest results
were obtained using the QL method but our experiments shown that the deflation can give more
accurate values for most of required data.

Using a PCA-type initialization combined with the Rprop algorithm leaded to a fast image
compression framework. Characteristics of grey-scale photographs appeared to be quite similar,
consequently the same network can be used to compress different images. The main limitation
of this framework is the use of blocks which remains visible on the decompressed image. To
perform a PCA, classical analytic methods appeared to be faster and more accurate than this
neural network approach.

Part II

Hopfield network

77

78

Our aim here is to recognize the digits from 0 to 9 using a Hopfield network. In a first part, we
will describe the principle of the Hopfield neural network, and we will present some variations
made on the learning methods to improve them. Then, in a second part, we will expose our
concrete work and analyze the experiments we have made on this network.

Chapter 5

Theory

5.1 Description of the Hopfield network

Presented in 1982, the Hopfield network model belongs to the category of recurrent networks.
This simple model is based on the principle of associative memories. In this report, we will study
the Hopfield network only as a discrete time recurrent associative neural network.

5.1.1 Auto-associative memories

An auto-associative memory is a kind of memory that reproduces its input pattern as an output,
i.e. a memory that associates patterns with themselves. In this dynamical system, the patterns
constitute a finite number of stable states with basin of attraction around them. These stable
states are called “attractors”. Wherever in the domain the system is initialized, it will converge
to a local attractor.
Consequently, the particularity of an associative memory is its ability to restore a piece of infor-
mation using a key that may be partial or disrupted by noise. An auto-associative memory will
try to categorize the pattern according to its closest prototype.

5.1.2 Architecture of Hopfield network

Analogy with physics

The Hopfield model is very close to the Ising model, which is a simplified model of the inter-
actions between atoms. In this model, each atom is described by the direction of its magnetic
momentum, which can be 1 or -1. Each atom will contribute to the magnetic field and influence
its neighbors in that way.
In such a system, there might be 2N different states, with N the number of neurons. But many of
these states will hardly happen. Indeed, an atom whose spin is in opposition with the ambiant
field is in a highly unstable state. Its spin will surely change to the opposite in order to reach a
more stable state.
The Hopfield model reproduces the behavior of such a system.

5.2 Learning methods 80

Structure of Hopfield network

The Hopfield network is a fully intra-connected network. In other words, if we only consider the
structure of the Hopfield network, then its graph is a clique. See 5.1 for an example.

1

2

3 4

5

Figure 5.1: An example of Hopfield network with 5 neurons.

The Hopfield model consists of N neurons and N × (N − 1) synapses. The network can store a
limited number of patterns (fundamental memories) represented as vectors of binary values (1 or
-1). The neurons of a Hopfield network are connected by real-valued weights. The connections
between two neurons are always symmetrical.
In the following section, we will present the different learning rules that are used to store the
patterns into the network.

5.2 Learning methods

The learning stage of the Hopfield network is quite simple to implement at first sight. Firstly, the
learning stage yields the need only for the fundamental memories, while other networks such
as the MLP need a large learning database. Secondly, the learning rules are rather simple, too.
The first learning rule proposed by Hopfield was the Hebb rule, but some other rules were then
proposed to best the results of the Hopfield network.
In this section, we will first present the Hebb rule. We will also present improved learning rules
such as the rule proposed by Storkey and Valabregue, and the pseudo-inverse rule.

For all these rules the network is represented by a N×N synaptic weight matrix W, where N is
the size of the fundamental memories from which we make this matrix. Mathematically, funda-
mental memories will be a collection of M vectors (fundamental memories) of size N: m1, ...,mM .

5.2.1 Hebb rule

This is the simpliest learning rule. The Hebb rule consists in strengthening the connecting units i
an j whenever there is either conjoint activity or conjoint inactivity of both units. Whenever one
unit is active but the other is inactive, the weight is weakened.

81 Theory

The rule for updating the weights come rather intuitively:

Wij =

∑

m∈M

sm
i · sm

j if i 6= j

0 else

where Wij is the element on ith line and on jth column, and sm
i is the ith element in the mth

fundamental memory. We can understand Wij as the synaptic weight from neuron i to neuron j.
As the connections between the neurons are symmetric, we also have ∀i, j ∈ N ×N,Wij = Wji.

This learning rule is incremental, it means that we can reuse previous matrix W if we want to
add a new fundamental memorie inside the list of fundamental memories which the Hopfield
network has to learn.

The figure 5.2 below shows an example of 3 by 3 fundamental memories and the corresponding
weight matrix.

A B

Figure 5.2: Example of fundamental memories in 3× 3.

Wi,j =

0 0 2 0 −2 0 2 0 2
0 0 0 −2 0 −2 0 0 0
2 0 0 0 −2 0 2 0 2
0 −2 0 0 0 2 0 −2 0
−2 0 −2 0 0 0 −2 0 0

0 −2 0 0 2 0 0 −2 0
2 0 2 0 −2 0 0 0 2
0 0 0 −2 0 −2 0 0 0
2 0 2 0 0 0 2 0 0

Learning capacity

Unfortunately, the Hebb rule has a low storage capacity. Using computer simulation, Hopfield
first suggested that the number of patterns that may be stored in the network with N neurons is
0.15N if we allow a small error in associating the patterns.

Then it was proved that the storage capacity almost without errors of a Hopfield network
is given by the formula: Mmax ' N

2ln(N) (see (13) for detailed demonstration). This capacity
severely decreases when the patterns are correlated.

An even more strict definition of storage capacity without errors requires that all fundamental
memories are recalled properly. (2) shows that under this definition, the maximum number of
patterns that can be learnt properly by a Hopfield network is in fact: Mmax ' N

4ln(N) .

5.2 Learning methods 82

Limitations

With the same patterns as presented in 5.2, the following figures simply illustrate that if lightly-
noised patterns will often converge to fundamental memories (figure 5.3), severely-noised pat-
terns may converge to undesired states that do not correspond to any of the fundamental mem-
ories that were learned (figure 5.4).

=⇒

Figure 5.3: Noised pattern A and the result of the convergence.

=⇒

Figure 5.4: The convergence may reach an unknown stable state (spurious state).

These undesired states are called spurious states. They may be increased mainly when the ratio
between M and N is not appropriate or when the correlation increases.

Trying to eliminate spurious states is a hard task. Hopfield first proposed the unlearning rule,
which is a simple solution that tries to improve this annoying aspect of the Hopfield network.

Unlearning

The unlearning method consists to bring some corrections to the matrix W in order to avoid to
have too strong (wrong) attractors. Indeed in Hopfield network we are confronted to the prob-
lem to have stable states of the Hopfield network that are (very) differents to any fundamental
memories; these states are called spurious states.

After initializing the matrix W using the Hebb rule, we have many spurious states. Our aim
is of course that the stable points of our Hopfield network are fundamentals memories and not
others. The unlearning method will consist to reduce inside the matrix W influence of spurious
states.

Let s be a spurious state, which is mathematically a vector of size N . From this vector we
compute an error correction matrix δW that we will substract to the matrix W as follows:

δWij = η × si · sj

where η � 1 is the unlearning rate. At last the corrected matrix is:

W = W − δW

We can apply this correction on the matrix W many times, but too much unlearning deforms
the states field and may lead to the destruction of the network, since even stable states corre-
sponding to fundamental memories are affected.

83 Theory

5.2.2 Storkey/Valabregue

(Storkey and Valabregue) proposed a new learning rule that should provide a better storage ca-
pacity even with correlated patterns.

We can compute the matrix W as following:

W 0
ij = 0,∀i, j

W v
ij = W v−1

ij + 1
nsv,isv,j − 1

nsv,ihv,ji − 1
nsv,jhv,ji

with:

hv,ij =
n∑

k=1,k 6=i,j

W v−1
ik sv,k

This method is obviously incremental.

5.2.3 Pseudo-Inverse

The Pseudo-Inverse rule is given by :

wij =
1
N

M∑
u=1

M∑
v=1

Fv,i(Q−1)uvFu,j

with Q = 1
N

∑n
k=1 Fv,kFu,k, and N stay the number of neurons.

This learning rule is also called the projection learning rule. We can compute the pseudo-
inverse thanks to the method of Greville. This method is not incremental.

5.3 The generalization stage

In the previous section, we presented various learning rules and the way they are used in the
learning stage to initialize the weight matrix representing the network.

Once the learning stage over, it is possible to start the generalization stage. The patterns that
are to be recognized are presented to the network through a vector representation. The network
then computes the output of the neural network and inputs it back again to the network. The
process is repeated iteratively until a step t where the input and the output are identical. This
process is therefore classified in the category of recurrent networks.

The rule for updating the states is the following:

if
∑
j∈N

Wij · st
j < 0 then st

i = −1

if
∑
j∈N

Wij · st
j > 0 then st

i = 1

if
∑
j∈N

Wij · st
j = 0 then st

i = st−1
i

5.4 Convergence 84

5.4 Convergence

In the previous section, we presented the generalization process. Now we should check that this
process does really converge to a stable state, and under which conditions.

Hopfield defined an energy function (Lyapunov energy) for the model. In the discrete version,
this energy can be expressed by:

E = −1
2

∑
i,j∈N

Wijsi · sj

Let’s demonstrate that this energy decreases with the evolution of the system. If we consider
the activation of neuron i, the state of this neuron will change in two cases:

st−1
i = 1 and

∑
j∈N

Wij · st−1
j < 0

or

st−1
i = −1 and

∑
j∈N

Wij · st−1
j > 0

Let’s suppose that st−1
i = −1. If the state of the neuron need not to be changed, the global

energy remains steady. Otherwise, if the state switches to 1, the difference between the energy of
the current state and the previous state is:

∆E = Et − Et−1

= −1
2

∑
i,j∈N

Wij · st
i · st

j +
1
2

∑
i,j∈N

Wij · st−1
i · st−1

j

= −1
2

∑
i∈N

(
∑

j∈N,j 6=i

Wij(st
i · st

j − st−1
i · st−1

j))

Neuron i is the only neuron that has changed between state t-1 and state t, so
∀j ∈ N, j 6= i, sjt = sjt− 1. The previous expression then becomes:

∆E = −1
2
(st

i − st−1
i)

∑
j∈N,j 6=i

Wij · st−1
j

As we previously assumed that st−1
i = −1, we have the following hypothesis:

st

i − st−1
i = 1− (−1) = 2 > 0∑

j∈N,j 6=i

Wij · st−1
j > 0

Consequently, we actually have ∆E < 0. The energy of the Hopfield can only decrease when
the state of the neuron changes with an iteration of the algorithm. This is the assurance that the
network will effectively converge to stable points.

Chapter 6

Hopfield experimental results

Several aspects of the Hopfield network may flow on its recognition and generalization capaci-
ties. In order to study these behaviors, we developed an application featuring:

• Different learning algorithms

• Learning and testing databases selections

• Pattern deterioration through noise

• Evaluation methods

• Statistical measures

Figure 6.1: Screenshot of the Hopfield network application during an evaluation. The left panel
shows the network input; the right one shows the current state of the network.

The Hopfield network was initially introduced with the Hebb learning rule (see 5.2). A first
section is dedicated to this rule. We study the influence of the size of the input data and the
correlation between the fundamental memories that are learned. These parameters flow on the

6.1 Network performance using Hebb learning rule 86

learning and generalization capacities. In certain conditions, spurious states invade the state-
space, dramatically decreasing the capacities of the network.

The Hebb learning rule is not the only existing one. Other learning techniques have been
studied in the last twenty years. Another section compares four learning techniques:

• Hebb learning

• Hebb learning with spurious states unlearning

• Storkey/Valabregue learning rule

• Pseudo-inverse learning rule

6.1 Network performance using Hebb learning rule

In this section we describe several experiments that we did with the Hopfield network. We first
describe the experimental framework on which are based our results. The problem of spurious
states — which appears very quickly — is then discussed. Spurious states seriously limit the
learning capacity of the network. These limitations depend on the neuron count and the correla-
tion between the memories. The influence of these parameters is studied in the two next parts of
section. Finally we conclude about the learning capacity of an Hopfield network using the Hebb
learning rule.

6.1.1 Experimental framework

Our objective is to study the learning capacity of the network. Therefore all experiments are done
in the following way:

1. Learn the fundamental memories using Hebb rule.

2. For each memory,

(a) Launch the evaluation.

(b) Compute the hamming distance between the input and the result of the network.

(c) If this distance equals zero, the memory has been successfully learned.

The learning capacity of the network is the maximum count of different memories that can be
remembered without errors. This section is focused on the Hebb learning rule. Others rules are
compared in the following section.

Figure 6.2: 8x8 learning database

Our first learning database corresponds to the ’ideal’ models of the ten digits. Each pattern is
a binary input image of 8x8 pixels. A memory can be seen as an element of {−1, 1}64. Firstly we
learn only the five first digits (0 − 4). These five fundamental memories have been learned and
tested following our experimental framework.

87 Hopfield experimental results

Figure 6.3: Results of the evaluation of digits 0, 1, 2, 3, and 4

0 → 3
1 → 1
2 → 3
3 → 3
4 → 4

Figure 6.4: Bad recognition of the five first digits

Figure 6.3 shows the convergence results and figure 6.4 summaries the digits recognition. With
five digits only one is correctly recalled (’1’); two are nearly recalled (’3’ and ’4’); and the two last
are attracted by the fundamental memory ’3’. If we apply the same test to the ten digits, they all
converge to the single fundamental memory ’8’.

These results are a bit disappointing. This could be explained by the lack of neurons, we thus
tried with bigger fundamental memories.

6.1.2 Neuron count

In an Hopfield network, each neuron correspond to a bit of the fundamental memories. In the
previous case we add fundamental memories in {−1, 1}64 thus the number of neurons was 64.

The network has secondly been tested with fundamental memories in {−1, 1}784. This second
database contains the ten digits, where each digit has a size of 28x28 pixels. These digits are
learned and tested the same way as previously: they all systematically converge to the unknown
pattern given in figure 6.5.

Figure 6.5: Attractor of the ten 28x28 digits

Better results could first be expected due to the neuron count increase. According to ?? the
maximal number of fundamental memories that can be learned without error is:

Mmax = N/2loge(N), where N is the network size, i.e. the number of neurons.

6.1 Network performance using Hebb learning rule 88

So — theoretically — if N = 64, near to 20 fundamental memories can be learned. With N =
784 this learning capacity is approximatively 132. In the two cases, it is more than we need with
our 10 digits!

Which reason could explain such a difference between the theoretical results and the exper-
imental ones? A particularity of our ten digits is that they are strongly inter-correlated. For
example, a ’8’ is very close to a ’3’ or a ’0’. This strong correlation could be implied in our bad
results. Section ?? shows some experiments with totally uncorrelated fundamental memories.

Before studying the influence of correlation between fundamental memories on the learning
capacity, let us wonder about the attractor given in figure 6.5. This state is an attractor but does
not correspond to a fundamental memory. Such states are called spurious states.

6.1.3 Spurious states

Fundamental memories are not the only attractors in the state-space of an Hopfield network
(FIXME: ref). In the previous case, all digits converged to a common spurious state. This can be
intuitively explained: the mean of the ten digits is very close to this states, see figure 6.6.

Figure 6.6: Average of the ten 28x28 digits

This spurious state is a strong attractor which catch all evaluations. A first import characteristic
of learning rules is the quantity and the attractiveness of spurious states that are generated. In
our case, the Hebb rule give very bad results: each fundamental memory is masked by a spurious
state.

Some spurious states can be collected with the following algorithm:

1. Choose a random initial state.

2. Let the network converge to an attractor.

3. If this attractor is not a fundamental memory then it is a spurious state.

When running this multiple times with the Hebb rule, we obtain two distinct spurious states:
figure 6.6 and its opposite (white becomes black, and black becomes white). These spurious
states are very attractiveness: they split the state-space in two. The network just decide if an
input pattern is closer to the first spurious state or closer to its opposite.

More spurious states can be obtained with other fundamental memories or other learning
methods. See Figure ??, which represents some spurious states obtained with the Pseudo-inverse
rule (see FIXME) applied to the 8x8 database.

89 Hopfield experimental results

Figure 6.7: Some spurious states with 8x8 digits

FIXME: lien avec la partie theorique.

Let us come back to our ten 28x28 digits. They all converge to the same spurious state. This
state corresponds to the average of these fundamental memories. The huge correlation between
these digits could be an explanation of this result.

6.1.4 Correlation between fundamental memories

The learning capacity seems to be very reduced when memories are highly correlated. In order
to verify this assumption, we built another database presented in figure 6.8. These fundamental
memories are members of {−1, 1}100 (10x10 pixels).

A B C D E

Figure 6.8: Uncorrelated fundamental memories

The Hamming distance between each pair of memories is given in figure 6.9. These distances
are more or less always the same. Notice that for vectors of size 100, 50 is an important distance.

These fundamental memories are tested following our experimental framework: they are all
perfectly learned. This experience corroborates the idea that our troubles come from the correla-
tion between fundamental memories.

Now that the Hopfield network remembers all its fundamental memories, it is possible to
experiment its generalization capacities. A Hopfield network is an associative memory: it should

6.2 Learning rules 90

- B C D E
A 50 48 48 50
B - 50 50 40
C - - 48 50
D - - - 54

Figure 6.9: Hamming distances between fundamental memories

A B C D E

⇓ ⇓ ⇓ ⇓ ⇓

Figure 6.10: Five successful evaluations with uncorrelated patterns

be able to converge to a fundamental memory with partial information as input. Figure 6.10
shows five successful evaluations of the network.

Even with a big quantity of noise, fundamental memories are correctly recalled. This illustrates
the second important property of learning rules: a good learning rule must remember its funda-
mental memories, even if they are strongly correlated. Obviously this is not the case of the Hebb
rule.

A learning technique can thus be characterized with two aspects:

• Learning capacity vs fundamental memories correlation.

• Amount and attractiveness of spurious states.

6.2 Learning rules

Initially the Hopfield network was introduced with the Hebb learning rule. Since its appari-
tion, some other rules and techniques have been studied. In this section we compare four learn-
ing techniques following the characteristics developed previously. These characteristics concern
spurious states and correlation between fundamental memories.

A first part describes our experimental framework. This is followed by the study of the Hebb
rule (with and without unlearning), the Storkey/Valabreque rule and finally the Pseudo-inverse
rule. A last part summaries these results and gives a conclusion about these learning techniques.

91 Hopfield experimental results

6.2.1 Experimental framework

Two aspects of learning techniques can be studied. Our first interest is the influence of corre-
lation on the learning capacity. The learning capacity corresponds to the maximum number of
fundamental memories that can be learned and perfectly recalled. The correlation is computed
with the following formula:

C =

∑N−1
i=1

∑N
j=i+1 ‖

∑M
k=1 mk

i ∗mk
j ‖

M∗(N−1)∗(N−2)
2

(6.1)

where N is the size of the network, M is the count of fundamental memories and mk is the
k-th fundamental memory. This value is always in [0, 1]. Figure 6.11 shows the correlation of our
databases, computed with formula 6.1.

28x28 database → 0.63
8x8 database → 0.43

uncorrelated database → 0.17

Figure 6.11: Total correlation of the 8x8, the 28x28 and the uncorrelated databases

A (correlation, learning capacity) point can be obtained with the following algorithm:

1. Choose a random set of fundamental memories. Their count must be bigger than the max-
imal possible learning capacity.

2. Choose a desired correlation in [0, 1].

3. While correlation is different from desired correlation do:

(a) Choose a random fundamental memory.

(b) Make a random change into this memory.

(c) If the new correlation is closer to the desired one keep this change, else return in the
previous state.

4. Now that we have a set of fundamental memories with the given correlation, search the
maximal learning capacity. Let N be 1 and do:

(a) Try to learn N memories.

(b) If the N memories are successfully recalled continue with (N + 1) else the maximum
learning capacity has been reached.

5. The correlation is the desired correlation in [0, 1]; the learning capacity is (N - 1).

When applying this many times, we obtain a cloud of points that illustrates the influence of
correlation on learning capacity. For each learning rule this algorithm is applied with a network
of 14x14 = 196 neurons.

The second interesting aspect of learning rules is related to spurious states. Our experiments
about spurious states were very primitive but gives some simple results. For each learning rule
we just estimated the percent of spurious states into the set of attractors of the state-space. The
following algorithm has been applied:

1. For i = 0 to 1000 do

6.2 Learning rules 92

(a) Choose a random initial state.

(b) Let the network converge.

(c) If the result is a spurious state, increment spurious state count.

2. The percent of spurious states is given by spurious states count / 1000.

For each rule, this was applied with the 8x8 database, the 28x28 database and the uncorrelated
database.

Let us now see the results of these experiments.

6.2.2 Hebb with or without unlearning

The simplest and most known learning rule for Hopfield network is the Hebb rule. As seen in
the previous section, this rule is highly dependant of the correlation between the fundamental
memories.

A simple variant of the Hebb rule consists in unlearning spurious states. Each time the network
is attracted to a spurious states, this state is unlearned a bit (it is the opposite of learning).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Le
ar

ni
ng

 c
ap

ac
ity

Total correlation between fundamental memories

Hebb rule
Hebb rule with unlearning

Figure 6.12: Learning capacity of the Hebb rule with or without unlearning with 196 neurons

Figure 6.12 shows the learning capacity of the Hebb rule and the Hebb with unlearning tech-
nique (see: FIXME). Theses curves corresponds to the results given in previous section: with
totally uncorrelated patterns, the learning capacity is near to 18. This value corresponds to the
theoretical maximal learning capacity without errors:

93 Hopfield experimental results

Mmax = N/2loge(N) = 196/2loge(196) ≈ 18, 5.

When correlation grows, this capacity decreases quickly: only two patterns can be learned with
a correlation of 0.5.

Unlearning slightly helps: with a correlation bigger than 0.1, unlearning allows to learn — in
average — 4 memories more. Even with that the learning capacity is most of time less than 8
which is even not enough for our ten digits. Definitively, the Hebb rule does not permit a good
use of the Hopfield network in real conditions, i.e. with correlated patterns.

Concerning spurious states, two cases appear:

• The patterns have not been learned, each fundamental memory is attracted to a spurious
state: 100% of the attractors are spurious states.

• The patterns have been learned (uncorrelated database), we observe 69% of spurious states.

Unlearning often slightly deteriorates the state-space: we can observe a average of 10% more
spurious states when the patterns are successfully learned.

6.2.3 Storkey/Valabregue learning rule

The third learning technique we tried is the Storkey/Valabregue rule. The learning capacity of
this technique is given in figure 6.14.

28x28 database (10 digits) → 1 perfectly recalled, 1 nearly recalled
8x8 database (10 digits) → 8 perfectly recalled

uncorrelated database (5 patterns) → 5 perfectly recalled

Figure 6.13: Learning results of Storkey/Valabregue rule with 196 neurons

As in the Hebb rule, the correlation plays a major role. But the results are much better: the
maximum observed learning capacity is 85, which is near to five times more than for the Hebb
rule. With a realistic correlation (0.5), about 5 patterns can be learned. We thus have a much
bigger maximum learning capacity, but it remains poor for a real use. Figure 6.13 gives the
learning results on our databases with the Storkey/Valabregue rule.

This learning method also generates a lot of spurious states. Following the databases, the
percent of attractors that are spurious states evolves between 66% and 74%.

6.2.4 Pseudo-inverse learning rule

The last learning method that we tried is the Pseudo-inverse learning rule. When applying the
experimental framework to determine the influence of correlation on the learning capacity, a new
phenomenon appears. With a huge quantity of memories the weights matrix obtained with this
rule converge to the zero matrix. With such a matrix, the network act as a identity function: any
memory is output without any changes. In the state-space, each state is a minimum local. When
applying the experimental framework without changes, the result is the following: the learning
capacity is a constant, which equals 2N where N is the size of the network. With an identity
function, any point of {−1, 1}N is successfully returned!

6.2 Learning rules 94

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Le
ar

ni
ng

 c
ap

ac
ity

Total correlation between fundamental memories

Storkey/Valabregue rule

Figure 6.14: Learning capacity of the Storkey/Valabregue rule with 196 neurons

95 Hopfield experimental results

Thus we had to add a new condition: any learned state must be exactly recalled, and any
non-learned and non-spurious state must be attracted by a state different from itself.

The last part of the experimental framework has been modified the following way:

1. Try to learn N memories.

2. Evaluate the N memories.

3. Evaluate M states that are not learned.

4. If the N memories are successfully recalled and none of the M states converge to their self,
continue with (N + 1) else the maximum learning capacity has been reached.

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Le
ar

ni
ng

 c
ap

ac
ity

Total correlation between fundamental memories

Pseudo-inverse rule

Figure 6.15: Learning capacity of the Pseudo-inverse rule with 196 neurons

The results, given in figure 6.15, are a bit surprising. Indeed the learning capacity seems to be
independent of the correlation. This capacity is systematically limited by a phenomena of over-
learning: when learning more than 140 patterns, all states of state-space progressively becomes
spurious states. This rule clearly remains the one which gives the best results. Obviously, all our
databases are perfectly learned thanks to this amazing learning capacity.

The main drawback of the Pseudo-inverse learning rule is the quantity of spurious states that
are generated. The percent of attractors that are spurious states evolves in the range [66%-95%].
More the patterns are correlated, more this learning rule generates spurious states.

6.2 Learning rules 96

6.2.5 Summary

The learning capacities of the learning rules that we tested are compared in figure 6.16.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Le
ar

ni
ng

 c
ap

ac
ity

Total correlation between fundamental memories

Hebb rule
Hebb rule with unlearning

Storkey/Valabregue rule
Pseudo-inverse rule

Figure 6.16: Summary of learning capacities with 196 neurons

The main advantage of the Hebb rule is its simplicity. Weights are directly set to correlation
between pairs of pixels, and theoretically it works. Its main drawback is the bad support of
correlated patterns. When recognizing digits, the fundamental memories are very correlated:
Few pixels differs between a ’0’, a ’8’ or a ’3’. In such conditions the Hebb rule do not work
successfully.

Pseudo-inverse works very well even with highly correlated patterns. The learning capacity of
this rule is much better than the one of the Hebb rule. Unfortunately this rule is neither local nei-
ther incremental: computing weights with this learning rule requires to have all the fundamental
memories at a given time. Moreover this calculations cannot be distributed since the require the
inversion of a matrix.

Intermediates rules have been introduced such as the Storkey/Valabregue one. This rule is an
approximation of the pseudo-inverse, so that its calculation is local and incremental. A simple
relationship between this different training rules can be established. When using the iterative
definition of the inverse of a matrix (see 1.2), our rules can be obtained from the Pseudo-inverse
one:

• Hebb: zero-order expansion of the inverse.

• Storkey/Valabregue: equivalent to the first-order expansion of the inverse.

• Pseudo-inverse: infinite expansion.

Bibliography

[1] A.Jacobs, R. (1988). Increased rates of convergence through learning rate adaption. Neural
Networks, 1:295–307.

[2] Amit, D. (1989). Modeling brain function: the world of attractor neural networks. Cambridge
University Press.

[3] Anguita, D., Parodi, G., and Zunino, R. (1993). Speed improvement of the back-propagation
on current generation workstations. In World Congress on Neural Networking, volume 1, pages
165–168. Lawrence Erlbaum.

[4] Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

[5] Blake, C. and Merz, C. (1998). UCI repository of machine learning databases.

[6] Breton, S. (1999). Une approche neuronale du contrôle robotique utilisant la vision binoculaire par
reconstruction tridimensionelle. PhD thesis, Université de Haute Alsace.

[7] Chen, L.-H. and Chang, S. (1995). An adaptive learning algorithm for principal component
analysis. IEEE transactions on neural networks, 6(5):1255–1263.

[8] Dreyfus, G., Martinez, J.-M., Samuelides, M., Gordon, M. B., Badran, F., Thiria, S., and
Hérault, L. (2002). Réseaux de neurones, Méthodologie et applications. Eyrolles.

[9] Fahlman, S. (1988). Faster-learning variations on back-propagation: An empirical study. In
Connectionist Models Summer School, pages 38–51.

[10] Fahlman, S. E. and Lebiere, C. (1990). The cascade-correlation learning architecture. In
Touretzky, D. S., editor, Advances in Neural Information Processing Systems, volume 2, pages
524–532, Denver 1989. Morgan Kaufmann, San Mateo.

[11] Finnoff, W., Hergert, F., and Zimmermann, H. G. (1993). Improving model selection by
nonconvergent methods. Neural Networks, 6(6):771–783.

[12] Fiori, S. and Piazza, F. (1999). A comparison of three pca neural techniques. In European
Symposium on Artificial Neural Networks, pages 275–280.

[13] Haykin, S. (1999). Neural Networks, a comprehensive foundation. Prentice Hall International
Editions.

[14] Igel, C. and Hüsken, M. (2000). Improving the Rprop learning algorithm.

[15] Izui, Y. and Pentland, A. (1990). Speeding up back-propagation. IJCNN-90-WASH-DC, 1:639–
642.

[16] MacKay, D. J. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge Uni-
versity Press.

BIBLIOGRAPHY 98

[17] Oja, E. (1989). Neural networks, principal components, and subspaces. International Journal
Neural Systems, 1:61–18.

[18] Prechelt, L. (1994). Proben1: A set of neural network benchmark problems and benchmark-
ing rules. Technical Report 21/94.

[19] Prechelt, L. (1997). Connection pruning with static and adaptive pruning schedules.

[20] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1985). Numerical Recipes
in C —The Art of Scientific Computing —Second edition. Cambridge University Press.

[21] Riedmiller, M. and Braun, H. (1992). Rprop- a fast adaptive learning algorithm.

[22] Sanger, T. D. (1989). Optimal unsupervised learning in a single layer linear feedforward
neural network. Neural Networks, 2:459–473.

[23] Saporta, G. (1990). Probabilités, Analyse des données et statistique.

[24] Schiffmann, W., Joost, M., and Werner, R. (1992). Optimization of the backpropagation algo-
rithm for training multilayer perceptrons. Technical report, Koblenz, Germany.

[25] Silva, F. and Almeida, L. (1990). Speeding up backpropagation. In Advanced Neural Comput-
ers, North Holland, pages 151–158. R. Eckmiller (Ed.).

[Storkey and Valabregue] Storkey, A. and Valabregue, R. A hopfield learning rule with high
capacity storage of time-correlated patterns.

[26] Tollenaere, T. (1990). SuperSAB: fast adaptive back-propagation with good scaling proper-
ties. Neural Networks, 3:561–573.

[27] Utans, J. and Moody, J. (1991). Selecting neural network architectures via the prediction risk:
application to corporate bond rating prediction. In Proc. of the First Int. Conf on AI Applications
on Wall Street, Los Alamos,CA. IEEE Computer Society.

	I Multi-layer Perceptron
	1 Useful numerical algorithms
	1.1 Principal Components Analysis (PCA)
	1.1.1 Power and deflation methods
	1.1.2 Neuron-based algorithms
	1.1.3 QL/QR algorithm
	1.1.4 Comparisons of the PCA methods

	1.2 Gauss-Newton method

	2 MLP Learning Process
	2.1 Standard back-propagation algorithms
	2.1.1 Stochastic back-propagation algorithm
	2.1.2 Batch back-propagation algorithm

	2.2 Speeding up the learning process
	2.2.1 Different activation functions
	2.2.2 Different error functions
	2.2.3 Derivate fudge

	2.3 Improving the results of the learning process
	2.3.1 Over-fitting phenomenon and bad generalization
	2.3.2 Network size
	2.3.3 Error threshold
	2.3.4 Regularization and weight decay
	2.3.5 Weight Pruning and Cross-Validation

	2.4 Learning algorithms
	2.4.1 Existing studies
	2.4.2 Benchmarking rules
	2.4.3 Silva-Almeida algorithm
	2.4.4 Super Self-Adaptive back-propagation algorithm (SuperSAB)
	2.4.5 Delta-Bar-Delta algorithm
	2.4.6 Resilient back-propagation algorithm
	2.4.7 Quick back-propagation algorithm
	2.4.8 Cascade correlation algorithm
	2.4.9 Other existing algorithms
	2.4.10 Comparison and discussion

	3 Application to image compression
	3.1 Framework
	3.2 Data analysis
	3.2.1 Linear correlation
	3.2.2 Principle components analysis
	3.2.3 Back to the compression issue
	3.2.4 Size of blocks

	3.3 Multi Layer Perceptron for image compression
	3.3.1 Network's topology

	3.4 Experiments
	3.4.1 Learning
	3.4.2 Generalization on other images
	3.4.3 Compression of other kind of images

	4 Conclusion

	II Hopfield network
	5 Theory
	5.1 Description of the Hopfield network
	5.1.1 Auto-associative memories
	5.1.2 Architecture of Hopfield network

	5.2 Learning methods
	5.2.1 Hebb rule
	5.2.2 Storkey/Valabregue
	5.2.3 Pseudo-Inverse

	5.3 The generalization stage
	5.4 Convergence

	6 Hopfield experimental results
	6.1 Network performance using Hebb learning rule
	6.1.1 Experimental framework
	6.1.2 Neuron count
	6.1.3 Spurious states
	6.1.4 Correlation between fundamental memories

	6.2 Learning rules
	6.2.1 Experimental framework
	6.2.2 Hebb with or without unlearning
	6.2.3 Storkey/Valabregue learning rule
	6.2.4 Pseudo-inverse learning rule
	6.2.5 Summary

