

Ammonia-Borane Complex for H₂ Storage

Nahid Mohajeri & Ali T-Raissi

Florida Solar Energy Center

Start Date = September 2004 Planned Completion = September 2006

Florida Solar Energy Center • November 1-4, 2005

Rationale

Reaction	Wt% H ₂ Content	Capacity, Wh/kg
$LiBH_4+4H_2O \longrightarrow LiOH + H_3BO_3 + 4 H_2$	8.6	1,631
$NaBH_4 + 4H_2O \longrightarrow NaOH + H_3BO_3 + 4H_2$	7.3	1,384
$NH_4F + LiBH_4 \longrightarrow LiF + BN + 4H_2$	13.6	2,579
$NH_3BH_3 \rightarrow BN + 3H_2$	19.6	3,716
Lithium ion cell	N/A	130-150

Research Goals and Objectives

- Identify viable amine-borane (AB) complexes for hydrogen uptake & regeneration
- Develop a catalytic route for borazine hydrogenation to cyclotriborazane
- Study hydrogenation of polyborazylene
- Develop self-sustaining AB-based formulations
- Measure thermal conductivity of AB-based formulations

Relevance to Current State-of-the-Art

Relevance to NASA

Ammonia borane complex provides high hydrogen storage capacity for in-flight & LEAP applications

High energy density: 4.94 kWh/L for AB vs. 2.36 kWh/L for LH₂

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule & Deliverables

Fiscal Year 2005 Budget = \$90k

	Qtr 1		Qtr 2		Qtr 3		Qtr 4					
Project Steps:	Jan 05	Feb 05	Mar 05	Apr 05	May 05	Jun 05	Jul 05	Aug 05	Sep 05	Oct 05	Nov 05	Dec 05
Catalyst Screening for Borazine Hydrogenation												
Kinetic Studies of CTB Dehydrogenation					$\mathbf{\mathbf{x}}$							
Hydrogenation of Polyborazylene												
Hydrogenation of Poly(aminoborane)												
Develop & Charctz. Self- Sustaining AB Formulations												$\overrightarrow{\mathbf{x}}$

Anticipated Technology End Use

- Development of AB-based energy storage devices that generate hydrogen gas quickly and safely without a requirement for the external energy input & without the generation of undesirable gas-phase decomposition products such as borazine that adversely affect the operation of PEMFCs.
- If successful, a AB-based hydrogen storage device having a system-level specific energy density of 1 kWh/kg or better will be fabricated and tested at FSEC. Such a system if of immense interest to the U.S. DOE (stationary as well as the vehicular H₂ storage applications) & DOD (for soldier portable power source, among others).
- DOE & DOD request for proposals are streaming out of the Agencies and contain R&D topics related to better and safer means of hydrogen storage & use.

Florida Solar Energy Center • November 1-4, 2005

NH₃BH₃ (AB) Pyrolytic Routes

Accomplishments & Results

- Conducted catalyst screening of borazine hydrogenation.
- Investigated polyborazylene reduction mechanism.
- Adsorbed species on the surface of the borazine treated with 5% Rh catalyst were stable up to 120°C suggesting that during catalytic hydrogenation of borazine at room temperature & below, borazine is stable.
- Solvent-free hydrogenation of polyborazylene was accomplished & the level of hydrogenation achieved was in the range of 15%-16.5%.
- Several self-sustaining AB formulations were developed & tested.
- For the first time ever, the thermal conductivity of AB complex & its solid-state decomposition products were measured in a wide range of temperatures.

Accomplishments & Results

Solvent-free hydrogenation of polyborazylene

Sample	Composition	H ₂ Pressure (psi)	Hydrogenation period (hrs)		
PB1	PB (0.2 g) - 5% Pd on BaCO ₃ (2 mg)	250	12		
PB2	Same as above	1010	24		
PB3	PB (0.2 g) - 5% Rh on C (2 mg)	250	12		

Samplo	Percent Weight	Extent of Hydrogenation	
Sample	Before Hydrogenation	After Hydrogenation	%
PB1	19.27	21.81	2.54
PB2	19.27	21.65	2.38
PB3	22.83	25.38	2.55

Florida Solar Energy Center • November 1-4, 2005

TG Curves for PB3 Before & After Hydrogenation

- The weight changes were associated with the exothermic dehydrogenation region of TG curves.
- Independent of catalysts or H₂ gas pressure used in this study.

Florida Solar Energy Center • November 1-4, 2005

Self-Sustaining AB-Based AB Formulations TG Analysis

- Addition of AI powder to AB complex <u>decreases</u> mass loss due to release of undesirable thermolysis products such as borazine, diborane & Ammonia
- H₂ release efficiency was <u>facilitated</u> by addition of aluminum powder to AB complex

Self-Sustaining AB Thermolysis

- > AB thermolysis is exothermic with $\Delta H_r = -(21.7 \pm 1.2)$ kJ/mol*
- > C_p of AB complex @ 298K = 75.37 Jmol⁻¹K^{-1**}
- Thermal decomposition of AB starts at ~ 110 °C
- Activation energy necessary to reach this temperature: $Q_{act} = Cp * \Delta T = 75.37 \times 85 = 6.41 \text{ kJ/mol}$
- ➤ Thermite reaction: $Fe_2O_3 + 2AI \rightarrow 2Fe + Al_2O_3$ $\Delta H_r = 851.7 \text{ kJ/mol}$
- Theoretical molar ratios of AB:Fe₂O₃:Al to be mixed to reach the decomposition temperature of one mole (30.8g) AB complex are 1:0.0075:0.015.
- * G. Wolf, et al. *Thermochimica Acta* 343 (2000) 19-25.
- ** G. Wolf, et al. Thermochimica Acta 317 (1998) 111-6.

Self-Sustaining AB Thermolysis, cont'd

AB = 0.24 g
Thermite = 0.04g (4 times more than theoretical quantity needed).

> Thermolysis using NiCr wire produced 380 mL of gas (If all H_2 , then 72% of theoretical value).

Was not self-sustaining.

➢ GC/MS analysis of the gas showed a mixture of H₂ & borazine. Also, poly(aminoborane) was reaction product.

Self-Sustaining AB Thermolysis, cont'd

➢ AB = 0.338 g.

Thermite = 0.1g (6 times more than theoretical amount required).

Thermolysis using NiCr wire produced 510 ml of gas (If all Hydrogen then 69% of theoretical value).

Was self-sustaining.

Amount of borazine & Poly(aminoborane) increased.

Florida Solar Energy Center • November 1-4, 2005

Thermal Conductivity Measurements

Reference:

- Aluminum 6061-T6 alloy
- *k* = 180 Wm⁻¹K⁻¹
- Cylinder with OD = 0.378" & h = 0.181"
- The AB pellets (same dimensions as the Al cylinders) were placed in between two identical Al cylinders
- Temperature measurements were made using four T-type thermocouples

$$\mathbf{q} = k \frac{(\mathsf{T}_{HOT} - \mathsf{T}_{COLD})}{d}$$

Thermal Conductivity of Pure AB & AB mixed with AI (10:1)

- Thermal conductivity of pure AB complex is close to that of the dielectric materials:
 - $k_{AB Complex} \approx 20 W/m-K$
 - $k_{\text{Alumina}} = 30 \text{ W/m-K}$
 - $k_{\text{Calcium Oxide}} = 16 \text{ W/m-K}$
- Apparent AB thermal conductivity increases by 3 folds when 10% by weight of Aluminum powder was added.

Future Plans

- Develop a more efficient method for the polyborazylene hydrogenation.
- Find an improved method for poly(aminoborane) hydrogenation.
- Develop new & improved AB formulation(s) that lend themselves to "self-sustaining" pyrolytic reactions that generate hydrogen gas quickly and safely without external energy input & without the production of undesirable gas-phase decomposition products such as borazine.
- Fabricate a AB-based hydrogen storage device having a system-level specific energy density of 1 kWh/kg or better.

Publications & Proposal Activities

- "Regeneration of Ammonia-Borane Complexes for Hydrogen Storage," Nahid Mohajeri and Ali T-Raissi, Proc. 2005 MRS Spring Meeting, San Francisco, CA, March 28-April 1, 2005.
- "Regeneration of Amineborane Complexes for On-board Hydrogen Storage," an FSEC proposal to the U.S. DOE, Basic Energy Sciences, Solicitation No. DE-FG01-04ER04-20, Jan. 2005, \$1,143,639. Status: <u>not funded</u>.
- "A Compact Borazane Hydrogen Generator for a Soldier Fuel Cell Power System," a joint E & S Consulting, Inc. and FSEC proposal submitted under DOD SBIR/STTR Topic No. A05-034, July 15, 2005, \$120,000. Status: pending.

Florida Solar Energy Center • November 1-4, 2005

Thank You

Questions?