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Several types of inflation-linked derivatives are valued using a multi-factor version
of the model of Hughston (1998) and Jarrow and Yildirim (2003). Expressions for
the prices of zero coupon inflation swaps with delayed payment and period-on-period
inflation swaps with delayed payments are obtained in closed forms by explicitly
computing the relevant convexity adjustments. These latter results are then applied
to value limited price indexation (LPI) swaps using the common factor representation
methodology of Ryten (2007).

I. INTRODUCTION

In recent years, the market for inflation-linked derivatives has grown rapidly. It is fair
to say that inflation is now regarded as an independent asset class. Actively-traded infla-
tion derivatives include standard zero coupon inflation swaps, as well as more complicated
products such as period-on-period inflation swaps (Mercurio 2005), inflation caps (Mercurio
2005), inflation swaptions (Kerkhof 2005), and futures contracts written on inflation (Crosby
2007).

Consider a standard zero coupon inflation swap with maturity TM , fixed rate K, and
notional amount N , which we enter into at time 0. Let Xt denote the spot CPI at time
t. The payoff at time TM of the standard zero coupon inflation swap is N (XTM

/X0 − 1) −
N
(
(1 + K)TM − 1

)
. Notice that the time TM at which the CPI is measured to specify the

payout agrees with the time at which the payment takes place. While this is the common
situation, often in practice the payment is delayed until some later time TN ≥ TM . This
delay is not just the standard two-day spot settlement lag but can be a period of a few weeks,
a few months, or even several years. We will refer to such inflation swaps as “inflation swaps
with delayed payments”.

To see how such inflation swaps have an important economic rationale, consider a com-
mercial property company. Suppose it has debt in the form of fixed-rate loans. It receives
rents from its tenants which it wants to pay out as the inflation-linked leg of an inflation
swap. It will receive fixed payments on the inflation swap which is used to pay its fixed-rate
debt. Often rents will remain constant for a period of 5 years before being reviewed. They
will then be revised upwards to reflect inflation over those intervening five years. So for
example, suppose that the commercial property company wanted to enter into an inflation
swap trade, in which it paid inflation-linked cash flows and it received fixed cash flows. The
company wants to hedge the cash flows that it will receive from its tenants in years 6, 7, 8, 9
and 10. A suitable inflation swap trade would be a strip of five zero coupon inflation swaps,
where the payoffs of the five zero coupon swaps are (we write only the inflation-linked leg
with unit notional) as follows: At the end of year 6, the company pays X5/X0 − 1. At the
end of year 7, it again pays X5/X0 − 1. Likewise, it pays X5/X0 − 1 at the end of years 8,
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9 and 10.
We see that these are zero coupon inflation swaps with delayed payment, with the delay

on the final strip being 5 years. Period-on-period swaps with delayed payments are also
traded in the markets. We will provide formulae for both these types of inflation swap by
computing the relevant convexity adjustments. Note that the issue of delayed payments
should not be confused with the issue of indexation lag. Indexation lag refers to the fact
that the value of the CPI in the denominator of the inflation-linked term in the payoff is,
in fact, the CPI published (typically) a few weeks earlier, which, in turn, was calculated
from consumer prices observed a few weeks before that. This is a different issue (although
it would be possible to relate the two) and we refer the reader to Kerkhof (2005) and Li
(2007).

Limited price indexation (henceforth LPI) swaps are a type of exotic inflation derivative
and are very common in the United Kingdom owing to the rules by which UK pension funds
are governed. We will see that the convexity adjustments required to value inflation swaps
with delayed payments have a further application in the valuation of LPI swaps.

This article is structured as follows: In Section II we introduce the dynamics of nominal
and real zero coupon bond prices and the spot CPI. In Section III we state the convexity
adjustments required to value zero coupon inflation swaps with delayed payment and period-
on-period inflation swaps with delayed payments. To our best knowledge, these results, in
the context of a multi-factor Hughston and Jarrow-Yildirim model, have not appeared in
the literature before, although some similar results (in the context of a two-factor Hull-
White type model) are in Dodgson and Kainth (2006). These results are then applied to the
valuation of limited price indexation (LPI) swaps, aided by the quasi-analytic methodology
of Ryten (2007). A number of examples and comparisons are given in Section IV. We finish
with a brief concluding remark in Section V. The appendix contains proofs of the convexity
adjustment formulae as well as explicit formulae for the valuation of zero coupon inflation
swaps with delayed payment and period-on-period inflation swaps with delayed payments.

II. MODELS FOR BOND PRICES AND THE SPOT CPI

We model the market with the specification of a probability space (Ω,F , Q) with filtration
{Ft}0≤t<∞ generated by a multi-dimensional Brownian motion. The probability measure
Q denotes the risk-neutral measure, and market prices and other information-providing
processes are adapted to {Ft}. Throughout the paper we assume the absence of arbitrage
and the existence of a pricing kernel—these conditions ensure the existence of a unique
pricing measure Q. We let Et[−] denote the expectation in Q conditional on {Ft}.

We denote calendar time by t; time t = 0 will denote the initial time. Let {rN
t } and {rR

t }
denote, respectively, the (continuously compounded) risk-free nominal and real short rate
processes. Let {P N

tT} and {P R
tT} denote, respectively, the price process of a nominal and real

zero coupon bond maturing at T . The spot CPI at time t is denoted by Xt.
A key observation for pricing inflation derivatives is that, for any times t and TM , t ≤ TM ,

we have (Hughston 1998):

XtP
R
tTM

= Et

[
XTM

exp

(
−
∫ TM

t

rN
s ds

)]
. (1)

This follows from the fact that the right side of (1) is the price at time t of an index-linked
bond, which pays the amount XTM

at time TM . Dividing it by Xt we obtain the value in
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real terms of a bond that pays one unit of goods and services at time TM . Mercurio (2005)
uses this relation to value standard zero coupon inflation swaps, and shows how, given the
fixed rates quoted in the markets for these swaps, the term structure of real discount factors
can be obtained.

Now, we introduce the models for the dynamical equations satisfied by nominal zero
coupon bond prices, real zero coupon bond prices, and the spot CPI, within the multi-factor
version of the Hughston and Jarrow-Yildirim model. These are given by:

dP N
tT

P N
tT

= rN
t dt +

KN∑
k=1

σN
ktT dzN

kt, (2)

dP R
tT

P R
tT

=

(
rR
t −

KR∑
k=1

ρRX
k σX

t σR
ktT

)
dt +

KR∑
k=1

σR
ktT dzR

kt, (3)

and

dXt

Xt
=
(
rN
t − rR

t

)
dt + σX

t dzX
t . (4)

Here KN and KR are the number of Brownian motions driving nominal and real zero coupon
bond prices respectively, {dzN

kt}k=1,...,KN
, {dzR

kt}k=1,...,KR
, and {dzX

t } denote standard Q-
Brownian increments. Furthermore, {σN

ktT}k=1,...,KN
and {σR

ktT}k=1,...,KR
are volatility terms,

which are assumed to be deterministic, satisfying σN
kTT = 0, and {σX

t } is the spot CPI
volatility which we also assume to be deterministic. We denote correlations (all assumed
constant) by ρ with appropriate subscripts: Corr(dzN

jt , dzN
kt) = ρNN

jk dt, Corr(dzR
jt, dzR

kt) =

ρRR
jk dt, Corr(dzX

t , dzN
kt) = ρNX

k dt, Corr(dzX
t , dzR

jt) = ρRX
j dt, and Corr(dzN

jt , dzR
kt) = ρNR

jk dt.

III. LIMITED PRICE INDEXATION (LPI) SWAPS

In this section, we will provide a valuation formula for LPI swaps. Before discussing LPI
swaps, we state two preliminary propositions, the proofs of which are in the Appendix A. We
will use them in this section to value LPI swaps. However, as we show in the Appendix B,
they can also be used to value zero coupon inflation swaps with delayed payment and period-
on-period inflation swaps with delayed payments.

Proposition 1 Given the assumptions of Section II, for any times t and TN , 0 ≤ t ≤ TM ≤
TN , the following relation holds:

Et

[
XTM

exp

(
−
∫ TN

t

rN
s ds

)]
= XtP

R
tTM

P N
tTN

P N
tTM

exp

(∫ TM

t

Cs(TM , TN)ds

)
, (5)

where

Cs(TM , TN) =

KN∑
k=1

(
σN

ksTN
− σN

ksTM

)(KR∑
j=1

ρNR
kj σR

jsTM
−

KN∑
j=1

ρNN
kj σN

jsTM

)

+

KN∑
k=1

(
σN

ksTN
− σN

ksTM

)
ρNX

k σX
s . (6)
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We remark that when TM = TN it is straightforward to verify that Cs(TM , TN) = 0, in
which case equation (5) agrees with equation (1).

Proposition 2 Given the assumptions of Section II, we have, for 0 ≤ t < Ti−1 < Ti ≤ TNi
,

Et

[
XTi

XTi−1

exp

(
−
∫ TNi

t

rN
s ds

)]
(7)

= P N
tTi−1

P N
tTNi

P N
tTi

P R
tTi

P R
tTi−1

exp

(∫ Ti

Ti−1

Cs(Ti, TNi
)ds +

∫ Ti−1

t

[As(Ti−1, Ti) + Bs(Ti−1, Ti, TNi
)] ds

)
,

where Cs(Ti, TNi
) is given by (6) and where

As(Ti−1, Ti) =

KR∑
j=1

(
σR

jsTi
− σR

jsTi−1

)(KN∑
k=1

ρNR
kj σN

ksTi−1
−

KR∑
k=1

ρRR
kj σR

ksTi−1

)

+

KR∑
k=1

(
σR

ksTi−1
− σR

ksTi

)
ρRX

k σX
s , (8)

and

Bs(Ti−1, Ti, TNi
) =

KN∑
k=1

KN∑
j=1

ρNN
kj

(
σN

ksTi−1
− σN

ksTi

)(
σN

jsTNi
− σN

jsTi

)

+

KN∑
k=1

KR∑
j=1

ρNR
kj

(
σR

jsTi
− σR

jsTi−1

)(
σN

ksTNi
− σN

ksTi

)
. (9)

We now proceed to the valuation of LPI swaps.
Suppose that today, at time 0, we enter into an LPI swap. The LPI swap is defined via

a set of fixed dates T0 < T1 < T2 < · · · < TM−1 < TM , where T0 = 0. The payment of the
payoff of the swap occurs at time T ∗, where T ∗ = TM . The payoff of the inflation-linked leg
of the swap at time T ∗ is given by

M∏
i=1

min

(
max

(
XTi

XTi−1

, 1 + F

)
, 1 + C

)
,

where C and F are constants with C ≥ F . In practice, F is often zero but we will assume
in the following that C and F can take on any values (positive, negative or zero) provided
that C ≥ F . We see that the role of the constants C and F is to cap and floor the period-
on-period inflation rate over each period.

We remark that when C = ∞ and F = −∞ the product ‘telescopes’ and the LPI swap
has the same payoff as a zero coupon inflation swap. However, when C and F are finite and
when M > 1, we need to price a swap whose payoff is path-dependent. For typical values of
M (between 5 and 40, say), the only feasible methodology to price LPI swaps is by Monte
Carlo simulation, but this is CPU intensive. Hence it would be desirable to have a fast,
even if approximate, quasi-analytic methodology to price them. Such a methodology, based
on the idea of common factor representation, is proposed in Ryten (2007). Note, however,
that Ryten’s model setup is rather different from ours. We will apply Ryten’s idea, in order
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to value LPI swaps, within the setup of our multi-factor version of the model of Hughston
(1998) and Jarrow and Yildirim (2003).

Let us begin by introducing some additional notation. We let QT ∗ denote the probability
measure defined with respect to the numeraire which is the zero coupon bond maturing
at time T ∗. Similarly, we let ET ∗

t [−] denote the expectation with respect to the measure
QT ∗ conditional on {Ft}. Suppose that we have a TM year LPI swap with M periods.
Let Xi denote XTi

/XTi−1
for i = 1, 2, . . . , M . In Li (2007), it is shown that ln Xi for

each i = 1, 2, . . . , M is normally distributed in our model, and that we can calculate the
covariance matrix cov(ln Xi, lnXj) for each i, j. In general, none of the elements of this
covariance matrix vanish because ln Xi is not independent of ln Xj for any i, j. This lack
of independence complicates the problem of pricing an LPI swap. The idea of Ryten (see
also Jackel 2004) is to replace the covariance matrix cov(lnXi, ln Xj) for each i, j by another
matrix, which is close to the actual correlation matrix in some sense, but in which the
off-diagonal elements have a simple structure. This is achieved by generating all the co-
dependence between lnXi and ln Xj through a single common factor (in fact, Ryten also
considers the case of two common factors but we will, for the sake of brevity, only consider
one).

We remark that it is easy to show (Li 2007) that lnXi = lnXTi
/ lnXTi−1

, for each
i = 1, 2, . . . , M , is distributed as multi-variate normal random variables in the measure QT ∗ .
That is to say, ln Xi is Gaussian with deterministic drift and volatility under QT ∗ . Hence
we can write Xi in the form Xi = exp (aizi + bi), where zi ∼ N (0, 1); cov(ln Xi, ln Xj) =
cov(zi, zj)aiaj; and Et [Xi] = exp

(
bi + 1

2
a2

i

)
.

The key idea of Ryten (2007) is to replace Xi by X̂i defined via

X̂i ≡ exp

[
bi + ai

(
âiw +

√
(1 − â2

i )εi

)]
,

where the system {w, ε1, . . . , εM} is a family of independent N(0, 1) variates. The variates

X̂1, . . . , X̂M represent the variates X1, . . . , XM via one common factor w and additional
individual idiosyncratic random variables {εi}i=1,2,...,M . Note that the common factor w is
an abstract factor and does not necessarily correspond to any market-observable.

From Ryten (2007), which in turn references Jackel (2004), we know that when M ≥ 3
we can approximate âk by

âk ≈ exp

[
1

M − 2

(
k̄k −

∑M
i=1 k̄i

2 (M − 1)

)]
,

where k̄k =
∑M

i�=k ln [cov(ln Xi, ln Xk)], k = 1, 2, . . . , M . In the cases for which M = 1 or

M = 2, we do not need an approximation. Indeed, if M = 1 then we have (trivially)
â1 = 1; likewise if M = 2, then we have (from Cholesky decomposition) â1 = 1 and
â2 = Corr (lnX1, lnX2).

Note that the relations ET ∗
0 [X̂i] = ET ∗

0 [Xi] and var[ln X̂i] = var [ln Xi] are valid for all

i = 1, 2, . . . , M and for all value of M . However, if M ≥ 3, then cov(X̂i, X̂j) is only an
approximation to cov(Xi, Xj) when i �= j.

We now apply Ryten’s idea in order to value LPI swaps. By changing the measure to
QT ∗ and using Girsanov’s theorem, the price at time T0 = 0 of the inflation-linked leg of the
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LPI swap is:

E0

[
exp

(
−
∫ T ∗

0

rN
s ds

) M∏
i=1

min

(
max

(
XTi

XTi−1

, 1 + F

)
, 1 + C

)]

= P N
0T ∗E

T ∗
0

[
M∏
i=1

min

(
max

(
XTi

XTi−1

, 1 + F

)
, 1 + C

)]

≈ P N
0T ∗E

T ∗
0

[
M∏
i=1

min
(
max

(
X̂i, 1 + F

)
, 1 + C

)]

= P N
0T ∗E

T ∗
0

[
ET ∗

0

[
M∏
i=1

min
(
max

(
X̂i, 1 + F

)
, 1 + C

)∣∣∣∣∣w
]]

= P N
0T ∗E

T ∗
0

[
M∏
i=1

ET ∗
0

[
min

(
max

(
X̂i, 1 + F

)
, 1 + C

)∣∣∣w]
]

(10)

By assumption the random variables εi are independent, and consequently, conditional on

w, the variates X̂i are also independent, i.e. cov
(

X̂i, X̂j

∣∣∣w) = 0, when i �= j. Therefore, we

see that the conditional expectation of the product in the last but one line of equation (10)
becomes a product of conditional expectations in the last line. We have used ≈ (approxi-

mately equals) in the third line of equation (10) because the variates X̂i are, in general (i.e.
when M ≥ 3 ), only an approximate representation of the variates Xi for i = 1, 2, . . . , M .

In order to evaluate equation (10) we need to compute the QT ∗-expectation of Xi and
the covariance matrix cov(ln Xi, lnXj). The latter is shown in Li (2007) to be given by

cov (lnXi, lnXj) =

Ti−1∫
0

cov(

KR∑
k=1

(σR
ksTi

− σR
ksTi−1

)dzR
ks −

KN∑
p=1

(σN
psTi

− σN
psTi−1

)dzN
ps,

KR∑
k=1

(σR
ksTj

− σR
ksTj−1

)dzR
ks −

KN∑
p=1

(σN
psTj

− σN
psTj−1

)dzN
ps)ds

+

Ti∫
Ti−1

cov(σX
s dzX

s +

KR∑
k=1

σR
ksTi

dzR
ks −

KN∑
p=1

σN
psTi

dzN
ps,

KR∑
k=1

(σR
ksTj

− σR
ksTj−1

)dzR
ks −

KN∑
p=1

(σN
psTj

− σN
psTj−1

)dzN
ps)ds

when j > i, whereas when j = i we have

var (ln Xi) ≡ σ2
ln Xi

=

Ti−1∫
0

var

(
KR∑
k=1

(σR
ksTi

− σR
ksTi−1

)dzR
ks −

KN∑
p=1

(σN
psTi

− σN
psTi−1

)dzN
ps

)
ds

+

Ti∫
Ti−1

var

(
σX

s dzX
s +

KR∑
k=1

σR
ksTi

dzR
ks −

KN∑
p=1

σN
psTi

dzN
ps

)
ds.
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The former can also be computed since it follows from the Girsanov theorem that the
QT ∗-expectation of Xi is

ET ∗
0

[
XTi

XTi−1

]
=

1

P N
0T ∗

E0

[
exp

(
−
∫ T ∗

0

rN
s ds

)
XTi

XTi−1

]
. (11)

The QT ∗-expectation of Xi can then be evaluated explicitly by use of Propositions 1 and 2.
Specifically, when i = 1, we find, since T0 = 0, that (11) implies

ET ∗
0 [Xi] =

P R
0T1

P N
0T1

exp

(∫ T1

0

Cs(T1, T
∗)ds

)
, (12)

whereas when i > 1 we obtain

ET ∗
0 [Xi] =

P N
0Ti−1

P N
0Ti

P R
0Ti

P R
0Ti−1

exp

(∫ Ti

Ti−1

Cs(Ti, T
∗)ds

+

∫ Ti−1

0

[As(Ti−1, Ti) + Bs(Ti−1, Ti, T
∗)] ds

)
. (13)

Furthermore, since Xi is lognormal, we can use the standard result that if we denote by
μlnXi

and σ2
ln Xi

the mean and variance of lnXi, then ET ∗
0 [Xi] = exp

(
μlnXi

+ 1
2
σ2

ln Xi

)
for

i = 1, 2, . . . , M . Hence we obtain the expectation of ln Xi: μlnXi
= ln

(
ET ∗

0 [Xi]
)− 1

2
σ2

ln Xi
.

Now we can use the following well-known result: If X ∼ N (μX , σ2
X), W ∼ N (0, 1), and

ρXW is the correlation between X and W , then X | (W = w) is normally distributed and,
furthermore, E [X | W = w] = μX + ρXW σXw and var [X | W = w] = σ2

X (1 − ρ2
XW ).

We can calculate the correlation between ln X̂i and the common factor w. Indeed, since
ln X̂i is normally distributed with variance a2

i , and since

cov
(
ln X̂i, w

)
= cov

(
ai

(
âiw +

√
(1 − â2

i )εi

)
, w

)
= aiâi,

we deduce that the correlation between ln X̂i and w is âi for each i = 1, 2, . . . , M . Now we
recall that ET ∗

0 [ln X̂i] = ET ∗
0 [ln Xi] = μlnXi

and that var[ln X̂i] = var [lnXi] = σ2
ln Xi

. Then
using the result above we get

ET ∗
0

[
ln X̂i|w

]
= μln Xi

+ âiσln Xi
w,

σ̄2
i ≡ var

[
ln X̂i|w

]
= σ2

ln Xi

(
1 − â2

i

)
,

and
F̄i ≡ ET ∗

0 [X̂i | w] = exp
(
μlnXi

+ âi σln Xi
w + 1

2
σ̄2

i

)
for i = 1, 2, . . . , M .

Finally equation (10) becomes:

P N
0T ∗E

T ∗
0

[
M∏
i=1

(
F̄i − Call

(
F̄i, 1 + C, σ̄2

i

)
+ Put

(
F̄i, 1 + F, σ̄2

i

))]
, (14)
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where Call
(
F̄i, 1 + C, σ̄2

i

)
and Put

(
F̄i, 1 + F, σ̄2

i

)
are, respectively, the undiscounted prices

of a call option with strike 1 + C and a put option with strike 1 + F , in the Black (1976)
formula, when the forward price is F̄i and the integrated variance is σ̄2

i . Note that each term
in the product in equation (14) depends on the common factor w through F̄i and σ̄2

i , and
w has a standard normal N (0, 1) distribution. Hence the price of the inflation-linked leg of
the LPI swap at time 0 (note that when M ≥ 3, it is only an approximation) is:

P N
0T ∗

∫ +∞

−∞

1√
2π

exp

(
−w2

2

) M∏
i=1

(
F̄i − Call

(
F̄i, 1 + C, σ̄2

i

)
+ Put

(
F̄i, 1 + F, σ̄2

i

))
dw.

It follows that we can value LPI swaps with just a single numerical integration.

IV. NUMERICAL EXAMPLES

We now examine some numerical examples. There are different forms that the volatility
functions σN

ktT and σR
jtT can take, but here we will consider the extended Vasicek form in

which we assume

σN
ktT =

σN
k

αN
k

(
1 − e−αN

k (T−t)
)

, σR
ktT =

σR
k

αR
k

(
1 − e−αR

k (T−t)
)

, (15)

where, for each k, σN
k , σR

k , αN
k , and αR

k are positive constants.
We will use the model parameters estimated for GBP in Li (2007). In order to simplify

parameter estimation, we assume that real zero coupon bond prices are driven by a single
Brownian motion so that KR = 1 in equation (3). In addition, we assume that the volatility
of the spot CPI is constant, i.e. σX

t = σX . We assume that there are two Brownian motions
driving nominal zero coupon bond prices so that KN = 2. This assumption adds nothing to
the complexity of the calibration since the associated parameters can be (and were) obtained
by calibrating to the market prices of GBP vanilla interest-rate swaptions (see Li 2007). The
estimated values of the parameters are:⎧⎪⎪⎨

⎪⎪⎩
σN

1 = 0.00649825, αN
1 = 0.06494565, σN

2 = 0.0063321172,
αN

2 = 0.00001557535, σR
1 = 0.006093904, αR

1 = 0.032193009,
σX = 0.0104000, ρNN

12 = −0.46296278, ρRX
1 = 0.03781752,

ρNR
11 = ρNR

21 = 0.518100, ρNX
1 = ρNX

2 = 0.018398113

We will use these parameters to give some numerical examples and comparisons for inflation
swaps with different swap tenors and payment times.

Example 1: The effect of the convexity adjustment on the fixed rate for zero
coupon inflation swaps. Figure 1 shows the fixed rate K on zero coupon inflation swaps,
with a payment delay of 5 years, for swaps of different tenors from 5 years to 25 years. The
interest-rate (both nominal and real) yield curves were the GBP market implied rates as
of June 2007 (see Appendix C for the set of market data). The volatility and correlation
parameters were as above. The fixed rate on the swaps when we evaluate the convexity
adjustment, using Proposition 1, is always lower than the fixed rate we would obtain on the
swaps if we naively assumed that no convexity adjustment was necessary. Furthermore, the
difference increases with increasing swap tenor. At 25 years, i.e. when TM = 25 and TN = 30,
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The fixed rate K (in %) on zero coupon inflation swaps, with a 
payment delay of 5 years, for swaps of different maturities

2.90%

2.95%

3.00%

3.05%

3.10%

3.15%

3.20%

5 10 15 20 25

Maturity of zero coupon inflation swap in years

if  assumed w ith no convexity adjustment         w ith convexity adjustment

FIG. 1:

the difference is more than 0.065% which is, from a trader’s perspective, significant as the
bid-offer spread in the market, for zero coupon inflation swaps, is approximately 0.03%, or
sometimes even less.

Some examples of period-on-period inflation swaps are provided in Li (2007) so here,
in Examples 2 and 3, we will give some examples of the prices of LPI swaps, again using
the volatility and correlation parameters above. For the purposes of these illustrations, we
assumed, for both the examples below, that the interest-rate (both nominal and real) yield
curves were initially flat and that nominal interest rates to all maturities were 0.05 and
real interest rates to all maturities were 0.025, i.e. we assumed P N

0T = exp(−0.05T ) and
P R

0T = exp(−0.025T ). We used Monte Carlo simulation with 130 million runs (65 million
runs plus 65 million antithetic runs) in order to test and benchmark the accuracy of our
application of the Ryten methodology.

Example 2: LPI swaps with floors and caps at (0%, 3%), (0%, 5%), (1%, 4%).
Here we consider three different combinations of floors and caps (which are commonly traded
in the market), namely, (0%, 3%), (0%, 5%), and (1%, 4%). For all three different combi-
nations, we consider LPI swaps where each period is equal to one year, and the number of
periods varies from one period, through 2, 5, 10, 15, 20, 25 to 30 periods and hence the
maturities of the LPI swaps varied from one year to 30 years. We see from Figure 2 that the
fixed rates obtained from the quasi-analytical methodology of Ryten (labelled QA) are very
close to those obtained from Monte Carlo (labelled MC) simulation for shorter maturities (as
explained above, the Ryten methodology is, in fact, essentially exact for M ≤ 2). However,
the differences do increase for LPI swaps with more periods.
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 Fixed rate (in %) on LPI swaps
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FIG. 2:

Example 3: LPI swaps with maturities of 10 years and 25 years . Here we consider
eleven different combinations of floors and caps as indicated in Table 1. We consider LPI
swaps whose maturities were 10 years and 25 years. Again, each period is equal to one year.
We know that the Ryten methodology is essentially exact when M ≤ 2. However, we see
for the LPI swaps with 10 years maturity and 25 years maturity the level of approximation
involved when M ≥ 3. As a rough guide, the bid-offer spread in the market for LPI swaps
is approximately 0.06% (expressed as the fixed rate on the swap). For the LPI swaps
with 10 years maturity, the maximum difference (Table 1, 8th column) between the fixed
rates implied by the Monte Carlo results (6th column) and by the Ryten methodology
(7th column), is less than 0.0019%, which implies very accurate pricing as it is less than one
thirtieth the typical bid-offer spread. For the LPI swaps with 25 years maturity, the accuracy
does deteriorate somewhat. The maximum difference in the fixed rates is approximately
0.053%, which is close to the bid-offer spread.

Having given some examples of the valuation of LPI swaps, we can make one further
comment about the accuracy of the quasi-analytical methodology. In tables 1 and 2, we
observe that the accuracy deteriorates when the cap level is high and the floor level is low.
This might initially seem surprising since in the limiting case that C = ∞ and F = −∞
the LPI swaps become the same as standard zero coupon swaps. However, the reason for
the deterioration in accuracy is that the quasi-analytical methodology approximates the
correlation structure. Although (in the notation of Section III) it is true that ET ∗

0 [X̂i] =

ET ∗
0 [Xi] for all i, and it is also true that ET ∗

0

[∏M
i=1 Xi

]
= ET ∗

0 [XTM
/X0] = P R

0TM
= P R

0T ∗ ,

the price of a standard zero coupon swap, the approximation of the correlation structure

means that ET ∗
0

[∏M
i=1 X̂i

]
does not equal ET ∗

0

[∏M
i=1 Xi

]
, except in the special cases for
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 10 year, 10 period LPI swap     
   Price Price imp. rate  imp. rate  diff 

Cap floor  stan. error Monte Carlo Ryten (QA) MC % QA % rates % 

0.03 0 7.08E-06 0.760519 0.760461 2.28825 2.28746 0.00079 
0.03 0.02 7.33E-06 0.777059 0.777044 2.50856 2.50836 0.00020 

0.032 0.01 7.15E-06 0.767780 0.767724 2.38549 2.38475 0.00075 
0.035 0.005 7.15E-06 0.770922 0.770840 2.42731 2.42622 0.00110 
0.04 0.01 7.21E-06 0.778157 0.778063 2.52303 2.52179 0.00123 

0.045 0.0175 7.33E-06 0.789247 0.789174 2.66821 2.66727 0.00094 
0.0475 0.0025 7.21E-06 0.778593 0.778464 2.52878 2.52708 0.00170 

0.05 0 7.21E-06 0.778669 0.778535 2.52978 2.52801 0.00177 
0.05 0.005 7.21E-06 0.779410 0.779282 2.53953 2.53785 0.00169 
0.06 0 7.21E-06 0.779061 0.778922 2.53493 2.53311 0.00183 
0.12 -0.08 7.21E-06 0.778796 0.778654 2.53145 2.52957 0.00188 

 

Table 1

 25 year, 25 period LPI swap     

   Price Price imp. rate  imp. rate  diff 

cap floor  stan. error Monte Carlo Ryten (QA) MC % QA % rates % 

0.03 0 1.62E-05 0.493509 0.491246 2.19897 2.18018 0.01879 

0.03 0.02 1.87E-05 0.530458 0.529970 2.49455 2.49077 0.00378 

0.032 0.01 1.69E-05 0.509992 0.508136 2.33336 2.31844 0.01492 

0.035 0.005 1.66E-05 0.514297 0.511382 2.36778 2.34451 0.02327 

0.04 0.01 1.71E-05 0.531668 0.528436 2.50389 2.47889 0.02500 

0.045 0.0175 1.82E-05 0.557735 0.555077 2.70033 2.68071 0.01962 

0.0475 0.0025 1.66E-05 0.533227 0.528129 2.51590 2.47651 0.03939 

0.05 0 1.65E-05 0.533657 0.528121 2.51920 2.47645 0.04275 

0.05 0.005 1.67E-05 0.536505 0.531414 2.54103 2.50193 0.03910 

0.06 0 1.65E-05 0.536619 0.530530 2.54190 2.49511 0.04680 

0.12 -0.08 1.63E-05 0.535254 0.528384 2.53145 2.47849 0.05297 

 

Table 2

which M ≤ 2.
For the sake of brevity, we only considered the Ryten methodology for the case of con-

ditioning on one common factor. Ryten (2007) also considers the case of conditioning on
two common factors (which means that evaluating the price of a LPI swap requires a double
numerical integration) and shows, in his model set-up which is different to ours, that (unsur-
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prisingly) this gives a significant improvement in accuracy. We would certainly conjecture
that using two common factors would also significantly improve the accuracy of the prices
of the LPI swaps which we reported in Tables 1 and 2. However, we leave confirmation of
this conjecture for future research.

V. CONCLUSION

In recent years there has been a substantial increase in the demand for more exotic infla-
tion derivative products. Working within a multi-factor version of the model of Hughston
(1998) and Jarrow and Yildirim (2003), we have provided the economic rationale for, and
the valuation formulae for, zero coupon inflation swaps with delayed payment and period-
on-period inflation swaps with delayed payments. We have also valued LPI swaps, with the
aid of the quasi-analytic methodology of Ryten (2007).
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APPENDIX A: PROOF OF PROPOSITIONS 1 & 2

The stochastic discounting term exp
(
− ∫ TN

t
rN
s ds

)
is log-normally distributed and can

be written in the form

exp

(
−
∫ TN

t

rN
s ds

)
= P N

tTN
exp

(
−
∫ TN

t

1

2

KN∑
k=1

KN∑
j=1

ρNN
kj σN

ksTN
σN

jsTN
ds

)

× exp

(∫ TN

t

KN∑
k=1

σN
ksTN

dzN
ks

)
.

If we define the forward CPI at time t to time T by F X
tT , then by no-arbitrage arguments,

we have F X
tT = Xt(P

R
tT /P N

tT ), where F X
tT is log-normally distributed (see, for example, Crosby

2007). Since

F X
TM TM

= XTM

P R
TM TM

P N
TM TM

= XTM
,

we find

Et

[
exp

(
−
∫ TN

t

rN
s ds

)
XTM

]
= Et

[
exp

(
−
∫ TN

t

rN
s ds

)
F X

TMTM

]
.

This expectation can be computed by noting that it is the expectation of a product of
two log-normally distributed random variables, each of which has deterministic mean and
variance terms. Li (2007) provides full details.

The proof of Proposition 2 is very similar to that for Proposition 1 except that now we
will compute an expectation involving three log-normally distributed random variables.

APPENDIX B: INFLATION SWAPS WITH DELAYED PAYMENTS

In this appendix, we will value two types of inflation swap, namely, zero coupon inflation
swaps with delayed payment and period-on-period inflation swaps with delayed payments.
The key point about these types of inflation swap is that they have the same payoff as the
corresponding inflation swap with no delayed payments but the payoff is paid at a later
time. When the delay in payment is very small (for example, a few weeks), we would,
intuitively, expect the difference between the values of the corresponding swaps with no
delayed payments and with delayed payments to be small. Conversely, the difference in
values can be substantial when the delay in payments is, for example, a few years. As we
noted in Section I, inflation swaps with delayed payments of five years or more are quite
commonly traded in the market.

1. Zero coupon inflation swaps with delayed payment

As mentioned above, it is now relatively common to trade zero coupon inflation swaps
where the payment is delayed for some time, perhaps several years or more, compared to
the payoff of a standard zero coupon inflation swap. Unlike with a standard (i.e. with no
delayed payment) zero coupon inflation swap, the valuation of zero coupon inflation swaps
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with delayed payment will involve a convexity adjustment which is model-dependent. We
can explicitly compute it within our model setup by using Proposition 1.

Suppose that today, at time 0, we enter into a zero coupon inflation swap with delayed
payment. We denote the maturity of the swap by TM and the payment time by TN ≥ TM .
We wish to value the swap, at time t, where 0 ≤ t ≤ TM ≤ TN . The payoff of the zero
coupon inflation swap with delayed payment is still N (XTM

/X0 − 1)−N
(
(1 + K)TM − 1

)
,

where K is the fixed rate on the swap and N is the notional amount, but this is paid at time
TN ≥ TM . The value, at time t, of the zero coupon inflation swap with delayed payment is:

Et

[
exp

(
−
∫ TN

t

rN
s ds

)(
N

(
XTM

X0

− 1

)
− N

(
(1 + K)TM − 1

))]

= Et

[
N exp

(
−
∫ TN

t

rN
s ds

)(
XTM

X0
− (1 + K)TM

)]

=
N

X0
Et

[
XTM

exp

(
−
∫ TN

t

rN
s ds

)]
− NP N

tTN
(1 + K)TM

=
N

X0

XtP
R
tTM

P N
tTN

P N
tTM

exp

(∫ TM

t

Cs(TM , TN)ds

)
− NP N

tTN
(1 + K)TM . (B1)

Note that in obtaining the last line we have used Proposition 1. Compared to the value
of a standard zero coupon inflation swap with no delayed payment, we see that there is an

extra term (P N
tTN

/P N
tTM

) e
� TM
t Cs(TM ,TN )ds in the inflation-linked leg.

2. Period-on-period inflation swaps with delayed payments

Our aim now is to value, at any time t, a period-on-period inflation swap with delayed
payments. Proposition 2 will be the key to this.

Suppose that today, at time 0, we enter into a period-on-period inflation swap with
delayed payments. The swap is defined via a set of fixed dates T0 < T1 < T2 < · · · <
TM−1 < TM , where T0 = 0. These dates are usually approximately one year apart but they
need not be. As with a standard interest-rate swap, a period-on-period inflation swap is
made up of a series of swaplets. The key issue is that the value of the payoff of each swaplet
is the same as the payoff of the corresponding swaplet of a period-on-period inflation swap
with no delayed payments but now the payment is made at time TNi

which is some time
greater than or equal to Ti. The payoff of the ith swaplet, for i = 1, 2, . . . , M , at time TNi

,
is Nτ I

i

(
XTi

/XTi−1
− 1
)− NτF

i K, where K is the fixed rate on the swap, N is the notional

amount, τ I
i is the day-count adjusted time from Ti−1 to Ti for the floating (inflation-linked)

leg, and τF
i is the day-count adjusted time from Ti−1 to Ti for the fixed leg.

The value at time t of the swaplet with delayed payment (TNi
≥ Ti) is

Et

[
exp

(
−
∫ TNi

t

rN
s ds

)(
Nτ I

i

(
XTi

XTi−1

− 1

)
− NτF

i K

)]

= Nτ I
i Et

[
exp

(
−
∫ TNi

t

rN
s ds

)
XTi

XTi−1

]
− NP N

tTNi
(τ I

i + τF
i K). (B2)

To value the floating (inflation-linked) side, we have to consider separately two different
cases depending upon whether t ≥ Ti−1 or t < Ti−1.
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In the first case for which Ti−1 ≤ t ≤ Ti, the value of XTi−1
is known at time t. Therefore,

we can take XTi−1
outside of the expectation in (B2) and obtain, from Proposition 1,

Et

[
exp

(
−
∫ TNi

t

rN
s ds

)
XTi

]
= XtP

R
tTi

P N
tTNi

P N
tTi

exp

(∫ Ti

t

Cs(Ti, TNi
)ds

)
. (B3)

Substitution of this expression in the right side of (B2) then yields

Nτ I
i

Xt

XTi−1

P R
tTi

P N
tTNi

P N
tTi

exp

(∫ Ti

t

Cs(Ti, TNi
)ds

)
− NP N

tTNi
(τ I

i + τF
i K).

In the second case for which 0 ≤ t < Ti−1 we use the result of Proposition 2 to obtain

Nτ I
i P N

tTi−1

P R
tTi

P R
tTi−1

P N
tTNi

P N
tTi

exp

(∫ Ti

Ti−1

Cs(Ti, TNi
)ds +

∫ Ti−1

t

[As(Ti−1, Ti) + Bs(Ti−1, Ti, TNi
)] ds

)
−NP N

tTNi
(τ I

i + τF
i K).

Therefore, we can value a period-on-period inflation swap with delayed payments by sum-
ming up the value of all the swaplets, bearing in mind the two distinct expressions arising
from the case Ti−1 ≤ t ≤ Ti and the case 0 ≤ t < Ti−1.

Note that when Ti = TNi
, Bs(Ti−1, Ti, TNi

) and Cs(Ti, TNi
) in (9) and (6) vanish. Hence,

one can confirm, after some algebra, that the results we have just given, in the case of
extended Vasicek bond volatilities (see equation (15)), reduce to the same as those given in
Mercurio (2005) for the value of a period-on-period inflation swap with no delayed payments.

APPENDIX C: MARKET DATA FOR EXAMPLE 1

Tenor Nominal Discount Factors Real Discount Factors

5 0.747665196 0.863178385

10 0.574072261 0.777518375

15 0.450566319 0.717981039

20 0.361027914 0.674313663

25 0.301528182 0.657905735

30 0.242028449 0.614217677


