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Motivation

• The market prices of stocks (or other assets such as foreign

exchange rates or commodity prices) fluctuate randomly.

Once we have observed a time-series of market prices, we

can compute the realised variance. If we take the square

root, we can compute the realised volatility. Suppose a

trader wishes to take a view (via a trading position) today

on the realised variance that will be observed over some

given future time period. How can she do this?

• What sort of derivatives can be used for this and how are

they priced and hedged?

• How is the realised variance over this given time period

(which is unknown today but will be known at the end of

the time period) related to the implied volatilities,

observable today, of vanilla options which mature at the

end of the time period?

• These are questions which we will try to answer today.
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Why this is not easy

• It might be tempting to think that if a trader thinks that,

for example, realised volatility over a given time period

will be higher than the implied volatility of an option

maturing at the end of the time period, then she should

buy the vanilla option. However, what strike should the

option have? Vanilla options which are struck

at-the-forward forward have the largest vega (sensitivity to

volatility). But options, which are at-the-forward forward

at the time they are written, may be deep in or out of the

money later (because the stock price moves) at which time

they will have a much lower vega.

• It is clear that vanilla options are an imperfect vehicle for

a trader to take a view on volatility or variance. This is

because the price of the vanilla and the sensitivity of the

price of the vanilla to variance (ie the partial derivatives of

the vanilla price with respect to variance) depends on the

stock price.

• What sort of instrument or derivative might be a better

vehicle to take a view on variance.
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A primer

• Let us introduce some notation. Suppose today, time t0,

we write a European option which matures at time T on a

stock whose price, at time t, is denoted by S(t). We

denote the price of the option, at time t, by C(t). We

assume that the stock price follows geometric Brownian

motion with volatility σ. We’ll assume at this stage, for

simplicity, that interest-rates are zero and the stock pays

no dividends. We delta-hedge our short position in the

European option and rebalance our portfolio every ∆t.

• Note that ∆t is finite - not infinitesimal.

• The P+L (profit and loss) over the time interval from t to

t + ∆t is:

∂C

∂t
+

1

2

∂2C

∂S2
(∆S)2,

where ∆S ≡ S(t + ∆t)− S(t).

• In the last line, we have used a Taylor series expansion and

cancelled out the delta terms.
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A primer 2

• However, the Black and Scholes (1973) pde says:

∂C

∂t
+

1

2
σ2(S(t))2∂

2C

∂S2
= 0.

Hence, substituting, we get that the P+L over the time

interval from t to t + ∆t is:

1

2
S2∂

2C

∂S2

(
(∆S)2

S2
− σ2

)
.

• Note that if were to let ∆t tend to zero, the P+L would

tend to zero (this is simply the Merton (1973) hedging

argument). However ∆t is not infinitesimal.

• We can sum up the P+L over each time interval ∆t. Then

the P+L over the time interval from t0 to T is:

∑ 1

2
S2∂

2C

∂S2

(
(∆S)2

S2
− σ2

)
.

• Notice how there is a path-dependency in this P+L. If, for

example, ∆S were to tend to be large, when ∂2C
∂S2 was large

and positive, then the P+L would tend to be large and

positive. If, for example, ∆S were to tend to be small

relative to σS, and if ∂2C
∂S2 is positive (which it certainly is

for a vanilla option), then the P+L would tend to be

negative.
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A primer 3

• So, in general, the P+L of the delta-hedging strategy is

path-dependent. However, while we assumed the option

was European, we never assumed it had a vanilla payoff.

The option could have any payoff at time T .

• Suppose that the option is such that its gamma ∂2C
∂S2 is

identically equal to 1/S2. Then the P+L over the time

interval from t0 to T is:∑
1
2

(
(∆S)2

S2 − σ2
)

.

• Note that σ2 is constant (we assumed this at the

beginning). Furthermore,
∑ (∆S)2

S2 is a possible definition

for realised variance. In the market, variance swaps (which

we will define and explain shortly - but which are

essentially forward contracts on realised variance) have a

payoff whose floating part is
∑

(log(S(t + ∆t)/S(t)))2.

However, if ∆t and ∆S are small then a Taylor’s series

expansion implies (∆S)2

S2 and (log(S(t + ∆t)/S(t)))2 are

approximately equal. So the P+L (upto a scaling factor) is

approximately the same as that of a variance swap.

6



A primer 4

• What sort of derivative has a gamma equal to 1/S2?

• Integrating twice, we get C(t) = a− log(S(t)) + bS(t),

where a and b are constants of integration.

• Notice how we can interpret a as cash (or equivalently a

bond) and the term bS(t) as a forward contract.

• The term log(S(t)) represents a derivative whose payoff is

log of the stock price at maturity T . It is called a log

contract (actually we often normalise by the initial stock

price S(t0) so the payoff of the log contract is

log(S(T )/S(t0))) and we will see that it plays a pivotal

role in the pricing of variance swaps. (Note that a log

contract can have a negative payoff).

• We will now consider the pricing and hedging of variance

swaps.
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Variance swaps (definition)

• A variance swap is a financial derivative whose payoff is

defined as follows: It is written at time t0 and matures at

time T . The time interval [t0, T ] is partitioned into N

time periods ti, i = 1, 2, ..., N where tN = T . The time

periods do not have to be equal although they are often

approximately equal. The payoff of a (discretely

monitored) variance swap at time T is:

1

(T − t0)

N∑
i=1

(
(log(S(ti)/S(ti−1))2 −K2

)
,

where K is a constant (called the fixed leg).

• K is often chosen (as for IR swaps) to make the initial (ie

time t0) price of the variance swap equal to zero.

• Note that, in practice in the markets, the floating leg does

not subtract the square of the mean (so it is not really a

variance).

• However, the mean squared is typically tiny so it doesn’t

make much difference. Furthermore, the definition means

variances are additive in the sense that we can define a

forward starting variance swap which starts in three

months time and which is based on the computed realised

variance for a further six months, say. Then if we own such

a forward starting variance swap and a three month

variance swap (starting today), then it is the same as

owning a nine month variance swap (starting today).
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Variance swap pricing methodologies

• In practice, all vanilla variance swaps have payoffs which

are discretely monitored. However, from a theoretical

standpoint, it is also relevant to consider continuously

monitored variance swaps. We will consider pricing

variance swaps from two different viewpoints.

• The first viewpoint is the classic ”log-contract” replication

approach. It has the benefit that it also shows how to

hedge variance swaps. This approach requires some (fairly

weak) assumptions and actually gives prices for

continuously monitored variance swaps.

• The second approach prices discretely monitored variance

swaps. It has the advantage that it is very generic because

it works for almost all stochastic processes that might be

used in mathematical finance. It has the disadvantage that

it does not show how to hedge variance swaps.
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Variance swap practicalities

• Before considering the pricing of variance swaps, we will

mention a few practical issues.

• Variance swaps are now very, very actively traded on stock

indices (and sometimes on individual stocks). They are

also traded, but less commonly, in other asset classes such

as fx.

• There are futures and options contracts on the CBOE VIX

index which are now also very actively traded. The VIX

index is the market price of a portfolio of vanilla options

which (as we will show) replicates future realised variance.

Specifically, the VIX index squared, at time t, is

(essentially) the risk-neutral conditional time t expectation

of the annualised realised variance between time t and

time t plus 30 calendar days.

• The prices of vanilla options, variance swaps, VIX futures

and VIX options are all closely linked - both practically

and theoretically.

• Swaps on volatility are occasionally traded.
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”Log-contract” replication approach

• We make the standard assumptions of a market with

no-arbitrage as well as continuous and frictionless trading

(no transactions costs).

• We assume that the stock price has continuous sample

paths i.e. there are no jumps.

• We make no assumptions about the volatility of the stock -

it could be constant, deterministic, stochastic with its own

source of randomness (stochastic volatility) or, in principle,

a function of the stock price (local volatility).

• We assume that the stock price is strictly positive at all

times (this, in fact, rules out a Bachelier type arithmetic

process with normal volatility so not all local volatility

functions are possible - in addition, it, typically, rules out

models with default).

• Hence, we write the dynamics of the stock price S(t) ≡ S

at time t under the risk-neutral equivalent martingale

measure Q in the form:

dS

S
= (r − q)dt + σ(t, S, . . .)dz,

where dz denotes standard Brownian increments and r

and q denote the interest-rate and the dividend yield (both

assumed constant) respectively.
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”Log-contract” replication approach 2

• We want to value a variance swap written at time t0,

which matures at time T and which has a continuously

monitored floating-leg payoff equal to:

1

(T − t0)

∫ T

s=t0

σ2(s, S, . . .)ds.

• We know that the price V (t0), at time t0, of the floating

leg of the variance swap is the expected discounted payoff

i.e. it is:

V (t0) = EQ
t0

[exp(−r(T − t0)) 1
(T−t0)

∫ T
s=t0

σ2(s, S, . . .)ds] =

exp(−r(T − t0)) 1
(T−t0)E

Q
t0

[
∫ T
s=t0

σ2(s, S, . . .)ds].

• If we apply Ito’s lemma, we know:

d(logS) = (r − q − 1

2
σ2(t, S, . . .))dt + σ(t, S, . . .)dz.

Eliminating the term σ(t, S, . . .)dz, implies:

dS

S
− d(logS) =

1

2
σ2(t, S, . . .))dt.

Hence, integrating from t0 to T implies:

1

2

∫ T

s=t0

σ2(s, S, . . .)ds =

∫ T

t0

(
dS(s)

S(s)
− d(logS(s))).
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”Log-contract” replication approach 3

• Note that no expectations have been taken (yet). The last

equation says that future realised variance can be captured

no matter which path the stock price takes (assuming our

assumptions hold - the assumption of no jumps in the

stock price is crucial here). Simplifying, we can write:

1

2

∫ T

s=t0

σ2(s, S, . . .)ds =

∫ T

t0

dS(s)

S(s)
− log(S(T )/S(t0)).

• In the last equation, the term
∫ T
t0

dS(s)
S(s) is a stochastic

integral. Or to put it another way, it is the gain (or loss)

from a self-financing trading strategy. What strategy?
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”Log-contract” replication approach 4

• It is the trading strategy of holding at all times between t0
and T a position in 1/S units of stock. In other words, at

any time t, t ∈ [t0, T ], hold 1/S(t) units of stock. Since

one unit of stock is worth S(t), 1/S(t) units of stock are

worth:

(1/S(t))S(t) = 1.

• To put it even more simply, the trading strategy is to

dynamically trade the stock in such a way that at all

times, the value of the position in the stock is worth one

unit of account (one dollar, for example).

• Note that it is a dynamic trading strategy - as the stock

price changes so does the position. In that respect, it is

like delta-hedging where the delta equals 1/S(t). The

value of the position is always one dollar.
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”Log-contract” replication approach 5

• Note:

EQ
t0

[

∫ T

s=t0

dS(s)

S(s)
] = EQ

t0
[

∫ T

t0

(r − q)ds +

∫ T

t0

σ(s, S, . . .)dz(s)].

The expectation of the second term in square brackets is

zero. Hence, the expectation evaluates to (r − q)(T − t0).

• What we would like to know is the initial (i.e. time t0)

value of the trading strategy. The terminal value (i.e. at

time T ) is (r − q)(T − t0). Hence, the initial (i.e. time t0)

value of the trading strategy is

exp(−r(T − t0))(r − q)(T − t0).

• If we look at the second term in the equation

1

2

∫ T

s=t0

σ2(s, S, . . .)ds =

∫ T

t0

dS(s)

S(s)
− log(S(T )/S(t0)),

We see it is a static position in a contract which pays the

log of the stock price at time T (normalised by its time t0
price). In other words, it is a static position in an exotic

derivative which we call a log contract. What is the value

of the log contract?
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”Log-contract” replication approach 6

• The price of the log contract, at time t0, is:

exp(−r(T − t0))EQ
t0

[log(S(T )/S(t0))].

• In principle, we can calculate this expectation.

• For example, if the stock actually follows geometric

Brownian motion with constant volatility σ, then:

EQ
t0

[log(S(T )/S(t0))] =

EQ
t0

[(r − q − 1
2σ

2)(T − t0) + σ
∫ T
t0
dz(s)].

The expectation of σ
∫ T
t0
dz(s) is clearly zero. Hence, the

price of the log contract, at time t0, is:

exp(−r(T − t0))(r − q − 1
2σ

2)(T − t0).

• On the other hand, this is not very useful. We essentially

needed to compute EQ
t0

[σ2] which is essentially what we

needed to compute to value the variance swap in the first

place. Furthermore, the value of the variance swap is

trivial to compute under geometric Brownian motion - the

(undiscounted) value of the floating leg is simply σ2.

• We can also value the log contract under the Heston (1993)

stochastic volatility model in which the instantaneous

stochastic variance Σ ≡ Σ(t) follows the SDE:
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”Log-contract” replication approach 7

•

dΣ = κ(θ − Σ)dt + c
√

ΣdzΣ, with Σ(t0) ≡ Σ0,

• As an exercise (during the lunch break or at the

computing lab) I would like you to prove that:

EQ
t0

[

∫ T

s=t0

Σ(s)ds] =
(Σ0 − θ)

κ
[1− exp(−κ(T − t0)] + θ(T − t0).

• This immediately gives the value of the variance swap.

Why is this an intuitive result? What happens when

T → t0?

• The last result is dependent on the model (Heston (1993)).

• What would be more interesting to know is, what is the

price of the log contract (and hence the variance swap)

under our stated assumptions (which apart from assuming

no jumps allows for quite a rich specification of dynamics

eg. local volatility, stochastic volatility, a combination of

the two). Motivation for finding results which are only

weakly dependent on the model comes from the fact while

the result above is dependent on the model (Heston

(1993)), it is not strongly so to the extent that the result

above does NOT depend on the volatility of volatility nor

on the correlation between the instantaneous variance and

the stock price.
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”Log-contract” replication approach 8

• A key first-step is the following argument. If a trader has a

short position in 2/δK2 vanilla call options with strike K

and a long position in 1/δK2 vanilla call options with

strike K − δK and a long position in 1/δK2 vanilla call

options with strike K + δK (all the options have the same

maturity) where δK > 0, then, if we let δK tend to zero,

the payout at maturity of the trader’s portfolio is the same

as that of the Dirac delta function. In words, the payout is

zero if the stock price is not equal to K and the payout is

+∞ if the stock prices equals K at maturity.

• In maths, the Dirac delta function is a building block

function - we can make other functions by integrating

(summing) Dirac delta functions.

• In mathematical finance, we can replicate any European

style (path-independent) payoff by recognising that, since

it can be represented as a sum (in practice, infinite sum) of

Dirac delta functions, it can be represented as a sum (with

possibly negative weights) of vanilla options (not

necessarily calls) with different strikes.

• Strictly speaking, the step from the first to the second

requires the absence of arbitrage (which we assume

throughout) and the existence of a market for vanilla

options of all strikes (which, in practice, is only an

approximation to reality - we discuss this later).
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”Log-contract” replication approach 9

• The following result is key. For any generalized function

f (S) and any scalar κ ≥ 0:

f (S) = f (κ) + f ′(κ)(S − κ)← tangent approximation

+

∞∫
κ

f ′′(K)(S −K)+dK ← tangent correction

+

κ∫
0

f ′′(K)(K − S)+dK ← tangent correction.

• This decomposition may be interpreted as a Taylor series

expansion with remainder of the final payoff f (·) about the

expansion point κ.

• The first two terms give the tangent to the payoff at κ; the

last two terms continuously bend this tangent so it

conforms to the nonlinear payoff.

• The payoff of an arbitrary claim has been decomposed into

the payoff from f (κ) bonds, f ′(κ) forward contracts with

delivery price κ, f ′′(κ)dK calls struck above κ, and

f ′′(κ)dK puts struck below.
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”Log-contract” replication approach 10

• The proof is as follows:

• Note that S is non-negative. For any fixed κ, the

fundamental theorem of calculus implies:

f (S) = f (κ) + 1S>κ

∫ S

κ

f ′(u)du + 1S<κ

∫ S

κ

f ′(u)du

= f (κ) + 1S>κ

∫ S

κ

f ′(u)du− 1S<κ

∫ κ

S

f ′(u)du

= f (κ) + 1S>κ

∫ S

κ

[
f ′(κ) +

∫ u

κ

f ′′(v)dv

]
du

−1S<κ

∫ κ

S

[
f ′(κ)−

∫ κ

u

f ′′(v)dv

]
du.

• Noting that f ′(κ) is independent of u, Fubini’s theorem

implies:

f (S) = f (κ) + f ′(κ)(S − κ) + 1S>κ

S∫
κ

S∫
v

f ′′(v)dudv

+1S<κ

κ∫
S

v∫
S

f ′′(v)dudv.
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”Log-contract” replication approach 11

• Integrating over u yields:

f (S) = f (κ) + f ′(κ)(S − κ) + 1S>κ

S∫
κ

f ′′(v)(S − v)dv

+1S<κ

κ∫
S

f ′′(v)(v − S)dv

= f (κ) + f ′(κ)(S − κ) +

∞∫
κ

f ′′(v)(S − v)+dv

+

κ∫
0

f ′′(v)(v − S)+dv.

• Q.E.D.

• Note the result is completely model independent.
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”Log-contract” replication approach 12

• Recall the decomposition of the payoff function f (S):

f (S) = f (κ) + f ′(κ)(S − κ)

+

∫ κ

0

f ′′(K)(K − S)+dK +

∫ ∞
κ

f ′′(K)(S −K)+dK.

• No arbitrage implies that the initial (i.e. time t0) price

Vt0[f (S)] of f (S(T ), payable at time T , can be expressed

in terms of the initial (i.e. time t0) price exp(−r(T − t0))

of a bond maturing at time T and the initial prices

C(t0, K) and P (t0, K) of vanilla calls and puts

respectively maturing at time T :

Vt0[f (S)] = f (κ) exp(−r(T − t0)) + f ′(κ)[C(t0, κ)− P (t0, κ)]

+

∫ κ

0

f ′′(K)P (t0, K)dK +

∫ ∞
κ

f ′′(K)C(t0, K)dK.

• When κ = S(t0) exp((r − q)(T − t0)) ≡ F0, the forward

stock price, the second term vanishes by put-call parity

(because C(t0, K)− P (t0, K) = 0 in this special case),

and the initial price decomposes as:

Vt0[f (S)] = f (F0) exp(−r(T − t0))︸ ︷︷ ︸
intrinsic value

+

∫ F0

0

f ′′(K)P (t0, K)dK +

∫ ∞
F0

f ′′(K)C(t0, K)dK︸ ︷︷ ︸
time value

.
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”Log-contract” replication approach 13

• Lets apply our general formula for the special case when

f (S) = logS. Then:

Vt0[logS] = exp(−r(T − t0)) log κ +
[C(t0, κ)− P (t0, κ)]

κ

−
∫ κ

0

P (t0, K)

K2
dK −

∫ ∞
κ

C(t0, K)

K2
dK.

• The price of the log contract, at time t0, is the last

expression minus exp(−r(T − t0)) logS(t0):

• Note that the term [C(t0,κ)−P (t0,κ)]
κ is simply 1/κ forward

contracts struck at κ. It is a static position.

• The term exp(−r(T − t0)) log κ (likewise

exp(−r(T − t0)) logS(t0)) is simply log κ (likewise

logS(t0)) in cash (or, equivalently, in bonds).

• We have replicated the payoff of a log contract and hence,

by no-arbitrage, priced a log contract.

• Note that the log contract is replicated by static positions

in bonds and vanilla options (and possibly forward

contracts).

• In practice, we have to replace the integrals by discrete

summations since vanilla options will not be traded with

literally all strikes.
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”Log-contract” replication approach 14

• The position in 1/S units of stock is a dynamic position

and is continuously rebalanced. We gave the value of this

position a few slides ago.

• Taking into account both the log contract and the

dynamic position in 1/S units of stock, we have priced a

variance swap.

• The price, at time t0, of the floating leg of the variance

swap is:

2

(T − t0)
(exp(−r(T − t0))(r − q)(T − t0)

+ exp(−r(T − t0)) logS(t0)− exp(−r(T − t0)) log κ

− [C(t0, κ)− P (t0, κ)]

κ

+

∫ κ

0

P (t0, K)

K2
dK +

∫ ∞
κ

C(t0, K)

K2
dK).

• We have focussed on replication but hedging is the same as

replication with a minus sign.

• In practice, κ is often set equal to the forward stock price

as this generally delineates between whether puts or calls

have the greatest liquidity in the market.
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”Log-contract” replication approach 15

• In practice, we only have options traded in the market for a

discrete set of strikes (rather than a continuum of strikes).

• If we were to ignore all options with strikes outside a

particular range (equivalently set the weights to zero),

then it is clear from the pricing formula above that we will

always price the variance swap at below fair value.

• In practice, there will be a benefit to a trader trading

variance swaps in the context of a very large vanilla

options book. Options with strikes so high or so low that

they have no liquidity today may have been traded when

the spot price was much higher or lower in the past and as

such may be on the trader’s book. These can be

aggregated with the variance swap trades which produces

an economy of scale.
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”Log-contract” replication approach 16

• With only a discrete set of strikes available, the hedge for

the log contract will not be perfect.

• However, there is an easy and intuitive way to account for

this.

• The log contract is always a concave function of the stock

price. Hence, we can construct chords or tangents which

always lie below or above the log contract payoff. We can

then solve analytically for the weights for vanilla options

which exactly match the chords or tangents. This will

perfectly sub-replicate or super-replicate the log contract

and at the same time give something akin to a bid-offer

spread in the price of the variance swaps. The paper by

Demeterfi, Derman, Kamal and Zou (1999, ”More than

you ever wanted to know about volatility swaps”)

illustrates this very well.
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”Log-contract” replication approach 17

• There is a second equally intuitive way of accounting for a

discrete set of strikes:

• Evaluate the log contract at some pre-specified stock

prices. Take as given the positions in bonds and forward

contracts from the portfolio constructed on the slides

above. Then solve for the weights of the call and put

options with the available strikes which minimise the sum

of the squares of differences between the log contract and

the ”almost-replicating” portfolio at the pre-specified stock

prices.

• Because the ”almost-replicating” portfolio is linear in these

weights, this problem is easily solvable by Tikhonov

regularisation (which means that one only has to invert a

matrix - it does NOT involve non-linear least squares fits

(”calibration”)).

• Furthermore, one can use the weights (dK/K2) from the

slides above as initial guesses in the Tikhonov

regularisation.
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”Log-contract” replication approach 18

• This second way has the disadvantage of not

sub-replicating or super-replicating the log contract. On

the other hand, it may give the trader an

”almost-replicating” portfolio at lower cost than perfect

sub-replication or super-replication. Furthermore, while

the ”almost-replicating” portfolio will have residual risks,

the trader may be content to have these risks in the

context of having a view on which parts of the implied

volatility surface are cheap or expensive - a view which can

also be easily incorporated into the Tikhonov

regularisation.
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Interview questions

• Let me ask you two questions which you might be asked at

job interviews.

• Do the prices of vanilla options depend only on the (risk

neutral) distribution of the (log of the) stock price at

maturity (as opposed to the (risk neutral) distribution of

the (log of the) stock price at any other times)?

• Do vanilla option prices contain information about the

prices of any path-dependent derivatives?
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Interview questions 2

• The answer to the first question is yes. The prices of

vanilla options depend only on the (risk neutral)

distribution of the (log of the) stock price at maturity?

This is a well-known result.

• Perhaps, initially surprisingly, the answer to the second

question is also yes. In fact, we have seen this today: We

have priced variance swaps whose payoff is clearly

path-dependent. We can price variance swaps in terms of

vanilla options. Hence, vanilla option prices do contain

information about the prices of path-dependent

derivatives, namely, variance swaps.

• To score an additional bonus point, you should mention

that this conclusion only holds to the extent that the

assumptions that we made hold. The assumptions include

that there are no jumps in the stock price which is

somewhat restrictive. However, apart from that, the

assumptions we have made are actually quite weak.
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Discretely monitored variance swaps

• Recall that a (discretely monitored) variance swap has a

payoff defined as follows: It is written at time t0 and

matures at time T . The time interval [t0, T ] is partitioned

into N time periods ti, i = 1, 2, ..., N where tN = T . The

time periods do not have to be equal although they are

often approximately equal. The payoff of a (discretely

monitored) variance swap at time T is:

1

(T − t0)

N∑
i=1

(
(log(S(ti)/S(ti−1))2 −K2

)
,

where K is a constant (the fixed leg) (usually chosen so

that the initial (i.e. time t0) price of the variance swap is

zero).

• We will focus on the floating leg.

• Consider a process for the stock price as follows:
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Discretely monitored variance swaps 2

• Under the risk-neutral equivalent martingale measure Q
(which may, in fact, not be unique)

S(t) = S(t0) exp((r − q)(t− t0) + Xt),

where Xt0 ≡ 0 and Xt is such that EQ
t0

[exp(Xt)] = 1 for all

t ≥ t0. Clearly, exp(Xt) is a martingale.

• Here r and q are the risk-free rate and the dividend yield

which we will assume are constant for notational

convenience. However, one nice feature of the methodology

we will now discuss is that it is easy to relax this

assumption and have either deterministic term-structures

or have stochastic interest-rates and dividend yields.

• Actually, the only assumption we need to make is that we

have a market with no-arbitrage.
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Discretely monitored variance swaps 3

• Introduce z (which may be real or complex). We define:

EQ
t0

[exp(iz log(S(t)/S(t0))] =

EQ
t0

[exp(iz((r − q)(t− t0) + Xt))],

to be the characteristic function of log(S(t)/S(t0)).

• Mathematically, the characteristic function is the Fourier

Transform of the probability density function of

log(S(t)/S(t0)).

• The characteristic function is known in essentially closed

form for many stochastic process including when the stock

price follows:

• The Black and Scholes (1973) geometric Brownian motion

model, the Heston (1993) stochastic volatility model, the

Merton (1976) jump-diffusion model, models of the affine

jump-diffusion type (which covers many models with

stochastic interest-rates, stochastic interest-rates AND

jumps), all Levy process models (see the book by

Schoutens (2003), ”Levy processes in finance: Pricing

financial derivatives” for reading), Levy process models

with stochastic time-changing (stochastic time-changing

generalises the idea of stochastic volatility) or processes

more suitable for other asset classes such as the CEE2

process of Carr and Crosby (2008) or the commodities

model of Crosby (2008).
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Discretely monitored variance swaps 4

• In fact, the characteristic function is known in essentially

closed form for nearly every model used in finance except

for local volatility models.

• This is true even though the probability density function is

typically not known in closed form.

• Fourier inversion methods can then be used to price vanilla

options.

34



Discretely monitored variance swaps 5

• Recall the sequence of dates at which the variance swap

payoff is determined:

t0 < t1 < ... < ti−1 < ti < ...tN = T .

• Define the extended characteristic function Φ(z; ti, ti−1) as

follows:

Φ(z; ti, ti−1) ≡ EQ
t0

[exp(iz[(r − q)(ti − ti−1) + Xti −Xti−1])]

= EQ
t0

[exp(iz log(S(ti)/S(ti−1)))].

• Essentially any model which has an analytic characteristic

function also has an analytic extended characteristic

function.

• Then note:

∂2Φ(z; ti, ti−1)

∂z2
= −EQ

t0
[(log(S(ti)/S(ti−1)))2

exp(iz[(r − q)(ti − ti−1) + Xti −Xti−1])].

• Hence, evaluating the last equation at z = 0:

∂2Φ(0; ti, ti−1)

∂z2
= −EQ

t0
[(log(S(ti)/S(ti−1)))2]
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Discretely monitored variance swaps 6

• The price of any derivative is the expected discounted

payoff.

• Hence, the price, at time t0, of the floating leg of the

variance swap is:

EQ
t0

[exp(−r(T − t0))
1

(T − t0)

N∑
i=1

[log(S(ti)/S(ti−1))]2]

= − 1

(T − t0)
exp(−r(T − t0))

N∑
i=1

∂2Φ(0; ti, ti−1)

∂z2
.

• But we know Φ(z; ti, ti−1) and hence
∂2Φ(0;ti,ti−1)

∂z2
in

essentially closed form for many models. Hence, we can

price the variance swap.
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Discretely monitored variance swaps 7

• This methodology is very generic and can be used for

almost all stochastic processes that have been used in

mathematical finance (with the exception of local volatility

models because neither the characteristic function nor the

extended characteristic function are known).

• The disadvantage of this methodology is that it says

nothing about hedging.

• There’s no doubting this is a big practical disadvantage.

However, one would typically be interested to use this

methodology when there are jumps in the stock price

process. In this case, the market is incomplete and hence

perfect hedging or replication is not possible anyway.

• In practice, one would choose a stochastic process. Then

one calibrates the parameters of the stochastic process by

finding those parameter values which minimise the sum of

squares of differences between the market prices and model

prices of vanilla options. Using these parameters, one can

then price variance swaps using the formula on the last

slide.

37



Discretely monitored variance swaps 8

• The methodology allows us to highlight some features of

variance swaps.

• Question: Is a continuously monitored variance swap

worth more or less than a discretely sampled variance

swap? To answer this question, we will answer a slightly

more generic question first.

• Consider two variance swaps based on the realised variance

observed between t0 and T . The times at which the stock

price is observed to compute the payoff are equally spaced

(ie ti − ti−1 is the same for all i). The difference is that for

the first variance swap, the number of monitoring times is

N1, and for the second variance swap, the number of

monitoring times is N2, with N2 = 2N1. Which variance

swap is worth more?

• We assume that the “extra” monitoring times of the

second variance swap lie exactly in the middle of the

intervals between the monitoring times of the first variance

swap and that the “other” monitoring times of the second

variance swap coincide with those of the first variance

swap.
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Discretely monitored variance swaps 9

• The payoffs of the (floating legs of the) variance swaps are:

1

(T − t0)

N1∑
i=1

(log(S(ti)/S(ti−1)))2,
1

(T − t0)

N2∑
j=1

(log(S(tj)/S(tj−1)))2,

respectively.

• The answer to our question is clearly going to be

somewhat dependent on the stochastic process Xt.

• Suppose Xt is a Levy process (a process with stationary

and independent increments eg. Brownian motion).

• It is not difficult to see that the extended characteristic

function for a Levy process is of the form:

EQ
t0

[exp(iz[(r − q)(ti − ti−1) + Xti −Xti−1])]

= exp((ti − ti−1)[iz(r − q) + ψ(z)− izψ(−i)]),

for some function ψ(z), independent of ti−1 and ti.

• For example, if the Levy process is Brownian motion with

volatility σ, then ψ(z) = −σ2z2/2.
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Discretely monitored variance swaps 10

• Applying our formula, we have that the price, at time t0,

of the floating leg of the first variance swap is:

exp(−r(T − t0))[−ψ′′(0)]

+
exp(−r(T − t0))

(T − t0)

N1∑
i=1

[−(ψ′(0)−iψ(−i)+i(r−q))2(ti−ti−1)2],

with a similar expression for the second variance swap.

Note that in the last expression we used the result:

1

(T − t0)

N1∑
i=1

(ti − ti−1) = 1.

• The first term is independent of the monitoring frequency

N1 but the second term is not.

• Note that [−ψ′′(0)] is non-negative (actually strictly

positive except in degenerate cases) (because it is the

expectation of a non-negative quantity) and

[−(ψ′(0)− iψ(−i) + i(r − q))2(ti − ti−1)2] is non-negative

(actually strictly positive except in a special case) because

it can be shown that the quantity

(ψ′(0)− iψ(−i) + i(r − q)) is imaginary with zero real

part.
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Discretely monitored variance swaps 11

• We can see that the second term gets larger when N1 gets

smaller (because ti − ti−1 gets larger).

• This means that, because N2 = 2N1, the price of the

(floating leg of the) first variance swap is always greater

than or equal to the price of the (floating leg of the)

second variance swap. Furthermore, equality only occurs

in the special case that the imaginary part of

(ψ′(0)− iψ(−i) + i(r − q)) is zero (the real part is always

zero).

• However, this term is essentially the drift term of log(S(t))

(multiplied by i). So we conclude that equality occurs only

when the drift of log(S(t)) is exactly equal to zero.

• Note also that if the payoff of the variance swap were to

subtract the square of the mean, then this term would

always be cancelled out and we could conclude that the

price of a variance swap on a Levy process would be

completely independent of the monitoring frequency.
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Discretely monitored variance swaps 12

• In any event, the second term

exp(−r(T − t0))

(T − t0)

N1∑
i=1

[−(ψ′(0)−iψ(−i)+i(r−q))2(ti−ti−1)2]

will typically be tiny compared to the first term

exp(−r(T − t0))[−ψ′′(0)].

• For example, if the Levy process is Brownian motion with

volatility σ = 0.2 and r = 0.03, q = 0, T − t0 = 1,

N1 = 252 (which corresponds to daily monitoring of a one

year swap), then the second term is less than one ten

thousandth of the first term. (Note: As an exercise (during

the lunch break or at the computing lab) I would like you

to prove this mathematically). This means that the second

term is completely negligible (especially relative to the

likely bid-offer spread - typically around 0.5 to 1.0

percentage points).

• This suggests that, although it is true that for N2 = 2N1,

the price of the (floating leg of the) first variance swap is

always greater than or equal to the price of the (floating

leg of the) second variance swap, in practice (for daily

monitoring, say), any difference between the two will

typically be very small - at least for processes with

stationary and independent increments (i.e. Levy

processes).
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Discretely monitored variance swaps 13

• Further intuition can be gleaned by considering, firstly, a

two year variance swap with only one monitoring date and,

secondly, a two year variance swap with two monitoring

dates at year one and at year two. The price of the first

involves the expectation of [logS(2)− logS(0)]2 and the

price of the second involves the expectation of

[logS(1)− logS(0)]2 + [logS(2)− logS(1)]2.

• Straightforward algebra shows the first quantity is greater

than the second if, and only if, the expectation of

2[logS(2)− logS(1)][logS(1)− logS(0)] is positive.

• If logS(t) has zero drift, this expectation is identically

equally to zero for a process with independent increments

(by definition). Hence, we see again that the two variance

swaps have the same price in this special case.

• For processes that have neither stationary nor independent

increments such as in the model of Heston (1993), this

expectation will (typically) be positive (this is true even if,

somehow, logS(t) has zero drift). Hence, for such

processes, the prices of variance swaps may be much more

sensitive to the monitoring frequency.

• In the Heston (1993) model, the prices of variance swaps

will be most sensitive to the monitoring frequency when

the mean reversion rate is large and when the correlation is

far from zero.
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Discretely monitored variance swaps 14

• The answer to the question ”Is a continuously monitored

variance swap worth more or less than a discretely sampled

variance swap?” is obtained by letting the number of

monitoring times tend to infinity in our arguments above:

• The price of a discretely sampled variance swap is greater

than or equal to the price of a continuously monitored

variance swap.

• Strict equality will only hold under special circumstances.

• However, generally speaking, in practice, any differences

will be small.

• As a final comment, we note that, in the limit that

ti − ti−1 → 0, for all i, i.e. for a continuously monitored

variance swap, under a Levy process, we have that the

price, at time t0, of the floating leg of the variance swap

tends to:

exp(−r(T − t0))[−ψ′′(0)].

This is because the second term (see two slides ago) tends

to zero.

• As a sanity check on the last formula, for the case of

Brownian motion with volatility σ, ψ(z) = −σ2z2/2.

Hence, −ψ′′(0) = σ2, which agrees with our intuition.
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From variance swaps to volatility swaps

• Volatility swaps also trade - although less frequently. The

payoff of a (discretely monitored) volatility swap is:

1

(T − t0)

N∑
i=1

(√
(log(S(ti)/S(ti−1))2 −Kv

)
,

where Kv is a constant (the fixed leg) (again usually chosen

so that the initial price of the volatility swap is zero).

• Is there a simple, if approximate, way to relate volatility

swap rates to variance swap rates?

• Suppose that future realised variance V (T ) has (under the

risk neutral measure Q) mean µV and variance Σ2
V . In

other words, µV is the fixed rate on a variance swap with

zero initial price.

µV = EQ
t0

[V (T )] and Σ2
V = EQ

t0
[(V (T )− µV )2].

• Doing a Taylor series expansion of
√
V (T ) around its

mean implies (correct to second order):√
V (T ) =

√
µV +

(V (T )− µV )

2
√
µV

− (V (T )− µV )2

8µ
3/2
V

.
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From variance swaps to volatility swaps 2

• Taking expectations under Q and, observing that

EQ
t0

[(V (T )− µV )] = 0 and that
√
µV =

√
EQ
t0

[V (T )],

implies that (correct to second order):

EQ
t0

[
√
V (T )] =

√
EQ
t0

[V (T )]− Σ2
V

8µ
3/2
V

.

• The term on the left is the fixed rate on a volatility swap

such that it has zero initial price. The first term on the

right is the square root of the fixed rate on a variance swap

such that it has zero initial price.

• Note that the former (EQ
t0

[
√
V (T )]) is certainly less than

or equal to the latter (
√
µV =

√
EQ
t0

[V (T )]) (with equality

only in the degenerate case that Σ2
V = 0). This is to be

expected from Jensen’s inequality.

• We stress the last result is only an approximation.
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Are implied volatilities predictions of future realised volatilities

• One occasionally hears it said that implied volatilities are

the market’s best guesses of future realised volatilities.

• Is this true? What does it mean (if anything)?

• Consider a stock price process of the form:

dS

S
= (r − q)dt + σ(t, S, . . .)dz,

where σ(t, S, . . .) might be stochastic but, if it is

stochastic, it is independent of dz.

• We consider the price, at time t0, of a vanilla (standard

European) option, maturing at time T , which is struck at

the forward price F (t0) ≡ S(t0) exp((r − q)(T − t0)). We

denote realised volatility, over the time period [t0, T ], by

RV (t0, T ).

RV (t0, T ) =

√
1

(T − t0)

∫ T

t0

σ(s, S, . . .)2ds.
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Are implied volatilities predictions of future realised volatilities 2

• Since the volatility is independent of the stock price (this

is a key part of the argument), we can compute the price

of the vanilla option by, firstly, conditioning on the realised

volatility and using the Black and Scholes (1973) formula

and then, secondly, taking expectations over the realised

volatility (in other words, by using the tower law i.e. the

law of iterated expectations).

• Hence, the price, at time t0, of the vanilla option is:

EQ
t0

[exp(−r(T − t0))[F (t0)N(RV (t0, T )
√
T − t0/2)

−F (t0)N(−RV (t0, T )
√
T − t0/2)]].

• Suppose the option maturity T − t0 is very small. We can

do a Taylor series expansion of the term in the inner square

brackets to deduce that the price, at time t0, of the vanilla

option is approximately (correct to terms in (T − t0)):

EQ
t0

[exp(−r(T − t0))[F (t0)RV (t0, T )
√
T − t0/

√
2π]]

=
exp(−r(T − t0))F (t0)

√
T − t0√

2π
EQ
t0

[RV (t0, T )].
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Are implied volatilities predictions of future realised volatilities 3

• On the other hand, we can compute the price of the vanilla

option using the implied volatility appropriate for an

at-the-money-forward strike and a maturity of T − t0.

This is simply the Black and Scholes price with implied

volatility IV (t0, T ). We can do the same Taylor series

expansion for small T − t0 to conclude the price of the

option is approximately (correct to terms in (T − t0)):

exp(−r(T − t0))F (t0)
√
T − t0√

2π
IV (t0, T ).

• If we equate these two vanilla option prices and cancel

terms, we obtain:

EQ
t0

[RV (t0, T )] = IV (t0, T ).

• Hence, we see that the risk-neutral expectation of future

realised volatility, over a short time period, is

approximately (correct to terms in (T − t0)) equal to the

at-the-money-forward implied volatility of options

maturing at the end of the short time period.
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Are implied volatilities predictions of future realised volatilities 4

• So the claim that implied volatilities are the market’s best

guesses of future realised volatilities is true - at least for

very short time periods.

• Or is it?

• Carr and Wu (2006) show that the sample average

difference between the 30-day realized variance on the S+P

500 and the VIX squared is more than −150 bp and highly

significant. The variance risk premium in excess returns

form is −40 per cent, for being long a 30-day variance

swap and holding it to maturity. In other words, shorting

variance swaps and hence receiving the fixed leg generates

positive excess returns on average.

• Does this contradict our result on the last slide?

• No. As Carr and Wu (2006) point out, the highly negative

variance risk premium indicates that investors are averse

to variance risk and the compensation for bearing variance

risk can come in the form of a lower mean variance level

under the real world empirical measure than under the risk

neutral measure Q.
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Summary and General Conclusions

• Variance swaps can be priced and hedged or replicated by

synthetically creating log contracts.

• They are very actively traded in the markets as are futures

and options on the CBOE VIX index. The VIX index is

the market price of a portfolio of vanilla options which has

weights derived from those required to replicate log

contracts.

• The extended characteristic function approach prices

discretely monitored variance swaps. It is very simple and

generic but it has the disadvantage that it says nothing

about hedging or replicating variance swaps.
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