
Portal© for Windows MIP v9.0
(Messaging Interface Protocol)

Use of this document in any way deems acceptance of the Terms of Use

License. This policy can be located at the bottom of this document. If you
do not agree to the conditions outlined in the Terms of Use License, you

may not use this document, nor the intellectual property contained therein.

The term MIP (Messaging Interface Protocol) is used to describe the means of communicating
with Portal© through the sending of text strings. That said, let’s get right into the coding specifics.

The 3klient Command
The security code (SEC_CODE) is a 5-digit number that is generated randomly by Portal©. This
code is somewhat like a PIN number. It prevents bogus messages (those that don’t match the
code currently held locally by the Portal© user) from being recognized by Portal©. The security
code must be sent with any data coming to Portal©. It can be anywhere between 1 and 5 digits
in length (between 1 and 99999). The security code will be sent to your mud from Portal©
through a command, namely ‘3klient #~<version>’ (~ separates the code from the version info)
such as ‘3klient 10401~Portal3.500’, so you need to accept the number and store it as a static
variable on the player. The text following the tilde is simply version info. You can either parse it
as you desire (for a client-who list for example) or simply ignore it. You create the 3klient
command with an add_action() function or however you normally create commands for
characters on your MUD. This provides the basis for the Portal© "jumpstart" feature, which sends
the 3klient command. The "3klient" command is in all lowercase letters.

Remember, the SEC_CODE number you send to Portal@ in any code must be 5 characters in
length. That means that if the number a player has attached with is 675, the SEC_CODE you
would always send that player is 00675. With the jumpstart the player sends though, the
numbers are not prefixed. This means that a jumpstart sent by the player in the example just
stated would look like ‘3klient 675~Portal3.500’ The reason for the difference is that it makes it
easier for MUDs to grab the SEC_CODE (via a sscanf function for example).

Notes: 3Klient? What the hell is that? Well, at one point in time, this MUD client was called

3Klient. That name was purged and replaced by the current name – Portal©. Since the
trigger command needs to be something universally unique, we decided to leave 3klient
as the trigger, both because of its uniqueness, but also as a reminder of its heritage.

The Welcome Trigger
Now, the player can do the jumpstart manually, or your MUD can trigger it for them. We have
created a resident trigger in Portal© that respond to the word "Welcome" appearing on the
screen. When Portal© connects to your MUD, near the end of their normal login spam, put the
phrase "Welcome" into a greeting line. Something like "Welcome to SuperMUD!" would work.
Once Portal© sees the "Welcome" in a line, it will send the jumpstart "3klient" command
automatically. It will also de-activate the trigger until the next, fresh login (to prevent the jumpstart
being sent each time the word "Welcome" comes across the screen). Once this is done, the
3klient command, which you setup as described above, will attach your user to your mud
accordingly.
Notes: v1.4 does not have the Welcome trigger. They must manually jumpstart.
 v2.0 has the trigger, but requires something on either side of the “Welcome” Any

character will do such as: “Hello! Welcome to BlahMUD!”
 v3.0 actually triggers on text defined by the user in the MUD List screen The default event

text is “elcome” but again, is configurable by the user. The default will change if that MUD
desires it (and contacts us).

How does the extra information get sent without the player seeing it?
To send information to Portal© there’s only a few special strings and characters that you need to
know, we’ll refer to these as literals. The most important literal is what as known as the
ACTIVATE literal. This must precede all information sent to Portal©. Its value is #K%. Following
the ACTIVATE literal will be the Security Code (SEC_CODE), the Character Count
(CHAR_COUNT), the line code Literal and the Data you wish to send. This will be discussed in
more detail below.

ACTIVATE+SEC_CODE+CHAR_COUNT+Literal+Data
or

#K%+Security Code+Character Count+Literal+Data

To recap, when sending information to Portal©, send the ACTIVATE literal first (#K%). Note, do
not precede or follow the literal with a line feed.

The next piece of information you will send when communicating with Portal© is the SEC_CODE.
This is the 5-digit code that hooks up the server (MUD) with the client (the Portal© running on the
user's machine). The 3klient command is used to synchronize these values as described above.
Also, as described above, it must be 5 digits, so a smaller number would be prefixed with 0s,
such as 01459 or 00002.

The third piece of information you will send is the CHAR_COUNT. This value will be the total
number of characters following it that Portal© needs to intercept and use. It must be 3 digits, so a
smaller number would be prefixed with 0s, such as 031 or 009.

The next thing on the line is the line code literal. This tells Portal© what data is to follow. A list of
the valid line code literals is in the Appendix A. All line code literals are 3 characters, such as
FFF or AAB.

After the line code literal is the data you wish to send. This, of course, is based on which line
code literal you choose. If you use the hit point line literal you will be sending hit point and other
related information after it. If it is a mud chat, or an image, appropriate information should be sent
as well. Individual fields within the data stream must be separated with the CL_DELIM literal. Its
value is ~ (a single tilde), and should be used to separate all types of information for line code
literals that accept multiple values (such as FFF).

Here are some examples of what gets set to Portal©:

#K%00005008AAC12:46
#K%00005008AAF00:50

These two examples break down as follows:
#K% The ACTIVATE literal
00005 My security code
008 The number of characters to follow
AAC This is the line code literal for displaying when the mud will next reboot
AAF This is the line code literal for displaying how long the mud has been up
12:46 This is the data. In this example the mud will reboot in 12 hours and 46 minutes.
00:50 Data as well, indicating that the mud has been up for 50 minutes.

Most line code literals will send a single data value similar to the two examples above. However,
there are some that expect two or more values on the line. For example, the chat line literal
expects 4 values. These 4 values are the line command, line name, sender’s name, and line text,
delimited by the CL_DELIM (~). So, if a player’s guild were Mages, an example of the data for a
chat would be:

magechat~Mage Line~Rastafan~[Mages] Rastafan: Hi guys!

So the line would be sent as:

#K%00005057CAAmagechat~Mage Line~Rastafan~[Mages] Rastafan: Hi guys!

Where #K% is the ACTIVATE literal, 00005 is my security code, 057 is the character count to
follow, CAA is the chat line code and the data is described above.

Portal©, of course, will display that data in the Chat Monitor when it receives it.

The largest of the multiple-data literals is what is called the COMPOSITE literal. This is the one
that handles the hit point, spell point, guild points, and related information. This is the only line
code literal that can accept a variable number of different data points. Basically just fill it up with
however many you want. The data points are identified by the HP_DATA_CODE literal that is
part of the data stream. All HP_DATA_CODE literals are a single character. A list of the
HP_DATA_CODE literals is in Appendix A.

An example of building the line code literal of a COMPOSITE is built as follows:
? The ACTIVATE literal
? The SEC_CODE variable
? The CHAR_COUNT of the data
? The COMPOSITE literal (FFF)
? The HP_DATA_CODE literal for the first data point
? The first data point
? The CL_DELIM literal
? The HP_DATA_CODE literal for the second data point
? The second data point
? And so on…(if you wanted to add a 3rd composite or further)

The final, formatted COMPOSITE comes out looking like this:

#K%00005014FFFA322~B472

#K% The ACTIVATE literal
00005 Again, my security code
014 The number of characters to follow
FFF The line code literal for COMPOSITE
A The CL_SEND_HP literal indicating current hit points
B The CL_SEND_MAXHP literal indicating maximum hit points

In this case there are only two data points, and thus two CL_SEND_HP literals A and B. You can
send any number of different CL_SEND_MAXHP literals in the COMPOSITE.

The first data point is 322 and the second is 472. A is the CL_SEND_HP for current hit points
and B is the CL_SEND_MAXHP literal for max hit points. So this example tells the client that the
player is currently at 322 hit points out of 472. This is explained better in Appendix A.

Appendix A: Line Code Literals
Note: For all the below examples, we use 00005 as the SEC_CODE

#define CL_SEND_SOUND AAA
This is a single data point literal.
This literal is used to send the filename of a sound that you wish Portal© to play. All sounds are
.WAV files and are stored in the media/sounds/ directory beneath the dir where the Portal©
executable resides.
Range for this literal is restricted by Windows’ file naming conventions. As a general rule, you
should not use anything but alphanumeric characters (a, b, c, 1, 2, 3) and the underscore (_).
The filename is not case-sensitive. The length of the total filename cannot be longer than 255
characters.
Note: This function is only enabled if the user has not disabled system sounds.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_SOUND+filename
Example: filename = lock
Formatted Example: #K%00005007AAAlock

#define CL_SEND_IMAGE AAB
This is a dual data point literal.
This literal is virtually identical to the CL_SEND_SOUND literal except that it is used to send the
filename of the image to be displayed in the Portal© Imagery. All images must be either bitmaps
or gifs (.BMP and .GIF extensions respectively). You do not need to include the file extension
unless you wish to specify. Portal© will look for a bitmap and then a gif, in that order. All images
are stored in the media/images/ directory. The imagelabel (which will appear below the image in
the Imagery) is optional, but the CL_DELIM is not. If you don't want a label, simply end the string
with CL_DELIM.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_IMAGE+filename+CL_DELIM+

 imagelabel
Example: filename = grey_elf
Example: imagelabel = Gray Elf
Formatted Example: #K%00005020AABgrey_elf~Gray Elf

#define CL_SEND_REBOOT AAC
This is a single data point literal.
This literal is used to send the amount of time (timestring), in hours and minutes, that are left
until the mud has a scheduled reboot. The format should be HH:MM.
Note: If the Caption (CAP) literal is used, the Reboot literal is not used.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_REBOOT+timestring
Example: timestring = 12:45
Formatted Example: #K%00005008AAC12:45

#define CL_SEND_MUSIC AAD
This is a multiple data point literal.
This literal is similar to the CL_SEND_SOUND except that it is used to send the filename of the
music file to be played. Valid MIDI files formats are supported (*.MID, .RMI, etc.) as well as MP3
files (.MP3) You do not need to include the file extension unless you wish to specify. All music
files are stored in the media/sounds/ directory. You can also choose the number of iterations to
play of the file. The file will play iterations # of times. If you don’t specify a number of
iterations, the file will play only once.
Note: This function is only enabled if the user has not disabled remote media support.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_MIDI+filename+CL_DELIM+

 iterations
(non-repeating music example)
Example: filename = canon_in_D
Example: iterations = <nothing>

Formatted Example: #K%00005013AADcanon_in_D

(repeating music example – plays it three times)
Example: filename = canon_in_D~1
Example: iterations = 3
Formatted Example: #K%00005015AADcanon_in_D~3

(stops the currently playing music file)
Example: filename = <nothing>
Example: iterations = <nothing>
Formatted Example: #K%00005003AAD

#define CL_SEND_UPTIME AAF
This is a single data point literal.
This literal is identical to the CL_SEND_REBOOT literal except that we’re sending the timestring
as the amount of time the mud has been up instead of when it’ll reboot.
Note: If the Caption (CAP) literal is used, the Uptime literal is not used.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_UPTIME+timestring
Example: timestring = 05:30
Formatted Example: #K%00005008AAF05:30

#define CL_SEND_AVI AAG
This is a multiple data point literal.
This literal is similar to the CL_SEND_IMAGE except that it is used to send the filename of the
AVI movie to be displayed in the Portal© Imagery. Only AVI files are supported. You do not
need to include the file extension unless you wish. All AVI’s are stored in the media/images/
directory. The imagelabel (which will appear below the image in the Imagery) is optional. You
can specify the height and width of the AVI also. These are optional as well. You can also
choose to repeat the MIDI or not. The MIDI will repeat if repeat is anything but an empty string.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_AVI+filename+CL_DELIM+

 imagelabel+CL_DELIM+height+CL_DELIM+width
(non-repeating example)
Example: filename = raging_orc.avi
Example: imagelabel = Raging Orc
Example: height = 300
Example: width = 250
Example: repeat = <nothing>
Formatted Example: #K%00005036AAGraging_orc.avi~Raging Orc~300~250

(repeating example)
Example: filename = raging_orc.avi
Example: imagelabel = Raging Orc
Example: height = 300
Example: width = 250
Example: repeat = 1
Formatted Example: #K%00005038AAGraging_orc.avi~Raging Orc~300~250~1

#define CL_DOWNLOAD_MEDIA AAH
This is a multiple data point literal.
This literal allows you to automatically download media files to the user's media\sounds and
media\images directories. The available files for download must be of the kind .WAV, .MID, .RMI,
.MP3 (sounds) .BMP, .GIF or .AVI (images). It requires that you specify a filename, which will be
the filename that will appear in the user's applicable media directory. You also must supply the
URL where the media file resides on the web (usually on your MUD's site somewhere).
Notes:

? If the filename already exists in the user's applicable media directory, this operation aborts.
Basically it's a good idea to keep your files named uniquely, maybe prepended with your
MUD's name (e.g. blahmud_bigroar.wav).

? The filename cannot contain spaces and is limited to 255 characters in length.
? The filename must contain the file type extension (.GIF, .AVI etc.)
? The filename is not case sensitive, but the URL is.
? The URL is case sensitive, in case you missed it.
? This function is only enabled if the user has not disabled auto downloading.
? The user will be notified of the filename that was downloaded to their applicable media

directory, as well as the URL from which it was downloaded.
? Try to keep the files relatively small (under 100K) as downloading them sucks extra

bandwidth from the user. Also, spread them out if you can. Having the user download 100
files one right after the other is not always a good idea. A good possible usage would be a
command to use on your MUD which would download a list of specific media for the user.
This way they could enter the command and come back in a few minutes when it’s
downloaded. Portal© won’t attempt to download files they already have, so it’s ok to send
files they don’t have.

? Unless you KNOW your users have a killer connection, don’t even think about sending them
.MP3 files.

Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_DOWNLOAD_SOUND+filename+

 CL_DELIM+URL
(MIDI example)
Example: filename = B5.rmi
Example: URL = http://www.gameaxle.com/B5.rmi
Formatted Example: #K%00005040AAHB5.rmi~http://www.gameaxle.com/B5.rmi

(WAV example)
Example: filename = lock.wav
Example: URL = http://www.gameaxle.com/lock.wav
Formatted Example: #K%00005044AAHlock.wav~http://www.gameaxle.com/lock.wav

#define CL_SEND_SPECIAL BAA
This is a single data point literal.
This literal is used to send a special information textstring to Portal©. Generally this means
weapon strikes, special armor messages, or other item/combat related information to send to the
client. Guilds should NOT use this code. Instead, they should use the CL_SEND_SPECIAL2
literal as detailed below.
Note: The text sent with this literal and with the CL_SEND_SPECIAL2 literal should be 60

characters or less. This is not a hard limit, but it’s the most text that can be displayed in the
Portal© field without the user expanding it. (don’t hack lines just to meet this limit, but try.)

Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_SPECIAL+ textstring
Example: textstring = Your sword explodes upon the goblin with a fireball!
Formatted Example: #K%00005055BAAYour sword explodes upon the goblin with a fireball!

#define CL_SEND_SPECIAL2 BAC
This is a single data point literal.
This literal is used to send a special guild information textstring to Portal©, such as when a
special power has kicked in, or when another has failed, or when somebody advances in guild
level etc.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_SPECIAL2+textstring
Example: textstring = Your magical barrier of protection has faded!
Formatted Example: #K%00005048BACYour magical barrier of protection has faded!

#define CL_SEND_TELL BAB

This is a multiple data point literal.
This literal requires exactly 3 data points.
This literal is used to send ‘tell’ information to Portal©. The first argument is a direction indicator
if the tell is originating from the player or coming to the player (i.e. ‘You tell Soandso:’ vs
“Soandso tells you:’). The indicator is either an “x” (lower case) or an empty string. The second
argument is the object of the tell (to or from this person). The third argument is the actual tell
text.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_TELL+direction+

CL_DELIM+object+ CL_DELIM +text

Here are two examples of CL_SEND_TELL lines:

x~Fred~Hey fred, how’s it going?
~Fred~I’m doing fine, thanks for asking.

The first line indicates that I have sent a tell to Fred from me (the placement of the x tells us this).
The second line indicates a tell coming from Fred to me. Both of these would appear on my Tell
Monitor.

Formatted Example: #K%00005035BABx~Fred~Hey Fred, how’s it going?
Formatted Example: #K%00005040BAB~Fred~I’m doing fine, thanks for asking.

#define CL_SEND_ROOM BAD
This is a single data point literal.
This literal is used to send the short description of the room that the player is currently in. This
information is displayed at the top of the Portal© screen for quick reference.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_ROOM+description
Example: description = You are standing in a dark forest
Formatted Example: #K%00005036BADYou are standing in a dark forest

#define CL_SEND_MUDLAG BAE
This is a single data point literal.
If your mud supports any form of meter to display MUD-side lag, you can send it to the client via
this literal. This shows in the title bar of Portal© with the uptime and reboot information.
Note: If the Caption (CAP) literal is used, the MUDLag literal is not used.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_MUDLAG+meter
Example: meter = 0.05
Formatted Example: #K%00005007BAE0.05

#define CL_SEND_EDIT BAF
This is a single data point literal.
This literal is used to send the current file that is being edited by the user/wizard. When done
editing the file, send the CL_SEND_EDIT with an empty string. This will clear the file from the
display.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_EDIT+file
Example: file = /obj/monster.c
Format Example: #K%00005017BAF/obj/monster.c

#define CL_GP1_ MASK BBA
This is a single data point literal.
This literal is used to send the customized mask that will be used on the hints for the Guild Point
1 controls (on the HP bars and Status Monitor, etc.) The default is “Guild Points 1” and most
likely will want to be changed by your MUD or guild/class/clan. This will change it automatically.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_GP1_MASK+mask
Example: mask = Stamina

Format Example: #K%00005010BBAStamina

#define CL_GP2_ MASK BBB
This is a single data point literal.
This literal is used to send the customized mask that will be used on the hints for the Guild Point
2 controls (on the HP bars and Status Monitor, etc.) The default is “Guild Points 2” and most
likely will want to be changed by your MUD or guild/class/clan. This will change it automatically.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_GP2_MASK+mask
Example: mask = Violet Plasma
Format Example: #K%00005016BBBViolet Plasma

#define CL_HP_ MASK BBC
This is a single data point literal.
This literal is used to send the customized mask that will be used on the hints for the Hit Point
controls (on the HP bars and Status Monitor, etc.) The default is “Hit Points” and might wish to be
changed by your MUD. This will change it automatically.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_HP_MASK+mask
Example: mask = Health Status
Format Example: #K%00005016BBCHealth Status

#define CL_SP_ MASK BBD
This is a single data point literal.
This literal is used to send the customized mask that will be used on the hints for the Spell Point
controls (on the HP bars and Status Monitor, etc.) The default is “Spell Points” and might wish to
be changed by your MUD. This will change it automatically.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SP_MASK+mask
Example: mask = Mana
Format Example: #K%00005007BBDMana

#define CL_SEND_CAPTION CAP
This is a single data point literal.
This literal allows you to set the user’s Portal© window caption (the very top bar of the Main
Screen). The string you send will appear after the standard Portal© caption elements: “<MUD> –
<Player> (<online time>)” Space is already appended after the (<online time>) element, so
prepending your caption with a space is not necessary. Use this literal for whatever kind of
string you want to send: news flashes, player status, MUD status, etc.
Note: If this literal is used, the Reboot (AAC) Uptime (AAF) and MUDLag (BAE) literals are not

used.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_CAPTION+caption
Example: caption = Newsbrief: Canada has invaded Michigan!
Formatted Example: #K%00005042CAPNewsbrief: Canada has invaded Michigan!

#define CL_SEND_BEGIN_FILE CDF
This is a multiple data point literal.
This literal requires exactly 2 data points.
This literal is used to begin a text file ‘download’ from the mud. The two data points are the # of
lines being sent and the ‘tag’ to be associated with the download. This could be the file name if
it’s a file, or ‘Who List’ for instance if you’re sending a who list as a file.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_BEGIN_FILE+lines+

CL_DELIM+file
Example: lines = 125
Example: file = /obj/player.c
Format Example: #K%00005020CDF125~/obj/player.c

#define CL_SEND_CONT_FILE CCF

This is a single data point literal.
This literal is used to send a line of the file or text that was initialized for download with the
CL_SEND_BEGIN_FILE literal. Each line of the file will be sent with this literal.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_CONT_FILE+line
Example: line = if (attacker_ob) { attack(); attacked_this_round = 1; }
Format Example: #K%00005058CCFif (attacker_ob) { attack(); attacked_this_round = 1; }

#define CL_SEND_END_FILE CEF
This is a 0 data point literal.
No data is sent with this literal.
This tells Portal© that a the file being download has completed. It’s a good idea to send this
twice, just to ensure that Portal© ends the file transfer just in case one of them gets lost/garbled
in line noise.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_END_FILE
Format Example: #K%00005003CEF

#define CL_SEND_CHAT CAA
This is a multiple data point literal.
This literal requires exactly 4 data points.
This literal is used to send chat line information to Portal©. The 4 data points are line command,
line name, source player name, and data. The Line Text should be an unformatted string (no
color nor wrapping). Remember, the CL_DELIM literal must separate the data points.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_CHAT+command+

CL_DELIM+line+CL_DELIM+ source+CL_DELIM+data

Example: command = guildchat
Example: line = Guild
Example: source = Rastafan
Example: data = [GUILD] Rastafan: Hi guys

This indicates that Rastafan has sent a chat to his guild using the guildchat command. The
Guild title will be the title for this line, and the Data would appear on my Chat Monitor.

Formatted Example: #K%00005053CAAguildchat~Guild~Rastafan~[GUILD] Rastafan: Hi guys

#define CL_SEND_ROOMCODE DDD
This is a single data point literal.
This literal can have any number of elements within the single data point 4 data points.
This tells Portal© to display specific exits in the Room Monitor (Portal GT Upgrade Pack B and
later versions). Simply include the abbreviated dirs (n, e, w, s, ne, nw, se, sw, u, d, in, out, enter
and exit) separated by spaces and Portal© will display them graphically in the room monitor.
Note: “in” and “enter” are exclusive literals, since the graphical representation is identical.

Whatever you send first will be used for the command. The same applies to “out” and
“exit”.

The Room Monitor supports up to three additional, non-standard directions that will be displayed
as clickable text. Just append them to the end of the list to be used.
Note: The non-standard exits as well as in, out, enter and exit require client Version 8.8 or above.
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_ROOMCODE
Format Example: #K%00005011DDDn e ne u
Format Example: #K%00005011DDDn e ne u in
Format Example: #K%00005011DDDn e ne u exit leave climb

This indicates that the room monitor is to display a room with exits “n” “e” “ne” and “u”

#define CL_SEND_COMPOSITE FFF

This is a multiple data point literal.
This literal can have any number of data points.
See the examples in the main text on how to create a COMPOSITE data line.
The following HP_DATA_CODE literals are valid for the COMPOSITE line code literal:
Format: ACTIVATE+SEC_CODE+CHAR_COUNT+CL_SEND_COMPOSITE+

composite1+CL_DELIM+composite2+CL_DELIM+composite3+…+
CL_DELIM+compositeN

#define CL_SEND_HP A
This literal is used to send the player’s current hit points.
Range for this literal is 0-9999.
Example: 312
Formatted Example: #K%00005007FFFA312

#define CL_SEND_MAXHP B
This literal is used to send the player’s max hit points.
Range for this literal is 0-9999.
Example: 410
Formatted Example: #K%00005007FFFB410

#define CL_SEND_SP C
This literal is used to send the player’s current spell points.
Range for this literal is 0-9999.
Example: 300
Formatted Example: #K%00005007FFFC300

#define CL_SEND_MAXSP D
This literal is used to send the player’s max spell points.
Range for this literal is 0-9999.
Example: 425
Formatted Example: #K%00005007FFFD425

#define CL_SEND_GP1 E
This literal is used to send the player’s current primary guild points.
Range for this literal is 0-9999.
Example: 57
Formatted Example: #K%00005006FFFE57

#define CL_SEND_MAXGP1 F
This literal is used to send the player’s max primary guild points.
Range for this literal is 0-9999.
Example: 502
Formatted Example: #K%00005007FFFF502

#define CL_SEND_GP2 G
This literal is used to send the player’s current secondary guild points.
Range for this literal is 0-9999.
Example: 50
Formatted Example: #K%00005006FFFG50

#define CL_SEND_MAXGP2 H
This literal is used to send the player’s max secondary guild points.
Range for this literal is 0-9999.
Example: 100
Formatted Example: #K%00005007FFFH100

#define CL_SEND_GLINE1 I
This literal is used to send the player’s primary guild line information.
Range for this literal is 0-60 characters.
Example: Next Level: 5000gxp Shield Strength: 100%
Formatted Example: #K%00005045FFFINext Level: 5000gxp Shield Strength: 100%

#define CL_SEND_GLINE2 J
This literal is used to send the player’s secondary guild line information.
Range for this literal is 0-60 characters.
Example: Guild Level: 32 Familiar Health: 75%
Formatted Example: #K%00005040FFFJGuild Level: 32 Familiar Health: 75%

#define CL_SEND_ATTACKER K
This literal is used to send the name of the monster the player is currently fighting.
Range for this literal is 0-60 characters.
Example: Shamus the Shop Keeper
Formatted Example: #K%00005026FFFKShamus the Shop Keeper
To set the value to an empty string, send the CL_DELIM (~) after the K code
Example: <nothing> (clears the enemy name)
Formatted Example: #K%00005025FFFK~

#define CL_SEND_ATTCOND L
This literal is used to send the % of max hit points their current enemy has.
Range for this literal is 0-9999 (> 100 means above max HP). Again, this is % HP of the
enemy, not actual HP.
Example: 75
Formatted Example: #K%00005006FFFL75
Note: Sending a 0 will set the enemy name to gray on the Status Monitor and in the

Imagery. Setting it to any value above 0 will set it to black. This is supported in
Portal© versions 5b and above.

#define CL_SEND_ATTIMG M
This literal is used to send the image file for the monster they are fighting.
Range for this literal is restricted by Windows’ file naming conventions. As a general rule,
you should not use anything but alphanumeric characters (a, b, c, 1, 2, 3) and the
underscore (_). The filename is not case-sensitive. The length of the total filename
cannot be longer than 255 characters.
Example: townfolk_shamus
Formatted Example: #K%00005019FFFMtownfolk_shamus

You can send any number of composites from A to M via the CL_SEND_COMPOSITE literal.
Here is an example to send HP, SP, GP1 and attacker condition all at once.
Example: HP = 312
Example: SP = 300
Example: GP1 = 57
Example: condition = 75
Formatted Example: #K%00005020FFFA312~C300~E57~L75

It is much better to send composite literals in groups this way, compared to sending them
individually. You could have accomplished the above by sending four separate
CL_SEND_COMPOSITE literals, but that would be a horrible waste of bandwidth. Sending it in a
group as shown gains the same results in one efficient sweep.

Appendix B: Coding Suggestions & General Hints
Here are some tips to help on bandwidth concerns:
? For the COMPOSITE literal the best and easiest way to handle sending that information is to

track the values from one round to the next and only send the values that have changed.
This reduces the overall bandwidth and makes the send a lot smoother. Basically, don’t send
two COMPOSITE literals, one sending HP and the other HPMax. Have one COMPOSITE
literal send both at once.

? Assuming you’re doing the above method of tracking and sending, for your
CL_SEND_GLINE1 (and 2) calls, it is best to group values that change frequently into only
one of the gline calls, and values that don’t change frequently into the other. This reduces
bandwidth by only sending one of the lines frequently and the other seldom. For example,
put guild experience (gexp) to next level and guild age into one of them. Put guild level and
alignment (or some such) in the other.

? Build a client.c router and a few simul_efuns that call it. This will make all your wizards a lot
more likely to use it if it is easy to do so. Put the above #define statements into a client.h file
so that all the wizards can #include it and just use the defines instead of the key codes. That
way if the codes ever change there will only need to be one file changed (though files that
#included the old client.h file will need to be updated/loaded).

? Create a #define CL_DELIM “~” for that same purpose as above.
? This may seem obvious, but get Portal© yourself and make one change at a time and test it,

this could save you a lot of trouble in the long run.
? Sending images and sounds is very easy, but doesn’t do you any good if the players don’t

have them. So post sound and image ‘packs’ on your website somewhere and encourage
your players to download and place them into their media/images or media/sounds
directories. You can’t really appreciate things like this until you see/hear them. It’s one thing
to open a door, but it’s insanely more exciting to hear the sound of a creaking door when you
do so.

? Don’t forget the “3klient” command, this is what turns it all on!

Appendix C: Coloring the Gline1 & Gline2
The gline literals (CL_SEND_GLINE1 & CL_SEND_GLINE2) appear on the HP3 Bar. The text
that appears has a black background and the font is colored white by default. While you cannot
change the black background, you can change the font color.

All you have to do is encapsulate the text you desire to color in the format specified below. You
can't use < or > anywhere in the glines as normal text or it'll screw up. If you already use < or >
enclosures, you'll have to use something else to encapsulate your data. All text not enclosed in
any color activators appear as white.

Format: <xword>
x color code
word text to be colored (any length)

Valid Color Codes
y yellow
r red
b blue
g green (windows calls it lime)
c cyan (windows calls it aqua)
v violet (windows calls it fuchsia)
s silver (dim white)

Example 1: The red <rfox> jumped over the cyan <cdog>
Display: The red fox jumped over the cyan dog

Example 2: Spells Activated: [<bshield>,<gmagic missile>]
Display: Spells Activated: [shield,magic missile]

Example 3: Demon Follower's Health: <a95%>
Display: Demon Follower's Health: 95%

Now, why did it appear all in white? Because "a" was used, which is not a valid code.

We suggest you keep the number of uses of the activator to under 10 per gline. That means
under 10 usages of the <> pairings.

Appendix D:FTP Emulation Upload
While the literals CL_SEND_BEGIN_FILE , CL_SEND_CONT_FILE and CL_SEND_END_FILE
(defined in Appendix A) take care of the FTP Emulation for download (server to client) transfer,
there is also functionality for upload (client to server) transfer. This is done mostly via an added
command on the MUD in the format of “3ksendfile filename” which will be used by Portal©. The
upstream transfer can only transfer text files. The user can select any number of files to
upload via this command, but each one is buffered to be sent every 2 seconds.

Lines following the 3ksendfile command are added to the file filename in the order they are
received. This is not unlike sending a slew of lines into the standard “ed” editor found on most
MUDs. Here the server should build up an array buffer for the lines, which will then be written to
the final file filename.

When the transfer of lines is complete, Portal© sends the string EOF. When this string comes
across, it tells the server that the file transfer is complete and the array buffer can then be dealt
with accordingly (dumped into a file, posted to a board, etc.).

This is not recommended for use on files more than 300 lines. Standard FTP should be used for
such transfers. Windows filenames will have any spaces converted to underscores upon transfer.
Again, this will only work with text files.

Portal© for Windows MIP Terms of Use License

The information contained within this document (hereafter referred to as the MIP) is provided "as is." In no event shall the author(s),
GameAxle, The Marble Group Inc., Giftwicks LLC or any other related parties be liable for any consequential, special, incidental or
indirect damages of any kind arising out of the delivery, performance or use of the MIP.

Other than that, have at it. As of 4/1/08, Portal© is open-source, so have fun and promote the spirit of mudding to the fullest extent of
your imagination!

