Section 4.1: Extrema on an interval

The graph of $f(x)=-2 x^{3}+9 x^{2}+4$ is shown at left. Using the graph, write down the open x-intervals over which $f(x)$ is

Increasing:

Decreasing:

Increasing and Decreasing Functions.

1. $f(x)$ is increasing on an interval if $f^{\prime}(x)>0$ on that interval.
2. $f(x)$ is decreasing on an interval if $f^{\prime}(x)<0$ on that interval.

Example 1. Use the above criteria to determine (verify) the intervals where $f(x)=-2 x^{3}+9 x^{2}+4$ is increasing and decreasing.

A "Peak" is a Relative/Local Maximum of f
A "Valley" is a Relative/Local Minimum of f
Notes:

1. Relative Max and Mins are y-values. They occur at x-values
2. Together, Relative Max and Relative Mins are called Relative/Local Extrema

Using the graph above, f has
Relative Maxima at $x=$

Relative Minima at $x=$

Critical Numbers/Values and Critical Points.

An x-value c in the domain of $f(x)$ is called a critical number/value if EITHER $f^{\prime}(c)=0$ OR $f^{\prime}(c)$ does not exist. The corresponding point $(c, f(c))$ is called a critical point.

From the graph above, f has critical numbers at $x=$
Notes:

1. Relative extrema can only occur on OPEN intervals (not endpoints)*
2. Relative extrema can only occur at critical points.
3. Not all critical points correspond to Relative Extrema.

Example 1 (continued). Find the critical points of $f(x)=-2 x^{3}+9 x^{2}+4$

Example 2. Find the critical points of $f(x)=(x-1)^{2 / 3}+2$

The First Derivative Test or Relative Extrema. (A process for determining which critical values are actually relative extrema of $f(x)$ based on first derivative information)
Steps:

1. Differentiate $f(x)$ to find the critical values c of $f(x)$.
2. Set up a number line chart testing between all critical values (and any discontinuities).
3. Select convenient values from the created intervals, then plug into the FACTORED form of $f^{\prime}(x)$ (if possible) to determine the SIGN of the derivative on that interval.
4. Draw your conclusion: at each critical value, based upon the following, $(c, f(c))$ is
a. A Relative Maximum if $f^{\prime}(x)>0$ for $x<c$ and $f^{\prime}(x)<0$ for $x>c$.

b. A Relative Minimum if $f^{\prime}(x)<0$ for $x<c$ and $f^{\prime}(x)>0$ for $x>c$.

c. Not a Relative Extremum if $f^{\prime}(x)$ has the same sign on both sides of $x=c$.

5. (IMPORTANT) Write a concluding statement discussing the type of Relative Extrema each critical value might be based up the appropriate sign change (or not) of $f^{\prime}(x)$ at $x=c$.

Example 2 (continued). Find the relative extrema of $f(x)=(x-1)^{2 / 3}+2$, then sketch the graph.

For each of the following examples, find and justify the relative extrema of each function, if they exist. Sketch a graph of the function. Also, list the open intervals over which the function is increasing and/or decreasing.

Example 3. $f(x)=x^{3}-3 x^{2}+3 x-1$

Example 4. $f(x)=\frac{5}{x^{2}-1}$

Example 5. Find the critical points of $f(x)=x+\sin 2 x$ in the interval $[0,2 \pi]$. Determine what kind (if any) which kind of Relative Extremum each critical point is. Be sure to justify. Sketch the graph of $f(x)$ on the interval $[0,2 \pi]$.

