Debugging GPU Stream Programs Through
Automatic Dataflow Recording and Visualization

Qiming Hou*

*Tsinghua University

Abstract

We present a novel framework for debugging GPU stream programs
through automatic dataflow recording and visualization. Our de-
bugging system can help programmers locate errors that are com-
mon in general purpose stream programs but very difficult to debug
with existing tools. A stream program is first compiled into an in-
strumented program using a compiler. This instrumenting compiler
automatically adds to the original program dataflow recording code
that saves the information of all GPU memory operations into log
files. The resulting stream program is then executed on the GPU.
With dataflow recording, our debugger automatically detects com-
mon memory errors such as out-of-bound access, uninitialized data
access, and race conditions — these errors are extremely difficult to
debug with existing tools. When the instrumented program termi-
nates, either normally or due to an error, a dataflow visualizer is
launched and it allows the user to examine the memory operation
history of all threads and values in all streams. Thus the user can an-
alyze error sources by tracing through relevant threads and streams
using the recorded dataflow.

A key ingredient of our debugging framework is the GPU inter-
rupt, a novel mechanism that we introduce to support CPU function
calls from inside GPU code. We enable interrupts on the GPU by
designing a specialized compilation algorithm that translates these
interrupts into GPU kernels and CPU management code. Dataflow
recording involving disk I/O operations can thus be implemented as
interrupt handlers. The GPU interrupt mechanism also allows the
programmer to discover errors in more active ways by developing
customized debugging functions that can be directly used in GPU
code. As examples we show two such functions: assert for data
verification and wat ch for visualizing intermediate results.

Keywords: GPGPU, Stream Programming, Debugging, Interrupt

1 Introduction

To utilize the graphics processing unit (GPU) for general purpose
computation, several high level languages have been developed re-
cently, including CUDA, Brook+, Compute Shader and OpenCL
[Lefohn et al. 2008]. These languages are based on the stream pro-
cessing model, which matches the GPU’s underlying stream archi-
tecture [Buck et al. 2004]. Programmers develop GPU applications

*e-mail: hqmO3ster @ gmail.com
fe-mail: kunzhou@acm.org
te-mail: bainguo @microsoft.com

Kun Zhou'
tZhejiang University

Baining Guo**

$Microsoft Research Asia

I\

Instrumenting compiler GPU

]

i i

' '

] 1

' i

: 1

'

User 1)| Add dataflow recording | d 1

ST - ' % nstrumente :
' ; rogram

! Translate interrupts | prog E

i '

. 1

T E ¢Debug info l !

! '

(] ' Dataflow visualizer Recorded E

I ecorde I

]]

R N Thread Stream < dataflow '

1

|

'

]
;
]

Programmer

Figure 1: System architecture of our debugging framework.

by writing GPU stream programs, in which data is organized into
uniform streams of elements and individual functions called ker-
nels are applied to all elements of input streams in parallel to gen-
erate output streams. Both gather and scatter memory operations
are allowed in GPU programs. While these C-like languages sig-
nificantly reduce the difficulty of stream programming, debugging
general purpose stream programs remains an open problem.

Most existing GPU debugging tools are developed specifically for
shader debugging. A shader has a simple, fixed dataflow [Microsoft
2007; NVIDIA 2008c]. Within individual rendering passes, there
is a predefined correspondence between output vertices/pixels and
shader threads. Erroneous shader threads can easily be located by
visualizing shader outputs in the graphics pipeline. The error source
can then be analyzed via simple means such as single stepping
and visualization of graphics objects (textures, frame buffers, etc.).
While multi-pass shaders can achieve highly complicated dataflow,
typical shader debuggers still view multipass dataflow as simple,
pre-defined dataflow between render-targets, textures and vertex
buffers in individual passes. Thread-level inter-pass relationships
are lost.

Debugging general purpose stream programs is a much more chal-
lenging problem. The reason is two-fold. First, a complex stream
program usually requires multiple kernels and lots of streams. The
dataflow between kernels is controlled by the programmer and can
be arbitrarily complex. Since errors may propagate through the
dataflow, an error in one kernel can go through many passes to man-
ifest itself in another seemingly unrelated, perfectly correct kernel.
In such cases, visualizing the outputs alone cannot locate the orig-
inal error source among the kernels or threads. The programmer
has to analyze the error source by investigating all possible kernels
one by one, which is very time consuming and error prone. Sec-
ond, the dataflow itself is a source of error. Dataflow errors like
race conditions are non-existent in previous shader programming
but are realistic threats to stream programming. A race condition is
a situation where an output depends on execution order of two or
more threads. Errors associated with race conditions are typically

In this paper, the term “stream program” is interpreted as a multi-
threaded program where the threads may be scheduled in any manner to
hide memory/instruction latency.

non-deterministic and difficult to reproduce and detect manually.

In this paper we present a novel framework for debugging general
purpose stream programs through automatic dataflow recording and
visualization. As shown in Fig. 1, a stream program is first com-
piled using an instrumenting compiler. This compiler automatically
inserts dataflow recording code into the original program to save the
addresses, values and source code positions of all GPU memory op-
erations into log files, and then generates an instrumented program
that can be executed on the GPU. When the instrumented program
terminates, either normally or due to an error, a dataflow visualizer
is launched to analyze the recorded dataflow. Since the memory
operation history of all threads and values in all streams has been
recorded, the user can effectively analyze error sources by tracing
through relevant threads and streams using the recorded dataflow.
Another advantage of dataflow recording is that the instrumenting
compiler can automatically insert code to perform runtime detec-
tion of memory errors on all streams. Several common errors, such
as out-of-bound access, uninitialized data access and race condi-
tions, are automatically detected during execution. Once such an
error is detected, its information is recorded. The program is then
aborted and the dataflow visualizer is launched to help the program-
mer locate the error.

A key ingredient of our debugging framework is the GPU interrupt,
a novel mechanism that we introduce for calling CPU subroutines
as normal functions from inside GPU code. The GPU interrupt is
analogous to a software interrupt on the CPU: at each interrupt call,
the processor context (i.e., the contexts of all calling threads) are
saved and the interrupt handler, a CPU subroutine, is then called
to operate on the saved thread contexts from which the threads re-
sume. The interrupt handler has a global view of the thread contexts
and can efficiently process contexts from all threads en masse. Cur-
rently, our GPU interrupt is achieved by a specialized compilation
algorithm that effectively translates interrupts to GPU kernels and
CPU management code.

The GPU interrupt is an extremely powerful debugging mecha-
nism. Using GPU interrupts, our instrumenting compiler first in-
serts into the original stream program dataflow recording interrupts
which handle disk I/O, and then translates the program along with
these interrupts to a new stream program. Because the instrumented
program runs directly on the GPU, it remains faithful to the origi-
nal stream program in hardware specific behaviors. Moreover, the
performance overhead for debugging is minimized. In all our ex-
periments, the instrumentation introduces only a moderate (3-4x)
performance overhead. As a result, errors can be reproduced inter-
actively.

An additional benefit of the GPU interrupt is that it allows the pro-
grammer to actively discover errors by developing his/her own de-
bugging functions as interrupt handlers. These customized debug-
ging functions can be called inside GPU code for error discovery
in a more controlled manner. For example, simple debugging func-
tions like assert are useful for detecting errors (see Listing 1).
Another example is wat ch described in Section 4.4, which can be
used to visualize values as colored bullets and is thus more intuitive
and effective than a printf-style debug.

The remainder of this paper is organized as follows. The following
section briefly reviews related work. Section 3 describes the syntax
of the GPU interrupt as well as how to design an efficient com-
pilation algorithm for GPU interrupts. Section 4 presents the ac-
tual debugging framework, including dataflow recording, automatic
memory error detection, dataflow visualization and some custom
debugging functions. Several debugging examples are described in
Section 5, and the paper concludes with discussions about future
work in Section 6.

2 Related Work

Most existing GPU debuggers are designed for the graphics
pipeline and programmable shading [Purcell 2005; Microsoft 2007;
NVIDIA 2008c]. See [Owens et al. 2007] for an excellent survey.
Among these works, [Duca et al. 2005] presented a debugging sys-
tem that allows the analysis of the complete rendering pipeline. In
their system, programmers can write SQL-style queries to exam-
ine graphics states, including buffer data, shader variables, and the
fixed dataflow between vertices and fragments. [Strengert et al.
2007] proposed a system specialized for shader debugging. Their
system provides single stepping and variable watches of shaders
using program instrumentation. Designed for the graphics pipeline,
these debuggers cannot handle the complicated dataflow in stream
programs for general purpose computation.

The CUDA framework provides built-in debugging support based
on device emulation [NVIDIA 2008b]. By emulating all GPU code
on the CPU, CPU functions such as assert and printf can be
called in kernels. However, device emulation seriously hinders us-
ability for two reasons. First, CPU emulation is over two orders of
magnitude slower than the GPU. As a result, many real-time ap-
plications can only be debugged off-line. Second, CPU emulation
may fail to reproduce some bugs occurring on the GPU as noted in
[NVIDIA 2008b]. For example, CPUs and GPUs may not follow
the same floating point standards. The result is that the same op-
eration would yield different results, making it hard to reproduce
precision related bugs (see the tessellation example in Section 5.3).
Also, emulated threads are typically scheduled in a more determin-
istic manner on the CPU than the actual GPU, which significantly
reduces the occurrence of race conditions. In contrast, the instru-
mented programs generated by our debugging system run directly
on the GPU with moderate (3-4 x) performance overhead, and can
reproduce all bugs in the original program.

NVIDIA has also released a CUDA-GDB debugger that runs di-
rectly on the GPU?. While that solves the emulation related prob-
lems mentioned above and provides a way to debug individual ker-
nels, it still does not take dataflow into account, and thus cannot
help to analyze and debug errors propagated through dataflow ker-
nels. Also, our debugger can be easily ported to architectures with-
out native GDB support like Compute Shader and OpenCL.

[Boyer et al. 2008] recently proposed a method to automatically
detect CUDA shared memory race conditions and bank conflicts by
program instrumentation. However, their work is limited to shared
memory related analysis within a single kernel and ignores global
dataflow. In addition, their work requires the program to be exe-
cuted in device emulation mode and thus causes a slowdown of up
to 800x when compared to a non-instrumented execution on the
actual GPU.

Embedding CPU code in GPU code has been investigated in
BSGP’s require construct [Hou et al. 2008]. require resem-
bles our GPU interrupt mechanism in that both rely on context sav-
ing. However, require only allows CPU code to be executed at
barriers, i.e., natural kernel terminations. In contrast, the GPU in-
terrupt can be inserted anywhere in a kernel. In addition, the GPU
interrupt can take parameters from the GPU and return values to the
GPU in a function-like manner.

Record/replay techniques have been used to debug traditional par-
allel programs on the CPU [Ronsse and Bosschere 1999; Ronsse
et al. 2003]. However, these works focus on recording memory op-
eration orders, which is significantly less useful than dataflow in

2Currently, CUDA-GDB is only supported on Linux. Also, two GPUs
are required to run an application with graphics user interface (GUI) when
debugging — one for debugging and one for the application.

GPU programs. In addition, CPU debuggers typically assume a
small number of threads (tens to hundreds). They may not scale
well to GPUs, on which it is common to have millions of threads.

3 GPU Interrupt

In this section we first introduce the syntax of our GPU interrupts.
Then we discuss several challenging issues in designing an efficient
interrupt compilation algorithm in Section 3.2 and present the algo-
rithm itself in Section 3.3. Finally, we go over some extensions and
limitations.

For simplicity we limit our discussion to CUDA since it is the state-
of-the-art GPU programming language for general purpose compu-
tation. Our GPU interrupts and debugging framework should work
equally well with any other GPU programming language.

3.1 Syntax

In CUDA, each function has its type which specifies whether it ex-
ecutes on the CPU or the GPU, and whether it is callable from the
CPU or the GPU. As illustrated in Table 1, currently there are three
types of functions: __host__, __device__and __global__. Asan
extension of these languages, we introduce a novel function type,
__interrupt_., which specifies a CPU function callable from the
GPU.

[Caller | CPU function | GPU function |
CPU __host__ __global__
GPU | _interrupt__ | _device__

(our extension)

Table 1: Function types in CUDA and our interrupt extension. The
__host__qualifier declares a CPU function that is callable from the
CPU only, __global__ declares a GPU function that is callable
Jfrom the CPU only, and __device__declares a GPU function that
is callable from the GPU only. Our __interrupt__declares a
CPU function that is callable from the GPU only.

An interrupt can be called from any GPU code position, including
inside a loop or a control flow instruction. Since it is a CPU func-
tion, it can call any __global__function inside its implementation.
Interrupt calling can be even nested or recursive, i.e., an interrupt
can be called in kernels which are invoked by other interrupt han-
dlers or its own handler (see Appendix for an example).

We now demonstrate the interrupt syntax using an example. List-
ing 1 is a triangle normal computation routine written in CUDA
with GPU interrupts. assert is used to detect degenerate tri-
angles. It calls the assertfail interrupt to display error mes-
sages when the assertion fails. As illustrated in line 24, calling
an interrupt is similar to calling a GPU function. In function im-
plementation, an interrupt is similar to a CPU function with a
few exceptions. The function parameters are considered as GPU
lists of their declared types, e.g., the rank in Listing 1. The
user can get corresponding GPU pointers using the .d member in
the GPU list structure. The number of threads calling the inter-
rupt is also passed to the implementation as an implicit parameter
interrupt::size.

3.2 Compilation Challenges

In complex CUDA programs, threads running the same kernel may
take different execution paths due to control flow instructions. The
differences in execution path among threads will be reinforced by
interrupts. Different threads in the same kernel launch may have
different interruption status, i.e., threads may be interrupted at dif-
ferent locations and some threads may terminate without calling

Listing 1 Normal computation with degeneracy detection

1 _device_. void assert (int flag);

2 _global__ void calcnormal (float3x N, float3x P, int n){
3 int id=threadIdx.x+blockIdx.x*blockDim.x;

4 if (id>=n) return;

5 float3 v0=P[id*3], v1=P[idx3+1], v2=P[id*3+2];

6 vl-=v0; v2-=v0;

7 float3 NO=cross(vl,v2);

8 assert (length (NO) >1le-5£f* (dot (v1l,vl) +dot (v2,v2)));

9 N[id]=normalize (NO);
10 }
11
12 _interrupt_. void assertfail (int rank){
13 int n=interrupt::size;
14 int* pr=new int[n];
15 cuMemcpyDtoH (pr, rank.d, nxsizeof (int)) ;
16 for(int i=0;i<n;i++)
17 printf ("Assert failed at thread %d\n",pr[i]);
18 delete pr;
19 exit (1);
20 }
21
22 _device__ void assert (int flag){
23 if (!'flag)
24 assertfail (threadIdx.x+blockIdx.xxblockDim.x) ;
25 }

any interrupt at all. For example, in Listing 1, most threads may
pass the verification and will not call assertfail. In current
graphics hardware, however, the only known way to transfer the
control from the GPU to the CPU is by kernel termination, which
is the same for all threads. The compilation algorithm thus has to
make all threads terminate together, while maintaining the illusion
of an inhomogeneous thread state for the original kernel. This re-
sults in two challenging issues in designing an efficient compilation
algorithm for interrupts.

First, the interrupt processing mechanism has to be carefully de-
signed to minimize overhead. A naive approach would be to test
each thread’s interruption status and then call the interrupt individ-
ually for each thread that will be interrupted. Unfortunately, this
approach would result in intolerable overhead due to the high la-
tency in each CPU/GPU data transfer operation. To address this
issue, we first group threads with the same interruption status to-
gether on the GPU. Within each group, the interrupt handler and
interruption position is the same. This allows interrupt processing
to be performed only once for each group instead of for each thread.
Furthermore, we combine parameters from all threads in the same
group together and pass them to interrupt handlers as GPU tem-
porary streams. This allows interrupt handlers to have full control
over CPU/GPU data transfers. A handler may even invoke other
kernels to process parameters on the GPU and thus avoid copying
data back altogether. As a byproduct of this mechanism, our system
allows nested and recursive interrupts. An interrupt may be called
in kernels invoked by other interrupt handlers as well as its own
handler.

The second challenge is resuming interrupted threads. Since the
only way to transfer the control from the GPU to the CPU is by
kernel termination, each thread has to be terminated at each inter-
rupt. The kernel has to be re-launched later to resume the inter-
rupted threads. Since each thread may be interrupted at a different
position, we need to know the corresponding instruction pointers to
correctly resume the interrupted threads. However, GPU instruction
pointers are not directly accessible on current GPUs. Our solution
to this problem is also based on the thread grouping scheme. Each
thread stores a group ID when it reaches an interrupt or terminates
normally. When the threads are re-launched, a switch statement
based on the group ID is executed at the beginning of the kernel to
jump to the corresponding address.

3.3 Compilation Algorithm

In the following we use Listing 1 to explain the compilation algo-
rithm. The pseudo code after compilation is shown in Listing 2°.
The algorithm works on a per-kernel basis. For each kernel that
calls at least one interrupt, the following steps are performed:

. Translate interrupt call.

. Add return address dispatch code to the kernel.

. Add interrupt processing code after kernel launch.
. Translate interrupt handlers.

. Add a loop to repeatedly launch the kernel and process the
interrupt until all threads have reached kernel end.

W A W N =

In Step 1, the interrupt call is translated into a sequence of state-
ments. For example, the assertfail in Listing 1 is translated
into lines 24 to 29 in Listing 2 as follows:

e Store interrupt parameters (-_in in line 24).

e Write interrupt ID to a temporary stream (--ipid in line 25).
Normal termination is also associated with an ID. This ID is
written to __ipid at the original kernel termination (line 33).

e Save processor context (-_ctx in line 26).

e Jump to kernel end (the return in line 27).

e A label for the dispatch code to jump to in next launch
(_positionO in line 28).

e Restore processor context (line 29).

e Load interrupt return value, if any. As assertfail does not
return any value, there are no such statements in Listing 2.

Note that each thread in a kernel launch can either call an interrupt
or terminate normally. Since the kernel in Listing 1 has only one
interrupt call, each thread’s interruption state (i.e., the interrupt ID
__ipid) has only two possible values, O for interrupted and 1 for
normal termination. In case that the kernel contains multiple inter-
rupt calls, the interrupt ID is no longer a 0/1 value. A distinct ID
value is assigned for each interrupt call and the normal thread termi-
nation. Normal termination is assigned with the maximum ID. We
also assign consecutive IDs to calls to the same interrupt at different
program positions.

The context saving requires some special care. To avoid excessive
GPU memory consumption, temporary streams allocated for con-
text saving have to be minimized. In [Hou et al. 2008], a minimum
flow algorithm is proposed for temporary stream allocation. How-
ever, it assumes context saving to be only performed at barriers,
which is not necessarily true in our case. To address this problem,
we adopt the graph coloring algorithm described in [Hack et al.
2006] to allocate temporary streams. In this algorithm, the kernel is
first converted to static single assignment (SSA) form as in [Cytron
etal. 1991]. We then construct an interference graph for active vari-
ables at interrupts by using these variables as nodes and drawing an
edge between each variable pair that coexists at the same interrupt.
Each valid temporary stream allocation scheme corresponds to a
vertex coloring of this graph. By operating on the SSA form, the
graph is guaranteed to be chordal, and optimal coloring can be com-
puted in polynomial time. See [Hack et al. 2006] for algorithmic
details and proofs.

In Step 2, a switch statement (lines 9 ~ 11) is added to jump back to
interrupt return points like __position0. Note that the statement
is not executed in the initial kernel launch. It is only executed in

3Note that the pseudo code is only meant for illustration. The actual
compiler works on a non-human-readable intermediate representation in-
stead of source code.

Listing 2 Pseudo code of translated Listing 1

//modified kernel
template<int __first>
_global__ void _true_calcnormal (
float3x N, float3x P, int n,
void* __in, int* __ipid, void* _ctx, int ,,sz){
//dispatch code
int __rank=threadIdx.x+blockIdx.x*blockDim.x;
if (!__first){
switch (__ipid[-_rank]){
case 0:goto _position0;
case l:return;

}

//begin of original kernel
int id=threadIdx.x+blockIdx.x*blockDim.x;
if (id>=n)goto __oldreturn;
float3 v0=P[id*3], v1=P[id*3+1], v2=P[idx3+2];
vl-=v0; v2-=v0;
float3 NO=cross(vl,v2);
//expanded assert
if(!(length(NO)>1e—5f*(dot(vl,v1)+dot(v2,v2)))){
//expanded interrupt assertfail (rank)
//save parameter

((intx)__in) [__rank]=threadIdx.x+blockIdx.x*blockDim.x;

_ipid[--rank]=0;
.contextsave (._rank, __ctx,__sz,id,NO);
return;

_position0:
_.contextload(.-rank,_ctx,_.sz,id,NO);

N[id]=normalize (NO);
_oldreturn:
_ipid[.rank]=1;

_host__ void assertfail (voidx __in_sorted, int Anthread){
//get parameter streams from base, size, offset
stream<int> rank;
rank=get_substream<int> (__in_sorted, __nthread, 0);
//begin of original code
int n=_nthread;
int* pr=new int[n];
cuMemcpyDtoH (pr, rank.d, nxsizeof (int)) ;
for(int i=0;i<n;i++)

printf ("Assert failed at thread %d\n",pr[i]);
delete pr;
exit (1);

}

//kernel launches replaced by calls to this function
_host__ void calcnormal (float3x N, float3x P, int n,
launch.dims /* block/grid dimensions */){
int __sz=get_thread count (launch. dims);
int* __ipid=new_stream(sizeof (int)*_sz);
voidx __in=new_stream(sizeof (int)*__sz);
voidx __in_sorted=new_stream(sizeof (int)*__sz);
voidx __ctx=new._stream((sizeof (int)+sizeof (float3))*__sz);
//the interrupt handling loop
for (int first=l;;first=0){
if (first)
__true_calcnormal<l><<<launch dims>>> (
N,P,n,
_-ipid, -in,_ctx, __sz);
else
__true_calcnormal<0><<<launch dims>>> (
N,P,n,
_ipid, _in,_ctx,__sz);
//sort _in with respect to __ipid
//returns # threads at each ip
int _interrupt_sizes[2];
void* __in_sorted[1l];
__sort_ipid(
__interrupt_sizes, _in_sorted,__in,__ipid, 2);
if (.-interrupt_sizes[0])
assertfail (__in_sorted[0],__interrupt_sizes[0]);
_.del_streams (..in_sorted, 1) ;
//break if all threads have ended
if (__interrupt_sizes[1l]==n) {break; }
¥
del_stream(__ctx);
del_stream(_.in_sorted) ;
del_stream(--in) ;
del_stream(__ipid);

resumed launches after interrupt processing. This is represented by
the __first template parameter in Listing 2.

In Step 3, code is added after kernel launch to group together
threads with similar interruption states. The routine, __sort_ipid
in line 72, compacts interrupt input parameters to a temporary
stream __in_sorted and computes the number of interrupted
threads, __interrupt_sizes[0], as well as the number of ter-
minated threads __interrupt_sizes[1]. Threads are sorted
with respect to their interrupt IDs. For efficiency, the sort is per-
formed on the GPU. Because the number of different interrupt calls
in a kernel is usually small, a base 2 radix sort suffices. Since con-
secutive IDs are assigned to different calls to the same interrupt in
Step 1, the sort organizes the parameters consecutively into a single
list. The interrupt handler is then executed once for all calls. This
way, calls to the same interrupt at different code positions can be
combined and processed together efficiently.

Note that the temporary streams for interrupt input parameters have
to be allocated before kernel launch because GPUs do not allow
memory allocation within kernels. Therefore, we need to reserve
sufficient memory for all interrupts. Observing that each thread in
a launch can call at most one interrupt, we share streams among
parameters of different interrupts to avoid excessive memory con-
sumption. We do this by packing similarly sized parameters (e.g.,
int and float) together. For each size s, we compute ng, the
maximal number of parameters having size s among all interrupts
called. Then n, streams with element size s are reserved prior to
kernel launch. Parameter streams for each interrupt are allotted
from these n s streams independently. For example, when two inter-
rupts interruptA(int a) and interruptB(int b, int
c) are called in the same kernel, two streams are reserved. The pa-
rameters a and b are stored in one stream, whereas c is stored in
the other.

In Step 4, if the number of interrupted threads is non-zero, the in-
terrupt handler is called as an ordinary CPU function as illustrated
in line 74. Also the function prototype is modified to take a packed
interrupt parameter stream __in_sorted and to include the thread
count _nthread, as is shown in line 36. Extra code is added to
extract individual parameter sub-streams (line 39). The interrupt
parameter packing scheme has already been explained above.

Finally in Step 5, a loop is added to launch the kernel repeatedly
until all threads have reached the kernel end, as illustrated in lines
59 and 78. Note that such a loop is necessary even if the kernel con-
tains only one interrupt, because some threads may be interrupted
multiple times before termination, as is the case when the interrupt
is called inside a for or while loop.

3.4 Discussions

We have extended the CUDA language to allow programmers to
define and call interrupts in a CUDA program according to the syn-
tax described in Section 3.1. The described interrupt compilation
algorithm has been implemented in a prototype instrumenting com-
piler, which can convert CUDA programs containing interrupts to
executable programs.

Note that NVIDIA may have a mechanism to suspend/resume GPU
execution in current hardware, since the GDB debugger can pause
execution [NVIDIA 2008a]. If such a mechanism is exposed in the
programming interface in the future, it could be used to provide a
hardware/partial-hardware implementation of our GPU interrupts,
which may be more efficient than our current compiler-based ap-
proach. This may improve the performance of interrupts to a level
suitable for non-debug operations, e.g., simulating page fault to pro-
vide virtual memory support.

Listing 3 Using an interrupt member function

1 struct cassert{

2 charx £;

3 int 1;

4 __interrupt__ void fail(){

5 printf ("Assertion failure at \"%s\"(%d)\n",f,1);
6 exit (1);

-

8 };

9

10 #define assert(d) {\

11 require{\

12 cassert as;\
13 as.f=_FILE ;as.l=_LINE_;\
14 n

15 if (d){as.fail(); }\

CPU Parameters Sometimes interrupts need to receive addi-
tional parameters directly from the CPU. For example, a real
assertfail requires a file name and a line number to indicate
where the error occurs. In such cases, the programmer can put all
CPU parameters in a structure and define the interrupt as a member
function of the structure. This interrupt member function can then
be called using a CPU object. Listing 3 provides an example of us-
ing an interrupt member function. The interrupt fail is declared
as a member function of structure cassert. The macro assert
constructs a CPU object as and uses it to call fail.

The construction of the CPU parameter object requires special care.
In certain situations, the object construction is inseparable from
some GPU code fragments. An example is the file name and line
number at assert in Listing 3. They can only be obtained via two
ANSI C macros, _FILE__ and _LINE__, at the assert state-
ment, which is in GPU code. In such cases, we allow the program-
mer to directly embed the object construction in GPU code using
a require construct, which allows a block of CPU code to be
inserted into GPU code as shown in [Hou et al. 2008]. The com-
piler relocates code inside a require block to execute it before
the kernel containing the require is launched.

Interrupt member functions are compiled in a similar manner as
ordinary interrupts. All require blocks are processed before in-
terrupt compilation as shown in [Hou et al. 2008].

Limitations While the GPU interrupt mechanism provides a gen-
eral approach for calling CPU functions from inside GPU code,
our current implementation of the mechanism has some limitations.
First, the algorithm is designed for the basic stream model we as-
sume. It assumes the processor context only contains live variables
and an instruction pointer. Advanced features may introduce addi-
tional processor states that have to be saved as part of the processor
context. To handle such situations, the context saving part in our
algorithm has to be extended. Examples include CUDA’s shared
memory and block barrier synchronization. To handle them, shared
memory content and the set of threads reaching each barrier have to
be included in the context saving. This extension is an interesting
direction of future work. Note that our current algorithm has no
problem with advanced features that do not introduce new proces-
sor states, e.g., texture, constant memory, atomic operations.

Second, since we save the contexts of all threads of a stream ker-
nel, the processor context may also become too large to be saved.
This could happen if a kernel’s live variables are too large, e.g., if a
large local array is allocated for each thread. The problem is inher-
ently tied to the decoupling of computation and physical processor
in the stream processing model. Due to the abstraction of physical
processors in the stream model, the processor context can only be
described by the contexts of all threads, whose size is unbounded.

One solution to this problem is to make stronger assumptions of
the processing model, e.g., make assumptions about the physical
processors.

Finally, to provide best effort service in all cases, our system is de-
signed to make limitations take effect in program behavior rather
than in compilation failure. For example, a program with mixed
asserts and block synchronization would be compiled successfully.
The program would run normally if no assertion is triggered, but it
would crash or hang when there is an assertion failure. Likewise,
if a programmer uses debug: : watch in a kernel that uses shared
memory, the watch visualizer would show up correctly, but the
shared memory content would be thrashed after debug: :watch
returns.

4 Debugging System

The ultimate goal of debugging is to locate erroneous code frag-
ments in the program and fix the resulting problems. This requires
amechanism to trace from exposed errors to root error sources. Our
debugging system provides dataflow recording and visualization for
this purpose.

In our framework, the programmer first compiles a stream pro-
gram using the instrumenting compiler, which automatically adds
dataflow recording code in the program. Although dataflow record-
ing requires CPU code such as disk I/O operations, it can be easily
implemented by inserting dataflow recording interrupts. The instru-
menting compiler will then translate these interrupts and generates
an instrumented program that can run directly on the GPU. When
the instrumented program terminates normally or aborts due to a de-
tected error, all recorded dataflow is written to temporary log files.
The dataflow visualizer is then automatically launched to analyze
the recorded dataflow.

In the following, we explain the debugging progress using a real
example — a merge sort program written in CUDA. As shown in
Listing 4, the kernel bsmerge takes an input stream a with n ele-
ments. Every sz elements in a are assumed to be sorted. bsmerge
merges neighboring sorted subsequences in a to form a 2+ sz long
sorted subsequence and writes the result to b. Finally, msort calls
bsmerge repeatedly to merge neighboring sorted sequences until
all n elements are sorted.

For each element k0, bsmerge computes the number of elements
that are less than k0 in the neighboring subsequence. This is done
using a binary search. To break ties among elements with equal val-
ues, an order is enforced between the two subsequences by decre-
menting elements from one subsequence by 1. However, this tie
breaking scheme is problematic. The decrement may cause an inte-
ger overflow and thus result in inconsistent ordering. This inconsis-
tency may in turn lead to race conditions and uninitialized values,
producing undefined results.

4.1 Dataflow Recording

By default, the instrumenting compiler will insert code to automat-
ically record the following information:

e Thread memory access history. Prior to each GPU memory
access, recording routines are automatically added to write the
address and the value loaded/stored to a log file. Note that disk
I/O is required in the recording routines, and they have to be
implemented using interrupts.

e Stream information. For each allocated stream, we record
its name, type, size, and base address. Name, size and base
address are obtained by intercepting GPU memory allocation
APIs. The element type of each stream is determined upon the
first time it is passed to a kernel. At runtime, this information

Listing 4 A buggy merge sort in CUDA

1 _global__ void bsmerge(int* b,intx a,int n,int sz){
2 //@Binary search merge pass

3 int id=blockIdx.x*blockDim.x+threadIdx.x;

4 if (id>=n) return;

5 //examine input

6 int kO=alid];

7 debug: :watch (k0) ;

8 //enforce left<right order on equal numbers

9 int k=kO0-! (id&sz);
10 //binary search in neighboring sz elements
11 int 10,1, r;
12 10=1=((id&-sz) "sz);r=min(l+sz,n)-1;
13 while (1<=r) {
14 int m=(1l+4r)>>1;
15 int rk=a[m];
16 if (rk<=k)1l=m+1l;else r=m-1;
17
18 // (1-10) elements less than kO in the neighbor
19 b[(id&"sz)+(1-10)]=kO0;
20 }
21
22 void msort (int* b, intx a,int n){
23 int nb=((n+255)>>8);
24 intx tar=b;
25 for (int sz=1;sz<n;sz+=sz){
26 intx tmp;
27 bsmerge<<<nb, 256>>>(b,a,n, sz);
28 tmp=a; a=b;b=tmp;
29
30 if (tar!=a) {cuMemcpyDtoD (tar, a,n*sizeof (int)); }
31}

is used to detect out-of-bound memory access, and is written
to a log file. Note that the element type detection would fail if
the debugged program does any non-trivial casting. Currently
we rely on the programmer to provide a casting-free version
for debugging using #ifdef.

e Stream initialization status. For each stream, a boolean ini-
tialization tag array is maintained on the GPU. Currently this
array consumes one integer per stream element. Such tags are
updated during memory writes and copies. Note that this in-
formation is only used for runtime detection of uninitialized
memory accesses and is not written to log files.

e Source code positions. The compiler records the source code
position at each GPU memory operation (i.e., memory access
and allocation). At GPU code positions, we also record an
inline function expansion history, which is equivalent to a call
stack dump. Note that this information is generated during
compilation and saved to a log file.

User-Controlled Dataflow Recording While dataflow record-
ing can be fully automatic, recording the whole dataflow for all
streams induces significant runtime overhead and is unnecessary
for most debugging tasks where only a small portion of the com-
plete dataflow is required. Optional user control is thus desirable in
practice. We provide programmers with several functions for this
purpose. Like interrupts, these functions can be regarded as exten-
sions of the CUDA language. Table 2 is a list of these functions.

e Enabling/disabling recording via __.dflog_begin and

Function

| Usage]

_.dflog_begin()
_dflog_end()
dflog-forceinit (list)
debug: :record (expr)

Enable recording
Disable recording

Mark 1ist as initialized
Record an expression

Table 2: Functions for user-controlled dataflow recording.

012 at Binary search

Load |int a[4012]
Load |int a[4013)
Store int b[4013]

int a[401
M 4010 4011 4012 4013 4014

Pass 1: Input dlist(int)

) X)

Race |int b[4013] Thread

[-2147483648

EError tag a

visualization

GPU Calculator

132 I 2147483648 M:IBODUODUU
L2 Wl e f[o[2 J[e |[= ffere]| [sin] l
[[al sl sff =1 vif>>fle] [eos] ‘ b
[affzlsff -~ |f«<l=] [e] l
o el o L+ g = Jf = i =] [20g]
R
[rex | a Jl B8 |[cf[o|felfr] [exx] int a[4013] Binary search merge pass
int a[4012] - p
int b[4013]
int b[4013]
GPU calculator Global dataflow
Th.4013 at Binary search I!:::;'a::;m Ll
|stored at:

Load |int b[4013]

4013msort2.cu(18) : inline

at:

Th.4012 at Binary search m ...

4013 msort2.cu(6): inline

Error Load uninitialized b[4012)

A}
Data
visualization

Figure 2: The dataflow visualizer.

_dflog.end. The instrumenting compiler automatically
inserts a boolean variable in the instrumented program to
control the recording status. Programmers can call these
functions anywhere in a stream program to switch recording
on/off at runtime. These functions are often used to cull
unnecessary data and control the record size. They are
especially useful for bugs that can only be reproduced with
user interaction.

e Initialization status control via __dflog_forceinit. It sets
initialization tags of all elements in 1ist to initialized. This
is provided to avoid false uninitialized errors caused by un-
recorded memory operations or external streams.

e Expression recording via debug: :record. The value of
a user specified expression expr can be explicitly recorded.
Such values will appear later in the dataflow visualizer. This
function is easily implemented using an interrupt.

4.2 Automatic Memory Error Detection

An important advantage of dataflow recording is that the instru-
menting compiler can automatically insert code to perform runtime
detection of several classes of memory errors. Once an error is
detected, its information is automatically recorded using interrupts.
The program is then aborted and the dataflow visualizer is launched
for error analysis.

Out-of-bound access can be detected in a straightforward fashion
by testing each memory access address against the recorded stream
base address and size. For this purpose, stream information is
looked up prior to each kernel launch and passed to the GPU as
additional parameters.

To detect uninitialized accesses, the boolean initialization array de-
scribed in the last section is set to uninitialized in stream allocation.

Subsequent memory copies and writes will set the affected address
range’s status to initialized.

Race condition detection is more complicated. As race conditions
may be intentional in certain situations (e.g., chaotic relaxation al-
gorithms [Chazan and Miranker 1969]), we do not abort the de-
bugged program upon discovery of race conditions; instead they
are displayed as warnings during dataflow visualization. We per-
form race condition detection off-line in the dataflow visualizer.

Note that in the stream processing model, only inter-thread data de-
pendency can cause race conditions since threads cannot perform
arbitrary synchronization with each other. A race condition oc-
curs if and only if two or more threads access the same memory
address and at least one access is a write. This makes traditional
race condition detection techniques (e.g., [Savage et al. 1997] and
[Flanagan and Freund 2004]) unnecessary. With all memory ac-
cesses recorded, race condition check can be done in a straightfor-
ward fashion by examining all accesses to the same addresses in
each kernel launch.

4.3 Dataflow Visualization

Once the instrumented program terminates, the dataflow visualizer
is launched to analyze the recorded dataflow. If an error is detected,
a window for the error causing thread is opened immediately af-
ter visualizer start-up. The programmer can then navigate through
the dataflow via dependency and peer relationships between threads
and stream elements.

Fig. 2 is a screen shot of a debugging process of Listing 4. See
the supplementary video for a more detailed demonstration of this
process. In this case, thread 4012 in the second bsmerge launch
has read an uninitialized element b [4012] and the program is ter-

minated. The dataflow visualizer is launched and thread 4012’s
operation history is displayed. The programmer then navigates to
a number of thread/stream elements in the following order: thread
4013 in the second bsmerge launch (a peer thread of thread 4012),
element b[4013] (load), thread 4013 in first launch (store), thread
4012 in first launch (race condition peer). At this point, the cause of
error becomes clear. In the first bsmerge launch, thread 4012 and
4013 should have sorted a[4012] and a[4013] and stored the
result to b[4012] and b[4013]. However, they both wrote to
b[4013] instead and b[4012] is never written. Further inves-
tigation exposes the root cause: a[4012] is 0x80000000, the
minimum int value. The subtraction in Listing 4, line 9 resulted
in an integer overflow and thus made subsequent comparisons in-
consistent.

Here is a list of the most important functionalities provided by the
dataflow visualizer:

e Thread visualization. All recorded memory operations of a
thread are displayed in the order in which they happened. The
Th ... windows in Fig. 2 are thread windows.

e Data visualization. For each value written to each data ele-
ment, i.e., data instance, the value itself and all operations on
the value are displayed. The int ... [...] windows in
Fig. 2 are data windows.

e Peer tracing. From each thread and data instance, the program-
mer can navigate through their peers. Each thread’s peers are
threads in the same kernel launch. Each data instance’s peers
are data instances in the same stream. Threads with errors and
uninitialized data instances are marked. Peers are displayed in
the top bar in thread/data windows.

e Global dataflow visualization. All kernel launches and in-
put/output streams are organized as a flow chart. Kernel
launches containing errors or race conditions are tagged. The
kernel launch or data instance of current focus is highlighted.
This is illustrated in the flow chart in the right of Fig. 2.

e Dependency tracing. The programmer can navigate from a
thread to an accessed data instance, or vice versa, by clicking
on the corresponding operation. Dependencies between dis-
played threads and data instances are also visualized as lines.

e Going back to the source code. The call stack at each memory
access or error can be mapped to source code position. The
corresponding file will be opened in a text editor, with the cur-
sor at the line of interest.

e GPU calculator. A calculator is provided to perform some
key GPU operations that are rarely found in CPU calculators,
e.g., -_int_as_float. For maximum consistency, all float-
ing point operations of the calculator are executed on the GPU.

4.4 Custom Debugging Functions

Debugging is not always triggered by erroneous program behavior
and output — this type of error discovery is completely passive for
the programmer. On the CPU, the programmer can utilize debug-
ging functions such as assert to discover errors in a more active
and controlled manner. Our GPU interrupt allows programmers to
develop their own debugging functions and make these debug func-
tions available to GPU programs.

The use of assert is illustrated in Listing 1. It performs data
verification. Another useful function is pr int £ which can be used
to examine GPU intermediate results. However, while printf can
be easily implemented using interrupts, the huge data size of typical
stream programs makes printf inefficient.

We implemented a more efficient function, debug: : watch, al-
lowing programmers to visualize intermediate results as pixel col-

[Watchpoints x 1048576 3| W Watchpoints x 1048576 x|

File Command File Command
W at: msort.cu, 7

Ko: 21123

)@

AL

AKX

IX

X

000 0000

100000 0000

)00 ¢ 00 0!

000 = 0000

)06 ' ' 0000

)00 0000

[controls x|

00 00006 606 | stept p—_‘
) T eeet " e00"
T eeeey oo - $ -

(a) Correct result

(b) Erroneous result

Figure 3: Colored-bullet visualization of partially sorted lists in
Listing 4. Light dots indicate smaller values and dark dots indicate
larger values.

ors in an image. This function provides intuitive knowledge of mas-
sive data to the programmer. It also makes errors manifest as incon-
sistent pixels, which are easier to recognize by casual examination
than printf dumps. In line 7 of Listing 4, a debug: : watch in-
terrupt is used to visualize values as colored bullets. As illustrated
in Fig. 3, the bullets are colored with a brightness proportional to
the sort key. Sorted subsequences correspond to the progressively
brighter bullet groups in Fig. 3(a). Erroneously ordered elements
correspond to inconsistent brightness as in Fig. 3(b).

The debug: : watch visualizer has a few additional features. Nu-
merical values can be displayed by mousing over the corresponding
bullet. The color can be set and adjusted at run-time. Bullet size can
be adjusted to examine errors at different scales. To allow detection
of inconsistently colored bullets of sub-pixel size, the bullets are
rendered with HDR color and analytical anti-aliasing. Unlike the
dataflow visualizer which is launched after the instrumented pro-
gram terminates, the debug: :watch visualizer is automatically
launched during the execution of the instrumented program.

Note that assert and debug: : watch are not new language fea-
tures; they are functions enabled by GPU interrupts. The program-
mer can implement his/her own customized visualization functions
in a similar way.

5 Experimental Results

We have implemented the described instrumenting compiler and the
dataflow visualizer in a prototype debugging system CUDAdb for
CUDA programs. The system is used on a daily basis by all GPU
programmers in our lab and has been proven to be very useful in
several projects. We are going to make the system publicly avail-
able in the near future. In the following, we describe several GPU
applications that we debugged using CUDAdb. These applications
are simple and easy-to-describe examples chosen solely to demon-
strate different aspects of our system. All examples are conducted
on a machine with an Intel Xeon Dual-Core 3.7GHz CPU and a
NVIDIA Geforce GTX 280 graphics card. Our experiments indi-
cate that CUDAdD can effectively help the programmer to discover
and locate commonly-occurring programming errors that are very
difficult to debug with existing debugging tools.

5.1 Reyes-Style Subdivision

The first example is an implementation of the Reyes-style subdi-
vision algorithm in [Patney and Owens 2008]. The algorithm per-
forms adaptive subdivision for Bézier patches in breadth-first order.
In each iteration, a bound and split kernel is launched to process all
patches in parallel. A screen space bounding box is computed for
each patch. Patches outside the view frustum are culled. Patches
with a bounding box larger than a predefined threshold are split
into two sub-patches by using the De Casteljau algorithm. Other
patches are left unmodified. All newly-generated and unmodified

«w»

Y

(a) Correct result (b) Erroneous result

Figure 4: Reyes-style rendering of a teapot. In (b), some patches
are incorrectly shaded, resulting in a broken checkerboard pattern.

Th.0 at Pass 11: b

Th.32768 at Pass 2 ...X|
e R S e

float3 (dPdu) .. X
W 32767 32768 32769 W
le: 0.378

[v: 0.000

l2: -0.378

[Loaded at:

({32768 beiz.cu(276): &

Load |floatd ps[128]
Load |float4 ps[1169]
28 1oad floatd ps[2210)
Load |float4 ps[3251]
Load |float4 ps[4292]
1Load |floats ps[5333]
Load |floatd ps[6374]

- Stos floatd 2 [36¢
g 13 store £10atd ps !
Splitter fseore e1oats ps2(0s) |

thread

Load floats ps[7415]
Load floatd ps[8456]
5 Load |floatd ps[9497]
Load floats ps[10538] || [¥:0-431

7 Load float4 ps[11579) ||[2:0-638

Rec float3 (dedu) [Londed at:

Rec |float3 (drav) 32768 beiz.cu(278) :
float3 (M)

32767 32768 32769}
le: 0.638

M 126 127 126 129 130 W
0.944, 1.070, 1.172, 1.242 | fo_9a.
|stored at:
Obeiz.cu(143): inline void| [128beiz.cu(150): inline vo
[Loaded at: [Loaded at:
128beiz.cu(57): inline voi| [128beiz.cu(57): inline voi
128 beiz.cu(150) : inline vo| |---Pass 28: beiz.cu(198): |’

(]

“Obeiz.cu(139): inline void| [0beiz.cu(150): inline void
[Loaded at: [Loaded at:

0beiz.cu(57): inline void | [0beiz.cu(57): inline void
0beiz.cu(150): inline void| |-Pass 28: bpiz.cu(198): vo

floatd ps2[0] at Pass 28: b .. X

float3 (dPdu) ...
floats ps[0]
floats ps[1041]
floats ps[2082]
floatd ps[3123]
floatd ps[4164]
floatd ps[5205]
floatd ps[6246]
floats ps[7267]
float4 ps[8328)
floatd ps[9369]
floats ps[10410] || [¥:-0-430

floats ps[114s1) || [2:0-000

float3 (apdu) [Londed at:

float3 (dpdv) J-vb.u.cu(ms): in
floats (v)

fx: 0.000
v 0.000
2:0.588
[Loaded at:
10beiz.cu(276) : inline

fxz|-0.903

Initially chosen
patch

Figure 5: Error analysis of the buggy Bézier subdivision.

patches are then copied to a new, compact list. The iteration contin-
ues until all patches are unmodified. The resulting patches are uni-
formly subdivided into sub-pixel sized quads using a dicing kernel.
Finally the quad vertices are shaded, and rasterized using OpenGL.

The bug examined here is a real bug that occurred during our imple-
mentation. As illustrated in Fig. 4(b), the buggy program produced
correct geometry but inccorrect shading.

Observing that the error pattern resembles the patch pattern, the
programmer uses the dataflow visualizer to compare the splitting
process of two neighboring patches. To do this, the programmer
first chooses an arbitrary patch from the dice kernel’s input stream
ps. The programmer then traces through data dependency to find
the thread that generated the patch via splitting. Its sibling patch
is found by examining the splitting thread’s access history. The
programmer then traces back to a dicing thread for the sibling patch,
as is illustrated in Fig. 5.

At this point the cause of error becomes clear. The two patches
have opposite normals due to opposite derivatives dPdu. The in-
consistently ordered derivative is due to the opposite control point
coordinate ordering of the sibling patches. Further analysis reveals
the bug: the programmer implemented the De Casteljau routine for
Bézier patch subdivision based on a Wikipedia article [Wikipedia
2008]. While that routine produces correct geometry, it does not
maintain derivative orientation. After fixing this routine, the pro-
gram works correctly and produces Fig. 4(a). Listing 5 shows the
problematic De Casteljau routine.

Note that this bug is difficult to find using traditional means for
two reasons. First, while this error has its origin in the splitting al-
gorithm, it manifests itself in the unrelated dicing/shading kernel.
Without a global view of dataflow, considerable time would have

Listing 5 The problematic De Casteljau routine

1 _device__ float deCasteljau(

2 float4 a,float t,float4s side0, float4ds sidel){
3 float p=lerp(a.x,a.y,t),

4 g=lerp(a.y,a.z,t),

5 r=lerp(a.z,a.w,t);

6 float u=lerp(p,q,t),v=lerp(q,r,t);

7 float w=lerp(u,v,t);

8 sideO=make_float4 (a.x,p,u,w);

9 //this causes inconsistent orientation
10 //should be: sidel=make_float4d(w,v,r,a.w);
11 sidel=make_float4 (a.w,r,v,w);
12 return w;
13}

been wasted in examining the dicing/shading kernel, which actu-
ally contains no bugs. Second, the best way to analyze this bug is to
compare a correct patch with a neighboring incorrect patch. How-
ever, the subdivision algorithm does not store neighboring patches
consecutively. Without a global view of the dataflow, locating a pair
of neighboring patches can be very time consuming. By providing
global view of dataflow, our dataflow logging framework provides
effective solutions to both problems.

Due to the cost of dataflow recording and memory error detection,
our instrumentation results in some performance/memory over-
head. In this subdivision example, the peak memory is 36MB for
the original program and 43MB for the our instrumented program.
The frame rate decreased from 142fps to 66fps when dataflow
recording is disabled. Recording the dataflow of one frame causes
a 1-2 seconds stall. Note that in practice, the dominant source of
overhead is context saving. The overhead of an interrupt is more
dependent on the kernel it is inserted to rather than what the in-
terrupt actually does. As a consequence, it is inherently difficult
to generalize quantitative results in one example to another. The
overhead evaluation needs to be performed on a case-by-case basis.

5.2 Image Denoising

While our framework is designed for inter-kernel debugging, its
dataflow visualization features are also very useful when examin-
ing the work flow of individual kernels. In this example, we im-
plemented an image denoising algorithm. The algorithm takes an
noisy image like in Fig. 6(a) as input. Bilateral filtering is per-
formed within a 7 x 7 window around each pixel. The ratio of pixels
above a pre-defined weight threshold is also computed. The output
is computed by blending the filtered pixel value and the original
pixel value with a weight based on this ratio. The denoised image
is shown in Fig. 6(b).

When implementing the algorithm, the programmer made a typo
during a copy-paste operation. The resulting program failed to de-
noise the input image. Its output is still noisy, and looks similar to
the input image. In the following, we demonstrate the process of

H o588 959 960 961 962
1 Load int src[960]
2 Load int src[0]

3 Load int src[320]
4 Load int src[640]
src[960]
src[1280]
src[1600]
src[1920]
9 Store int dst[960]

Lt

5 Load inf

o+

6 Load ind

o+

7 Load inf

o+

8 Load ind

o+

(a) Noisy image (b) Denoised image. (c) A buggy thread

Figure 6: Noised input, denoised output and the access history of
a buggy thread.

Listing 6 The main loop of the denoise kernel

1 // rwindow = 3

2 for(int i=—rwindow;i<=rwindow;i++){

3 for (int j=-rwindow; i<=rwindow;i++){
4 float3 c=cextract (src|

5 min (max (y+i,0) ,h-1) *w+
6

7

8

9

min (max (x+3,0) ,w=1)]1);

//...

locating this bug using CUDAdb.

The program is compiled using our instrumenting compiler and
then executed. The access history of an arbitrary thread is exam-
ined as in Fig. 6(c). Note that this thread has only loaded 8 pixels.
In a correct implementation, each thread should load at least 49
pixels (7 x 7 window). Further investigation shows that the pro-
grammer wrote i instead of j in the inner for statement (line 2 in
Listing 6). As a result, the program only loops over the first column
of the filter window.

5.3 Triangle Tessellation

We select the triangle tessellation example because it demonstrates
the advantage of the direct GPU execution of our instrumented pro-
gram over CUDA’s built-in CPU emulation. The triangle tessel-
lation algorithm is taken from [Hou et al. 2008] and implemented
using CUDA.

The tessellation algorithm is parallelized over all output vertices. It
organizes output vertices in a number of triangle strips. For each
output vertex, the triangle strip containing it is first computed. The
barycentric coordinates are then calculated based on the triangle
strip ID. For some of the vertices, a quadratic equation needs to be
solved to get the strip ID. This involves a £1loor integer round-
ing of a square root and adding an epsilon value. How to choose
an appropriate epsilon value depends largely on experience. An
inexperienced programmer often makes mistakes and chooses an
improper epsilon that generates erroneous vertices with sufficiently
large tessellation factors. As a precaution, an assert is inserted
to validate the triangle strip ID. In the following, we compare two
implementations of assert: GPU interrupt and CPU emulation.

For simplicity, our implementation only deals with a single triangle.
We set the integer rounding epsilon as 107°. With a tessellation
factor of 143, the integer rounding off produces an incorrect value,
resulting in several invalid triangles as illustrated in Fig. 7. Table 3
is a comparison of the behavior and performance among the origi-
nal program, our instrumented program and CUDA’s built-in device
emulation. To allow a performance comparison, the programs are
not aborted on assertion failures. Only error messages are printed.
Also in the instrumented program, dataflow recording is disabled
and can be enabled when the user presses a hotkey at run-time. The
overhead in the performance comparison only includes memory er-
ror detection and assert. For fairness, the CPU floating point
internal representation is set to a similar precision as the GPU us-
ing the method described in [NVIDIA 2008b].

As shown in Table 3, CPU emulation failed to reproduce the bug
due to higher arithmetic precision on the CPU. The emulation is
also over 300x slower than the original program. In contrast,
our interrupt-based approach successfully reproduced the bug via
direct device execution. With all memory error checks enabled
and the assertfail interrupt called in each iteration, the instru-
mented program is only about 4 x slower than the original program.
In terms of memory consumption, the original program consumes
around 10MB while our instrumented program takes about 12MB.

A
RN
TR
RIS
AR
AR
AN
RATRHINN

(a) Correct result at factor 119 (b) Erroneous result at factor 143

Figure 7: Zoom-in of tessellated triangles. In (b), two malformed
long triangles are overlapping with other triangles.

Program Original | Our Instrumented | CPU Emulation
Error reproduced yes yes no
Frame rate (fps) 710 175 2.14

Table 3: Behavior and performance comparison of tessellation
with precision problem.

6 Conclusion

We believe the described debugging framework significantly ad-
vances the state of the art in GPU stream programming. While
most existing GPU debugging tools are only suitable for shader de-
bugging, we found our system to be highly effective for debugging
general purpose stream programs and for locating errors that are
extremely difficult with existing tools. A key ingredient of our de-
bugging system — and a major contribution of this paper — is the
GPU interrupt, a novel mechanism that allows calling CPU func-
tions from GPU code. With the GPU interrupt, dataflow recording
can be implemented in a straightforward fashion as interrupt han-
dlers. The GPU interrupt also empowers GPU programmers by
allowing them to actively discover errors by writing their own de-
bugging functions as interrupt handlers. In the future we expect
the GPU interrupt to be widely useful beyond debugging, much the
same way the CPU interrupt is for CPU programming.

For future work, we plan to incorporate the interrupt mechanism
into other general purpose GPU programming languages including
Compute Shader, OpenCL and BSGP. Currently, our GPU interrupt
is implemented through a special compilation algorithm. We hope
to see future GPUs with support for this mechanism at the hard-
ware level. Secondly, we are also interested in exploring the use
the dataflow recorded by our debugger as interactive education ma-
terials. With a properly designed visualization scheme, fresh GPU
programmers can run code samples with different parameters and
observe the corresponding dataflow changes. This visualization can
provide intuitive knowledge of the work flow of GPU programs — a
type of knowledge that is difficult to obtain otherwise.

Acknowledgements

The authors would like to thank Matt Callcut for his help with video
production. We are also grateful to the anonymous reviewers for
their helpful comments. Kun Zhou is partially supported by the
NSF of China (No. 60825201) and NVIDIA.

References

BOYER, M., SKADRON, K., AND WEIMER, W. 2008. Automated
dynamic analysis of CUDA programs. In Third Workshop on
Software Tools for MultiCore Systems.

(a) Fireworks rendering, 150fps

(b) Particles, 112fps

Tl \\ ; /, k\&{//&/ = ;,\ ’ /,

b , P

(c) Non-leaf particles, 117fps

Figure 8: One frame in the particle simulation, rendered in three different modes. This frame contains 42k particles. The rendering resolution

is 1024 x 576 with 2 x 2 supersampling.

BuUCK, 1., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. 2004. Brook for
GPUs: stream computing on graphics hardware. ACM Trans.
Graph. 23, 3, 777-786.

CHAZAN, D., AND MIRANKER, W. L. 1969. Chaotic relaxation.
Linear Algebra Appl. 2, 199-222.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. 1991. Efficiently computing static single
assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13, 4, 451-490.

Duca, N., NisklI, K., BILODEAU, J., BOLITHO, M., CHEN, Y.,
AND COHEN, J. 2005. A relational debugging engine for the
graphics pipeline. ACM Trans. Gr. 24, 3, 453-463.

FLANAGAN, C., AND FREUND, S. N. 2004. Atomizer: a dynamic
atomicity checker for multithreaded programs. In Proceedings
of POPL ’04, ACM, New York, NY, USA, 256-267.

HACK, S., GRUND, D., AND GOOS, G. 2006. Register Allocation
for Programs in SSA-Form. In Compiler Construction 2006,
Springer, A. Zeller and A. Mycroft, Eds., vol. 3923, 247-262.

Hou, Q., ZHou, K., AND Guo, B. 2008. BSGP: Bulk-
Synchronous GPU Programming. ACM Trans. Gr. 27, 3, 9.

LEFOHN, A., HOUSTON, M., BoyD, C., FATAHALIAN, K.,
FORSYTH, T., LUEBKE, D., MUNSHI, A., OLICK, J., OWENS,
J., PELLACINI, F., PHARR, M., AND SHOPF, J. 2008. Beyond
programmable shading. ACM SIGGRAPH 2008 Course Notes.

MICROSOFT, 2007. PIX: the Direct3D profiling and debugging
tool. DirectX 10 SDK.

NVIDIA, 2008. CUDA-GDB: The NVIDIA CUDA Debugger.
NVIDIA, 2008. NVIDIA CUDA Programming Guide 2.0.
NVIDIA, 2008. NVIDIA Shader Debugger.

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26, 1, 80-113.

PATNEY, A., AND OWENS, J. D. 2008. Real-time reyes-style
adaptive surface subdivision. ACM Trans. Gr. 27, 5, 1-8.

PURCELL, T. 2005. GPGPU: general-purpose computation on
graphics hardware: debugging tools. ACM SIGGRAPH 2005
Course Notes.

RONSSE, M., AND BOSSCHERE, K. D. 1999. Recplay: a fully
integrated practical record/replay system. ACM Trans. Comput.
Syst. 17,2, 133-152.

RONSSE, M., CHRISTIAENS, M., AND BOSSCHERE, K. D.
2003. Debugging shared memory parallel programs using
record/replay. Future Gener. Comput. Syst. 19,5, 679-687.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P.,
AND ANDERSON, T. 1997. Eraser: a dynamic data race de-
tector for multithreaded programs. ACM Trans. Comput. Syst.
15,4,391-411.

STRENGERT, M., KLEIN, T., AND ERTL, T. 2007. A hardware-
aware debugger for the OpenGL shading language. In Graphics
Hardware "07, 81-88.

WIKIPEDIA, 2008. De Casteljau’s algorithm.
http://en.wikipedia.org/wiki/De_Casteljau’s_algorithm.

Appendix: Particle Firework Example

This example demonstrates customized debugging functions and
nested interrupts. We implemented a GPU particle system based
fireworks demo. In this demo, each particle has three possible
states: primary, secondary, and leaf. Primary and secondary par-
ticles will explode to generate new particles at a predefined time
after their creation, whereas leaf particles simply fade out and dis-
appear. Each primary particle explodes into 64 secondary particles
and 4096 leaf particles. Each secondary particle explodes into 256
leaf particles.

Interrupts are used to implement a particle visualization system. By
using interrupts, visualization in GPU kernels can be implemented
with simple and clear code. This is illustrated in Fig. 8. Fig. 8(a)
is the fireworks rendering. Fig. 8(b) is a visualization of the parti-
cles. Primary and secondary particles are shown as large red arrows
and medium blue arrows, respectively. Leaf particles are shown as
small green triangles. Triangles shadows are also rendered on a bot-
tom surface to better illustrate their near-far ordering relationships.
The size and orientation of the arrows/triangles indicate particle ve-
locity. Fig. 8(c) omits all leaf particles, providing a more clear view
of primary and secondary particles. The system also allows the user
to switch between these three modes at run-time.

Listing 7 is the pseudo code of the particle visualiza-
tion system. The core of the system is a triangle draw-
ing interrupt drawtriangle. Using drawtriangle,
particle visualization is implemented as a single kernel
gpu-drawparticles. gpu-drawparticles tests par-
ticle type and calls drawtriangle multiple times to draw
particle shapes. Finally, gpu_drawparticles is wrapped as an
interrupt drawparticles and called in the particle simulation
kernel. Note that no CPU/GPU data transfer is involved in the
visualization pipeline.

Interrupts play an important role in this visualization system. In-
terrupts allow utility routines like drawtriangle to be called

Listing 7 Pseudo code of the particle visualization system

1 _interrupt__ void drawtriangle (
2 float3 a,float3 b, float3 c,floatd color){
3 n=interrupt::size;
4 /] ..
5 glDrawArrays (GL-TRIANGLES, 0,n*3) ;
6
7
8 _global__ void gpu.drawparticles (particles){
9 //draw base triangle
10 drawtriangle(......),
11 if (is_nonleaf()){
12 //draw arrow tails
13 drawtriangle(......)
14 drawtriangle(......);
15 }
16 }
17
18 _interrupt_ void drawparticles (particles){
19 gpu.drawparticles<<<...>>>(particles);
20
21

22 _global__ void simulate (particles, mode){

24 if (should visualize (particles[id], mode)) {
25 drawparticles (particles[id]);

26 }

27 }

as ordinary functions in GPU kernels and thus permits a simple
implementation. Without interrupts, the system has to be imple-
mented using multiple passes with sophisticated dataflow. Simple
if statements in Listing 7 have to be mapped to a multi-pass list
split or compact. As a consequence, any change in the visualization
scheme would require considerable re-factorization work.

