
RenderAnts: Interactive REYES Rendering on GPUs∗

Kun Zhou∗ Qiming Hou† Zhong Ren‡ Minmin Gong‡ Xin Sun‡ Baining Guo† ‡

∗Zhejiang University †Tsinghua University ‡Microsoft Research Asia

Abstract

We present RenderAnts, the first system that enables interac-
tive REYES rendering on GPUs. Taking RenderMan scenes and
shaders as input, our system first compiles RenderMan shaders to
GPU shaders. Then all stages of the basic REYES pipeline, in-
cluding bounding/splitting, dicing, shading, sampling, compositing
and filtering, are executed on GPUs using carefully designed data-
parallel algorithms. Advanced effects such as shadows, motion blur
and depth-of-field can be also rendered with our system. In order
to avoid exhausting GPU memory, we introduce a novel dynamic
scheduling algorithm to bound the memory consumption during
rendering. The algorithm automatically adjusts the amount of data
being processed in parallel at each stage so that all data can be
maintained in the available GPU memory. This allows our system
to maximize the parallelism in all individual stages of the pipeline
and achieve superior performance. We also propose a multi-GPU
scheduling technique based on work stealing so that the system can
support scalable rendering on multiple GPUs. The scheduler is de-
signed to minimize inter-GPU communication and balance work-
loads among GPUs.

We demonstrate the potential of RenderAnts using several complex
RenderMan scenes and an open source movie entitled Elephants
Dream. Compared to Pixar’s PRMan, our system can generate im-
ages of comparably high quality, but is over one order of magnitude
faster. For moderately complex scenes, the system allows the user
to change the viewpoint, lights and materials while producing pho-
torealistic results at interactive speed.

Keywords: GPGPU, RenderMan, feature-film rendering, shaders,
dynamic scheduling, out-of-core texture fetch

1 Introduction

The REYES architecture is a successful architecture for photore-
alistic rendering of complex animated scenes [Cook et al. 1987].
Several REYES implementations, including Pixar’s PhotoRealistic
RenderMan (PRMan), have become the defacto industrial standard
in high-quality rendering, and they have been widely used in film
production [Apodaca and Gritz 1999]. While these systems are rel-
atively fast and some of them (e.g., NVIDIA’s Gelato) even use
GPU acceleration, they are all CPU-based off-line renderers. None
of them executes the whole rendering pipeline on the GPU.

In this paper, we present RenderAnts, the first REYES rendering
system that runs entirely on GPUs. The name “RenderAnts” refers
to the fact that in our system, rendering is performed by tens of
thousands of lightweight threads that optimally exploit the massive
parallel architecture of modern GPUs. Our system takes Render-
Man scenes and shaders as input and generates photorealistic im-
ages of high quality comparable to those produced by PRMan. By
capitalizing on the GPU’s formidable processing power, our sys-
tem is over one order of magnitude faster than existing CPU-based
renderers such as PRMan. With RenderAnts, moderately complex
scenes such as those shown in Fig. 1, Fig. 5 and Fig. 12 can be
rendered at interactive speed while the user changes the viewpoint,
lights and materials.

∗http://www.renderants.org

Figure 1: A character in Elephants Dream, named Proog, is ren-
dered at 640×480 resolution with 8×8 supersampling. The upper-
left of the image is rendered with PRMan while the lower-right half
is generated using our RenderAnts – the seam is barely visible. The
map shown at the top left corner displays error as a percentage of
the maximum 8-bit pixel value in the image. RenderAnts renders the
image in about 2 seconds on three GeForce GTX 280 (1GB) graph-
ics cards, while PRMan needs 40 seconds on a quad-core CPU.
The scene contains 10,886 high-order primitives for the body and
clothes, and 9,390 transparent curves for the hair, whiskers, and
eyebrows. With RenderAnts, the user can change the viewpoint,
lights, and materials while receiving feedback at 2.4 frames per
second. See the accompanying video for live demos.

To design a high performance GPU system for REYES rendering,
we have to address three major issues. First, we need to map all
stages of the basic REYES pipeline to the GPU. While some stages
have been successfully implemented in the past [Patney and Owens
2008], handling the other stages remains a challenging issue as
noted in [Patney 2008]. Second, we must maximize parallelism
while bounding the memory consumption during rendering. CPU-
based REYES renderers deal with the memory issue by bucketing.
However, a naive adaptation of bucketing to the GPU would lead
to suboptimal rendering performance. Finally, we should make the
rendering system scalable via multi-GPU rendering so that complex
animated scenes can be efficiently processed.

We present a scheme for mapping all stages of the basic REYES
rendering pipeline to the GPU using carefully designed data-
parallel algorithms. The basic REYES pipeline includes bound-
ing/splitting, dicing, shading, sampling, compositing and filter-
ing stages. Our focus is on stages whose GPU mapping has not
been established in previous work. For the shading stage, we de-
velop a shader compiler to convert RenderMan shaders to GPU
shaders. Several previously unaddressed issues such as light shader
reuse and arbitrary derivative computation are resolved. In addi-
tion, the texture pipeline is designed to support out-of-core texture
fetches. This is indispensable to feature film production where typ-
ical scenes have textures that are too large to be stored in GPU
memory. For the sampling stage, we propose a GPU implementa-

tion of the stochastic sampling algorithm described in [Cook 1986].
Besides supporting the basic pipeline, our system can also render
advanced effects such as shadows, motion blur and depth-of-field,
completely on GPUs.

We also propose a dynamic stage scheduling algorithm to maximize
the available parallelism at each individual stage of the pipeline
while keeping data in GPU memory. This algorithm significantly
improves the rendering performance over a naive adaptation of the
bucketing approach. The original REYES system bounds the mem-
ory consumption by dividing the screen into small rectangular re-
gions, known as buckets, before entering the rendering pipeline.
The buckets are processed one by one during rendering. While
this static bucketing works well for CPU-based systems, it is inap-
propriate for a GPU-based renderer as it significantly slows down
rendering. Different rendering stages have different memory re-
quirements. To ensure that a bucket can be successfully processed
through all stages, the bucket size must be bounded by the stage
with the highest memory requirement. This greatly restricts the
available parallelism at other stages and leads to inferior perfor-
mance. To solve this problem, we add three schedulers to the
REYES pipeline, each dynamically adjusting the degree of paral-
lelism (i.e., the amount of data being processed in parallel) in in-
dividual stages to ensure that the data fits into the available GPU
memory. Thus we can fully exploit the GPU’s massive parallelism
at all rendering stages without exhausting GPU memory.

Finally, we have designed RenderAnts to support scalable render-
ing on multiple GPUs by using a multi-GPU scheduling technique
to dispatch rendering tasks to individual GPUs. The key to achiev-
ing efficient multi-GPU rendering is the minimization of inter-GPU
communication, as inter-GPU communication is prohibitively ex-
pensive with current hardware architectures. GPUs cannot directly
communicate with each other; instead they must communicate
through the CPU. This causes several problems. CPU/GPU data
transfer is significantly slower than the GPU’s processing speed.
Moreover, only one GPU can communicate with the CPU at a time,
which serializes all communication processes. Our solution is a
multi-GPU scheduling algorithm based on work stealing, which can
be easily combined with the stage scheduling algorithm described
above. The multi-GPU scheduler is also designed to balance work-
loads among all GPUs.

Our GPU-based REYES renderer has potential in a variety of ren-
dering applications. An immediate example is the acceleration of
the preprocessing computation required by recent light preview sys-
tems [Pellacini et al. 2005; Ragan-Kelley et al. 2007], which need
to cache the visibility information evaluated by the REYES render-
ing pipeline. Our system also extends the application domain of the
REYES architecture from off-line to the interactive domain. With
RenderAnts, the user can change the viewpoint, lights and materials
while viewing the high-quality rendering results at interactive frame
rates. Since the system is linearly scalable to the GPU’s computa-
tional resources, real-time REYES rendering is achievable in the
near future with advances in commodity graphics hardware.

It is important to note that the goal of this paper is not to de-
scribe a complete, production-ready REYES rendering system that
is functionality-wise competitive to PRMan; instead what we pro-
pose is a system that focuses on the basic REYES pipeline on
GPUs. The comparison with PRMan is only intended to demon-
strate the potential of REYES rendering on GPUs. Although our
work only focuses on basic REYES rendering, we believe this is an
important step forward because it shows for the first time that it is
possible to map all stages of the basic pipeline onto the GPU and
significantly improve rendering performance. We are going to re-
lease the RenderAnts system as an open platform for future research
on advanced REYES rendering on GPUs. Making the source code

available online will make research in this promising area more
practical for many researchers.

The remainder of this paper is organized as follows. The following
section reviews related work. Section 3 briefly describes all stages
of the RenderAnts system. In Section 4, we introduce the dynamic
scheduling algorithm. The data-parallel algorithms for all individ-
ual stages of the basic REYES pipeline are described in Section 5.
In Section 6, we describe how to extend the system to support ren-
dering on multiple GPUs. Experimental results are presented in
Section 7, followed by the conclusion in Section 8.

2 Related Work

The REYES architecture was designed to be able to exploit vector-
ization and parallelism [Cook et al. 1987]. Over the past few years,
much research has been conducted to seek efficient parallel imple-
mentations of the entire rendering pipeline or some of its stages.

Owens et al. [2002] compared implementations of the basic REYES
pipeline and the OpenGL pipeline on the Imagine stream proces-
sor. Their implementation simplifies the original REYES pipeline
considerably in many stages. For example, they employed a screen-
space dicing approach whereas REYES performs dicing in the eye
space. As noted in [Owens et al. 2002], a huge number of mi-
croploygons are generated, which leads to a significant performance
overhead. They also used a simple rasterizer in the sampling stage
whereas REYES uses stochastic sampling. Moreover, out-of-core
texture access is neglected in their implementation. In order to fully
exploit modern GPUs’ large-scale parallelism at all stages of the
pipeline, it is necessary to design new data-parallel algorithms to
map these stages to the GPU.

Lazzarino et al. [2002] implemented a REYES renderer on a Paral-
lel Virtual Machine. The renderer consists of a master and several
slave processes. The master divides the screen into buckets, which
can be processed independently, and dispatches them to slave pro-
cesses. A bucket-to-slave allocation algorithm is used to achieve
load balancing among slaves. PRMan also has a networking ren-
dering scheme, known as NetRenderMan, for parallel rendering on
many CPU processors [Apodaca 2000]. With this networking ren-
derer, a parallelism-control client program dispatches work in the
form of bucket requests to multiple independent rendering server
processes. Our system supports REYES rendering on multiple
GPUs. We propose a multi-GPU scheduler to minimize inter-GPU
communication and balance workloads among GPUs.

NVIDIA’s Gelato rendering system is a GPU-accelerated REYES
renderer [NVIDIA 2008]. However, only the hidden surface re-
moval stage of the pipeline is accelerated on the GPU [Wexler et al.
2005]. A technique is also proposed to achieve motion blur and
depth-of-field by rendering scenes multiple times into an accumu-
lation buffer, with the number of time or lens samples as a user-
supplied parameter. Our system uses a similar approach to render
motion blur and depth-of-field. However, since we execute the en-
tire rendering pipeline on GPUs, our approach completely runs on
GPUs and can achieve higher performance.

Patney and Owens [2008] demonstrated that the bounding/splitting
and dicing stages of the REYES pipeline can be performed in real-
time on the GPU. Both stages are mapped to the GPU by using
fundamental parallel operations of scan and compact [Harris et al.
2007]. Patney [2008] also described the probability of mapping
other stages to the GPU and listed challenging issues. Most of these
issues are resolved in our work. In addition to mapping the entire
REYES pipeline to GPUs using well-designed data-parallel algo-
rithms, we introduce a dynamic scheduling algorithm to maximize
the available parallelism in individual stages and thus greatly im-

prove the overall rendering performance. We also design a multi-
GPU scheduler for efficient rendering on multiple GPUs.

Recently, several techniques have been developed for high-quality
preview of lighting design in feature film production [Pellacini et al.
2005; Ragan-Kelley et al. 2007]. These methods cache visibility
information evaluated in the REYES pipeline as deep or indirect
framebuffers during preprocessing and later use these framebuffers
to perform interactive relighting at runtime. Our work explores a
different direction: we focus on implementing the REYES pipeline
on GPUs, which can be used to significantly speed up the prepro-
cesses of these techniques. Since our system takes RenderMan
scenes and shaders as input, we develop a shader compiler to com-
pile RenderMan shaders to GPU shaders. Although a few methods
have been proposed to perform this compilation [Olano and Lastra
1998; Peercy et al. 2000; Bleiweiss and Preetham 2003; Ragan-
Kelley et al. 2007], some problems such as light shader reuse and
arbitrary derivative computation have not been addressed before.
Our shader compiler provides good solutions to these problems.
Our out-of-core texture fetching mechanism is similar to GigaVoxel
[Cyril et al. 2009]. The key difference is that GigaVoxel only im-
plements the out-of-core function in a specific rendering algorithm,
while our system is capable of adding out-of-core support to gen-
eral, arbitrary shaders.

We implemented the RenderAnts system using BSGP [Hou et al.
2008], a publicly available programming language for general pur-
pose computation on GPUs. BSGP simplifies GPU programming
by providing several high level language features. For example, it
allows the programmer to pass intermediate values using local vari-
ables as well as to call a parallel primitive having multiple kernels
in a single statement. We also employed the GPU interrupt mecha-
nism and debugging system described in [Hou et al. 2009] to assist
our development. The interrupt mechanism is a compiler technique
that allows calling CPU functions from GPU code. As described
later in the paper, all of our algorithms can also be implemented
using other GPU languages such as CUDA and OpenCL.

3 System Overview

Fig. 2 shows the basic pipeline of RenderAnts running on a single
GPU. It follows the REYES pipeline with three additional sched-
ulers (drawn in red). The input of the system is RenderMan scenes
and shaders, which are written in the RenderMan Shading Lan-
guage (RSL), a C-like language designed specifically for shading.
After converting all RenderMan shaders to GPU shaders in a pre-
process using the shader compiler described in Section 5.2, we ex-
ecute the following stages to produce the final picture.

• Bucketing In the beginning of the pipeline, the screen is divided
into small buckets, which are processed one at a time. Only those
primitives which affect the current bucket are rendered in the
subsequent stages. This scheme is used to reduce the memory
footprint during rendering.
In existing CPU-based renderers, the bucket size is bounded by
the stage that has the peak memory requirement in the pipeline.
In our system, since individual stages have their own schedulers
as described later, the bucket size only needs to satisfy the mem-
ory requirement of the bounding/splitting stage, i.e., the data size
of all primitives in each bucket should be less than the currently
available GPU memory. Unless mentioned otherwise, all im-
ages shown in this paper are rendered using a single bucket – the
whole screen.

• Bound/Split For each input primitive whose bounding box over-
laps with the current bucket, if the size of its bonding box is
greater than a predetermined bound, it is split into smaller prim-
itives, which follow the same procedure recursively. At the end

Bucketing

Bound/Split

Dice

Sample

Composite & Filter

Shade

Dicing Scheduler

Sampling Scheduler

Shading Scheduler

Figure 2: RenderAnts system pipeline. Three stage schedulers (in
red) are added to the basic REYES pipeline.

of the stage, all primitives are ready for dicing.

• Dicing Scheduler The dicing scheduler splits the current bucket
into dicing regions, which are dispatched to the dicing and sub-
sequent stages one at a time. The memory required to process
each dicing region should be less than the currently available
GPU memory.

• Dice Every primitive in the current dicing region is subdivided
into a regular grid, each having a number of quads known as
micropolygons. The micropolygon size in screen space is con-
strained by the shading rate, a user-specified parameter. Unless
mentioned otherwise, all rendering results shown in this paper
are rendered with shading rate 1.0, which means that the microp-
olygon is no bigger than one pixel on a side. In our current imple-
mentation, each primitive generated from the bounding/splitting
stage is no greater than 31 pixels on a side. Therefore each grid
has at most 31×31 micropolygons.

• Shading Scheduler The shading scheduler works inside the
shading stage. For each GPU shader that is converted from a
RenderMan shader, the scheduler splits the list of micropoly-
gons into sublists before shader execution. The sublists are to be
shaded one by one, and each sublist should be shaded with the
currently available GPU memory.

• Shade Each vertex of the micropolygon grids generated after
dicing is shaded using GPU shaders.

• Sampling Scheduler The sampling scheduler splits the current
dicing region into sampling regions, which are dispatched to the
sampling and subsequent stages one at a time. The memory re-
quired to process each sampling region should be less than the
currently available GPU memory.

• Sample All micropolygons in the current sampling region are
sampled into a set of sample points by using the jittering algo-
rithm described in [Cook 1986].
Each pixel in the current sampling region is divided into a set of
subpixels. Each subpixel has only one sample location, which
is determined by adding a random displacement to the location
of the center of the subpixel. Each micropolygon is tested to see

(a) micropolygons (b) dicing regions (c) sampling regions

Figure 3: Micropolygons, dicing and sampling regions generated when rendering Proog. Note that for the purpose of visualization,
micropolygons in (a) are generated at a shading rate of 400, and the dicing/sampling regions are generated at a shading rate of 0.1.

if it covers any of the sample locations. For any sample location
that is covered, the color, opacity, and depth of the micropolygon
are interpolated and recorded as a sample point.

• Composite and Filter The sample points generated in the sam-
pling stage are composited together to compute the color, opacity
and depth values of all subpixels in the current sampling regions.
The final pixel colors are then computed by blending the colors
and opacities of subpixels. Note that we do not have a scheduler
for the compositing and filtering stage because the memory re-
quirement at this stage is similar to that of the sampling stage.
The sampling scheduler already takes into account the memory
usage at this stage.

Currently all these stages are executed in the GPGPU pipeline via
BSGP. While the traditional graphics pipeline (i.e., the hardware
rasterizer and vertex/geometry/pixel shaders) is more suitable for
certain tasks, currently we are unable to utilize them in the REYES
pipeline due to some practical reasons including interoperability is-
sues, the lack of exact rasterizer behavior specification and rela-
tively high switch cost between GPGPU/graphics mode.

4 Dynamic Scheduling

The key idea of dynamic scheduling is to estimate the memory re-
quirements at individual stages of the rendering pipeline and maxi-
mize the degree of parallelism in each stage while making sure that
the data fits into the available GPU memory.

As described in the last section, we have three schedulers for the
dicing, shading and sampling stages, respectively. The dicing stage
always consumes much less memory than subsequent stages be-
cause the micropolygons generated after dicing consume a lot of
memory and these micropolygons need to be retained until the
end of the REYES pipeline. Based on this observation, our dic-
ing scheduler first divides the current bucket into a set of dicing
regions, which are processed one by one. The schedulers of sub-
sequent stages then operate on the micropolygons in the current
dicing region.

Dicing Scheduler The dicing scheduler recursively splits a
screen region using binary space partitioning (BSP). It begins with
the current bucket and the list of primitives contained in this bucket.
For a given region, the scheduler first estimates the peak memory
required to process this region. If the peak fits in currently available
memory minus a constant amount, the region and all primitives in
it are dispatched to the dicing and subsequent stages. Otherwise,
the region is split into two subregions at the middle point of the
longer axis. The scheduler then recurses to process the two subre-
gions, with the one having fewer primitives being processed first.

schedule(quad r, list(prim) l)

if memoryUse(r,l)<=memoryFree()-C:

process(r,l)

return

(r0,r1) = BSPSplit(r)

(n0,n1) = countPrimInQuads(l,r0,r1)

if n0>n1: swap(r0,r1)

l0 = primInQuad(l,r0)

schedule(r0,l0)

delete l0

//overwrite l

l = primInQuad(l,r1)

schedule(r1,l)

Listing 1: Pseudo code of the dicing scheduler.

The pseudo code of this process is shown in Listing 1.

Fig. 3(b) shows the dicing regions generated by this process. The
constant amount of memory (C in Listing 1) is reserved for the sub-
sequent shading and sampling stages which have their own sched-
ulers. The value of C can be adjusted using an Option state-
ment in RIB (RenderMan Interface Bytestream) files. For all ex-
amples shown in our paper, C is set as 32MB. Note that the finally
dispatched dicing regions do not necessarily consume all memory
available to the dicing stage (i.e., memoryFree()-C). Therefore,
the memory available to the subsequent stages is typically much
larger than C.

The function memoryUse estimates the peak memory required to
process a region in the dicing stage, which is caused by the mi-
cropolygons generated after dicing. Recall that each primitive is
subdivided into a grid. The size of micropolygon data in each grid
can be computed exactly. The memory peak of the dicing stage thus
can be accurately estimated by summing up the micropolygon data
sizes of all primitives in the region using a parallel reduce operation.

Note that the scheduler dispatches all tasks in strictly sequential
order and operates in a strictly DFS (depth first search) manner.
Subregions are dispatched to the dicing and subsequent stages one
at a time. After a subregion has been completely processed, its in-
termediate data is freed and all memory is made available for the
next subregion. Currently we do not reuse information across sub-
regions. Primitives overlapping multiple subregions are re-diced in
every subregion.

Shading Scheduler Unlike the dicing scheduler which is exe-
cuted prior to the dicing stage, the shading scheduler works inside
the shading stage. For each GPU shader, the scheduler estimates
before shader execution the memory peak during shader execution
and computes the maximal number of micropolygons that can be
processed with the currently available memory. The input microp-
olygon list is split into sublists according to this number and the

sublists are shaded one by one.

The memory peak in the shading stage is caused by the temporary
data structures allocated during shader execution. The temporary
data size is always linear to the number of micropolygons. How-
ever, the exact coefficients are different for different shaders. A
typical scene may contain many different shaders, with significant
variation in per-micropolygon temporary data size. Estimating the
memory peak of the whole shading stage will result in overly con-
servative scheduling and thus leads to suboptimal parallelism for
many shaders. Therefore, we design the shading scheduler to work
for every shader execution instead of the whole shading stage.

Sampling Scheduler Like the dicing scheduler, the sampling
scheduler recursively splits a screen region using BSP. The main
difference is the peak memory estimation algorithm. The sampling
scheduler needs to estimate the memory peak of the sampling, com-
positing and filtering stages. This peak, reached during the com-
positing stage, is caused by the subpixel framebuffer and the list of
sample points. We estimate the total number of sample points us-
ing the same algorithm in the sampling stage (see Section 5.3 for
details). The framebuffer size equals the region size.

Another difference is that the sampling scheduler operates within
the current dicing region, whereas the dicing scheduler operates
within the current bucket. As an example, Fig. 3(c) shows the sam-
pling regions generated by our algorithm for the Proog scene.

Design Motivation Note that the most obvious solution to the
memory problem is to have a full virtual memory system with pag-
ing. This is actually the first solution we attempted. Based on the
GPU interrupt mechanism described in [Hou et al. 2009], we im-
plemented a prototype compiler-based GPU virtual memory system
during preliminary feasibility evaluation of the RenderAnts project.
However, we found that it is unrealistically expensive to heavily
rely on paging in massive data-parallel tasks. Paging is especially
inefficient when managing the input/output streams of data-parallel
kernels (e.g., micropolygons, sample points) – the page faults are
totally predictable, and paging can usually be entirely avoided by
simply processing less data in parallel. This observation motivated
us to prevent data from growing out of memory rather than just pag-
ing them out – leading to our current memory-bounded solution.

5 GPU REYES Rendering

In this section we describe the GPU implementation of each stage
of the basic REYES pipeline.

5.1 Bound/Split and Dice

Our GPU implementation of the bounding/splitting and dicing
stages follows the algorithm described in [Patney and Owens 2008].
In the bounding/splitting stage, all input primitives are stored in a
queue. In every iteration of the bounding/splitting loop, the prim-
itives in this queue are bound and split in parallel. The resulting
smaller primitives are written into another queue, which is used as
input for the next iteration. The parallel operations of scan and com-
pact [Harris et al. 2007] are used to efficiently manage the irregular
queues. When the bounding/splitting stage finishes, all primitives
are small enough to be diced.

The dicing stage is much simpler. In parallel, all primitives in the
current dicing region are subdivided into grids, each of which has
at most 31×31 micropolygons.

Although [Patney and Owens 2008] only handles Bézier patches,
our system supports a variety of primitives, including bicubic

Figure 4: This indoor scene has about one-half gigabytes of tex-
tures and contains 600K polygon primitives. At 640×480 resolu-
tion with 4×4 supersampling, our system renders the scene at about
1.3 frames per second when the user is walking around in the room.
See the accompanying video for live demos.

patches, bilinear patches, NURBS, subdivision surface meshes, tri-
angles/quads, curves, and spheres.

5.2 Shade

To perform shading computations on GPUs, we need a shader com-
piler to automatically translate RenderMan shaders to GPU shaders.

Our system supports four basic RenderMan shader types: displace-
ment, surface, volume, and light. The first three types of shaders
are bound to objects. During the shading stage, they are executed
on all vertices of micropolygon grids generated by the dicing stage.
The output of these shaders are displaced vertex positions, colors,
and opacity values. Light shaders are bound to light sources. They
are invoked when a displacement/surface/volume shader executes
an illuminance loop.

For each object, our renderer composes its displacement, surface,
volume shaders, and light shaders from all light sources that illu-
minate this object into a shading pipeline. The shader compiler is
called to compile each shading pipeline into a BSGP GPU func-
tion. The function is inserted into a BSGP code stub that spawns
shading threads and interfaces with the dicer and sampler, yielding
a complete BSGP program. This program is then compiled into a
DLL (Dynamically Linked Library) and loaded during shading. To
maximize parallelism, we spawn one thread for each vertex. There-
fore, the function generated by our shader compiler only shades one
vertex.

Note that the memory required to shade one micropolygon vertex is
proportional to the maximum live variable size at texture/derivative
instructions in the shader. In our experiments, this is always less
than 400 bytes per vertex. This value grows approximately log-
arithmically with respect to the shader length. The memory con-
sumption of a 2000-line shader is only a few dozens of bytes larger
than a 50-line shader.

In the following, we describe several algorithmic details for imple-
menting our shader compiler and the shading stage.

Out-of-core Texture Fetch Typical scenes in film production
have a few large textures within a single shot. It is impossible to
store all texture data in the GPU memory. Simply translating RSL

Figure 5: RenderAnts rendering of a car parked in front of a house. The scene is illuminated by 22 lights with 8.8K lines of surface shaders
and 700 lines of light shaders. At 720×405 resolution with 3×3 supersampling, our system renders at about one frame per second when
the user is changing the viewpoint. Top right: changing light positions results in different shadows. Bottom right: viewing the scene from a
different viewpoint.

texture fetches into native GPU instructions does not work for such
scenes because it requires all texture data to reside in the GPU mem-
ory. We need a mechanism to handle out-of-core texture fetch.

REYES uses an out-of-core algorithm to manage textures [Peachey
1990]. Textures are split into fixed-sized 2D tiles. Whenever a
texture fetch accesses a non-cached tile, the tile is loaded into the
memory cache. This mechanism allows arbitrarily large textures to
be efficiently accessed through a relatively small memory cache.

To map this algorithm to the GPU, we split the texture pipeline into
a GPU texture fetcher and a CPU-side cache manager. Our com-
piler compiles each RSL texture fetch into an inline function call
to the GPU fetcher, while the cache manager is a static component
shared by all compiled shaders. Whenever a texel is required in a
shader, the GPU fetcher is called to fetch the texel from a GPU-
side texture cache which contains a number of tile slots packed as
a large hardware 2D texture. The GPU fetcher uses a hash table to
map the texture file name and tile position to texture coordinates on
the cache texture. If the requested tile is not in the cache, the fetcher
calls a GPU interrupt [Hou et al. 2009] to fetch the requested tile.
The interrupt handler computes a list of required tile IDs and calls
the CPU-side cache manager. The cache manager then reads the
required tiles from the disk, copies them to the GPU, and rebuilds
the mapping hash table.

Raw textures are preprocessed into mipmaps stored in tiles before
rendering begins. We let neighboring tiles overlap by one texel
so that we can utilize the GPU’s hardware bilinear filtering. Both
the cache texture and the address translation table have fixed sizes.
They are allocated in the beginning of our pipeline and thus do not
interfere with scheduling.

Light Shader Reuse A typical RSL surface shader may call illu-
minance loops multiple times to compute various shading compo-
nents. This is especially true for shaders generated from shade trees
[Cook 1984]. In such shaders, individual shading components such
as diffuse and specular terms are computed in individual functions
and each function has a separate illuminance loop. As a result, each
illuminance loop would execute light shaders for all light sources,
which is very inefficient. This problem is illustrated in Listing 2.

Conventional CPU-based renderers solve this problem by caching
light shader results during the first execution and reusing it in sub-

Original code After illuminance merging

//DiffusePart

color Cd=0;

illuminance(P){
Cd+=lambert();

}
//SpecularPart

float r=0.2;

color Cp=0;

illuminance(P){
Cp+=blinn(r);

}
//combination

Ci=Cd+Cp;

color Cd=0;

float r=0.2;

color Cp=0;

illuminance(P){
//merged loop

Cd+=lambert();

Cp+=blinn(r);

}
//combination

Ci=Cd+Cp;

Listing 2: Pseudo code demonstrating illuminance merging.

sequent illuminance loops with equivalent receiver configurations.
This caching approach, however, is inappropriate for the GPU.
While we know all light shaders at compile time, we do not know
the number of lights that use each shader. Therefore, the size re-
quired for the light cache is known only at runtime. Current GPUs
do not support dynamic memory allocation, which makes runtime
light caching impractical.

To address this issue, we seek to reduce light shader execution us-
ing compile time analysis. Specifically, we find illuminance loops
with equivalent receiver configurations and merge them into a sin-
gle loop. During merging, we first concatenate all loop bodies.
Then we find all values read in the concatenated loop body and
place their assignments before the merged loop. This is illustrated
in Listing 2. Note that the variables Cp and r are used in the later
specular illuminance loop and they have to be placed before the
merged illuminance.

The merge may fail in cases where one illuminance loop uses a
value defined by another illuminance, e.g., if a surface has its spec-
ularity computed from its diffuse shading. We check for this sort
of data dependency prior to illuminance merging as a precaution-
ary measure. In practice, such data dependencies are not physically
meaningful. They have never occurred in any of our shaders. Our
compiler consistently succeeds in merging all illuminance loops.
Optimal light reuse is achieved without any additional storage.

Our shader compiler first compiles shaders to static single assign-

Figure 6: 696K blades of grasses rendered at 2048×1536 with
11×11 supersampling. This generates 30.1M micropolygons and
4.7G sample points. The rendering time of RenderAnts and PRMan
are 23 and 1038 seconds, respectively.

ment (SSA) form as in [Cytron et al. 1991] and then performs
dataflow analysis on this SSA form for light reuse and derivative
computation as described below. Note that the term light shader
reuse has a different meaning here when compared with the light
reuse in previous lighting preview systems such as [Pellacini et al.
2005; Ragan-Kelley et al. 2007]. In our system, light shader reuse
refers to the reuse of light shader output across different shading
components during shader execution. In a lighting preview system,
light reuse refers to reusing the shading result from unadjusted light
sources during lighting design. They are completely different tech-
niques used in completely different rendering stages.

Derivative Computation Modern RSL shaders use derivatives
intensively to compute texture filter sizes for the purpose of anti-
aliasing. Derivative computation needs to get values from neigh-
borhood vertices, which we have to fetch through inter-thread com-
munication.

We use a temporary array in global memory to get values from
neighborhood vertices. An alternative is to use CUDA shared mem-
ory. While shared memory is more efficient, it is limited to threads
within the same CUDA thread block. For derivatives, this implies
that each grid has to fit in a single CUDA block. Unfortunately,
our grids are up to 32×32 in size and do not always fit in a block.
In addition, we find that the performance gain of using larger grids
outweighs the entire derivative computation. Therefore, the com-
munication required for derivatives has to use global memory.

Inter-thread communication via global memory requires barrier
synchronization to ensure that all threads have computed the val-
ues to exchange. This poses a problem: barriers cannot be used
in non-uniform flow control structures, whereas derivative instruc-
tions are not subjected to this limitation. To address this issue, our
shader compiler relocates all derivative computation to valid barrier
positions.

For each derivative instruction, there may be multiple valid posi-
tions for relocation. We need a way to find an optimal relocation
so that the number of required barriers is minimized. Observing
that consecutive derivative instructions can be relocated to the same
barrier, we find an optimal relocation by minimizing the number of
distinct target positions to relocate derivatives to. To do this, we
first eliminate trivially redundant derivatives, i.e., multiple deriva-
tive instructions of the same value. After that, we find all valid

relocation positions for each derivative. A graph is constructed for
the derivatives. Each derivative corresponds to a node in the graph.
An edge is created for each pair of derivatives that can be relocated
to the same position. The minimal barrier derivative relocation cor-
responds to the minimal clique cover of this graph. The number
of derivative instructions is typically very small after eliminating
trivially redundant ones. We simply use an exhaustive search to
compute the optimal solution.

Note that derivatives are only well-defined for variables that have a
defined value for all vertices in a grid. This guarantees our deriva-
tive relocation to be successful. A minor problem is that BSGP does
not allow placing barrier statements in uniform flow-control
structures. In such cases, we implement the synchronization using
a GPU interrupt [Hou et al. 2009].

Listing 3 illustrates our derivative relocation process. In the original
code, there are four derivative instructions Du. All of them are
written in flow control structure. After the derivative relocation,
the derivatives are pulled out and redundant ones are eliminated.
The compiler can then proceed to insert barriers and thread.get
calls to compute these derivatives.

Original code After derivative relocation

if(swapst!=0){
dsdu=Du(t);

dtdu=Du(s);

}else{
dsdu=Du(s);

dtdu=Du(t);

}

tmp0=Du(s);

tmp1=Du(t);

if(swapst!=0){
dsdu=tmp1;

dtdu=tmp0;

}else{
dsdu=tmp0;

dtdu=tmp1;

}

Listing 3: Pseudo code demonstrating derivative relocation.

Other Features RSL shaders use strings to index textures and
matrices. We follow the approach in [Ragan-Kelley et al. 2007]
to implement strings as integer tokens. Corresponding texture in-
formation and matrices are organized into arrays indexed by these
tokens and sent to the GPU prior to shading.

Shaders within a shading pipeline may communicate with each
other by exchanging variable values through message passing.
Since we compile each shading pipeline into a single function, vari-
ables in different shaders actually belong to the same local scope in
the final BSGP function. We simply replace message passing func-
tions with variable assignments after inline expansion.

Our system currently does not support imager shaders written in
RSL. Instead, a post-processing function written in BSGP is substi-
tuted in place of the imager shader in the original pipeline. After
rendering each frame, the renderer calls this function with a pointer
to the output image, and overwrites the output image with the post-
processed image. The user can write his/her own post-processing
function to implement any desired effect. This post-processing fea-
ture is used to compute the color adjustment and HDR glowing in
rendering Elephants Dream shots. Note that the PRMan version 13
that we use also provides its own scriptable compositor tool “it” for
post-render processing, and does not support RSL imager shaders
[Pixar 2007].

5.3 Sample

The sampling stage stochastically samples micropolygons into a set
of sample points. Each micropolygon is first bounded in the screen
space. If the micropolygon is completely outside of the current
sampling region, it is culled. Otherwise, we test the micropoly-
gon to see if it covers any of the predetermined sample locations

i

i+1

subpixel

sample location

Figure 7: Two micropolygons are sampled at sample locations be-
tween the i-th and i + 1-th scan lines.

in its bounding box. For any sample location that is covered, the
color, opacity, and depth of the micropolygon are interpolated and
recorded as a sample point. We use the jittering algorithm [Cook
1986] to determine the sample locations.

As described in Section 3, the jittering algorithm divides each pixel
into subpixels. Each subpixel has only one sample location, which
is determined by adding a random displacement to the location of
the center of the subpixel. The random displacement is computed
solely from the subpixel’s coordinates in the screen space. To map
this algorithm to the GPU, we take a two-step approach. The first
pass conservatively estimates the number of sample points of each
micropolygon, computes the required memory size for all sample
points, and allocates the memory. The second pass computes and
stores the actual sample points. In both steps, we parallelize the
computation over all micropolygons.

In the first step, we scan the bounding box of each micropolygon
line-by-line from bottom to top. The interval between adjacent lines
is set to be 1 subpixel. For the i-th line, the intersections of the
line and the micropolygon in screen space are computed as shown
in Fig. 7. Suppose that the set of intersections is represented as Pi.
The number of sample points of the micropolygon lying between
the i-th and i+1-th lines is no greater than Ri − Li + 1, where

Ri = ⌈max{p.x, p ∈ Pi ∪ Pi+1}⌉ and
Li = ⌊min{p.x, p ∈ Pi ∪ Pi+1}⌋ .

p.x denotes the horizontal coordinate of point p in the screen space.
Note that the horizontal coordinates of the micropolygon’s vertices
that are located between the i-th and i+1-th lines are also included
in the above formula to estimate the number of sample points.

After estimating the number of sample points of each micropoly-
gon, we use a parallel scan operation to compute the required mem-
ory size for sample points of all micropolygons and compute the
starting addresses of each micropolygon’s sample points in mem-
ory. Finally, a global memory buffer of the required size is allocated
for sample points.

In the second step, we scan each micropolygon again in the same
manner as in the first step. For the i-th line, Li and Ri are computed
again. For each subpixel between Li and Ri, we compute the sam-
ple location by adding a random displacement to the location of the
center of the subpixel and then test if the micropolygon covers the
sample location. If the sample location is covered, a sample point is
generated by interpolating the color, opacity and depth values of the
micropolygon, and the sample point is contiguously written into the
sample point buffer. Note that the sample point needs to record the
index of its associated subpixel. The starting address of the microp-
olygon is used to ensure that its sample points are written into the
right places without conflicting with other micropolygons’ sample
points. At the end of this step, the sample points of all micropoly-
gons are stored in the sample point buffer, ordered by the indices

of micropolygons. Note that for opaque micropolygons, we atom-
ically update the depth values and colors of the covered subpixels
using atomic operations supported by the NVIDIA G86 (or above)
family of graphics cards, and do not generate the sample points.
The depth values of subpixels are stored in the z buffer.

Note that there are other methods for estimating the number of sam-
ple points of a micropolygon. For example, we can simply compute
an upper bound of sample points based on the area of the microp-
olygon’s bounding box. This saves the line scanning process in the
first step, but leads to a larger memory footprint and a higher sort-
ing cost in the compositing stage (see Section 5.4). Our approach
is able to compute a tighter bound, resulting in an overall gain in
performance.

5.4 Composite & Filter

In this stage, the sample points generated in the sampling stage are
composited together to compute the final color, opacity and depth
values of all subpixels. The final pixel colors are then computed by
blending the colors and opacities of subpixels.

Composite In order to perform composition for each subpixel,
we need to know the list of its sample points, sorted by depth. To
get this information, we sort the sample points using their associ-
ated subpixel indices and depths as the sort key. In particular, the
depth values are first converted to 32-bit integers and packed with
the subpixel indices into 64-bit code. The lower 32 bits indicate the
depth value and the higher 32 bits are for the subpixel index. Then
the binary search based merge sort algorithm described in [Hou
et al. 2008] is used to sort the sample points. After sorting, sam-
ple points belonging to the same subpixel are located contiguously
in the buffer, sorted by depth.

Note that some elements in the sample point buffer may not contain
any sample point because the number of sample points of each mi-
cropolygon is over-estimated in the sampling stage. After sorting,
these empty elements will be contiguously located in the rear of
the buffer since their subpixel indices are initialized to be −1 dur-
ing memory allocation. They will not be processed in subsequent
computation.

After sorting, we generate a unique subpixel buffer by removing el-
ements having the same subpixel indices in the sorted sample point
buffer. We do this through the following steps. First, for each el-
ement of the sorted buffer, the element is marked as invalid if its
subpixel index equals that of the preceding element in the buffer.
Then, the compact primitive provided in BSGP is used to generate
the unique subpixel buffer which does not contain invalid elements.
During this process, for each element of the subpixel buffer, we
record the number of sample points belonging to this subpixel and
the index of the first sample point in the sample point buffer.

Finally, in parallel for all subpixels in the subpixel buffer, the sam-
ple points belonging to each subpixel are composited together in
a front-to-back order until the depth of the sample point is greater
than the depth of the subpixel in the z buffer.

Filter We perform filtering for all pixels in the current sampling
region in parallel. For each pixel, the color and opacity values of
its subpixels are retrieved and blended to generate the color and
opacity of the pixel. The depth value of the pixel is determined by
properly processing the depth values of its subpixels according to
the depth filter option (e.g., min, max, or average). The pixels are
sent to the display system to be put into a file or a framebuffer.

Figure 8: Transparency. Left: PRMan. Right: RenderAnts. The
two images are visually identical, with the root mean squared error
(RMSE) equal to 1.41.

Figure 9: Motion blur and depth-of-field: two frames from an an-
imation. The scene is rendered at 640×480 resolution with 8×8
supersampling. The rendering time of RenderAnts and PRMan are
1.37 and 13 seconds, respectively.

5.5 Advanced Features

Besides the basic REYES rendering pipeline, our system can also
render shadows, motion blur and depth-of-field directly on GPUs.

We render shadows using shadow maps with percentage closer fil-
tering [Reeves et al. 1987]. Shadow maps are generated in shadow
passes. In each shadow pass, a depth map is rendered from the
point of view of a light source, using the basic REYES pipeline.
Shadow maps are managed using the out-of-core texture fetching
system. Therefore, the number of shadow maps is not constrained
by the number of texture units on hardware.

We implement motion blur and depth-of-field by adapting the ac-
cumulation buffer algorithm [Haeberli and Akeley 1990] to the
REYES pipeline. Here we use motion blur as an example to illus-
trate our implementation. Each subpixel is assigned a unique sam-
ple time according to a randomly-created prototype pattern [Cook
1986]. Primitives are interpolated and rendered multiple times for
a series of sample times. At each rendering time, only those sub-
pixels whose sample time is equal to the current rendering time are
sampled. Then the same compositing and filtering stage described
above is applied to generate the final results. Depth-of-field can be
similarly handled. Each subpixel is assigned a sample lens position
and primitives are rendered from various lens positions.

Note that unlike the stochastic sampling algorithm described in
[Cook 1986], which jitters the prototype sample time of each sub-
pixel, we directly use the prototype sample time in the sample stage.
This is a tradeoff between rendering quality and performance – if
the prototype sample time is jittered, we need to estimate the num-
ber of sample points covered by micropolygons over a period of
time, which is very expensive.

Our implementation of motion blur and depth-of-field needs to ren-
der primitives multiple times. Although this always gives accurate
rendering results for arbitrary motions, the computation is expen-
sive, especially for scenes with complex shaders and many light
sources. In the future, we are interested in investigating methods

Figure 10: Depth-of-field: an army of 100 ants rendered at
640×480 resolution with 13×13 supersampling. In total, Render-
Ants renders the scene 169 times, shades 545.5M micropolygons,
and generates 328.1M sample points in producing this image. Our
rendering time on three GPUs is 26 seconds, compared to 133 sec-
onds with PRMan on a quad-core CPU.

to shade moving primitives only at the start of their motion as de-
scribed in [Apodaca 2000].

6 Multi-GPU Rendering

In this section we describe the extension of our system to support
efficient REYES rendering on multiple GPUs.

As shown in Fig. 11, the dicing scheduler on each GPU is enhanced
by a multi-GPU scheduler which is responsible for dispatching ren-
dering tasks to individual GPUs. All other schedulers and stages
remain unchanged. To design an efficient multi-GPU scheduler, we
need to solve two key problems: minimizing inter-GPU communi-
cation and load balancing among GPUs.

Bucketing

Bound/Split

Dice

Bucketing

Bound/Split

Dice

Bucketing

Bound/Split

Dice

Dicing Scheduler

Work Stealing

Dicing Scheduler

Work Stealing

Dicing Scheduler

Work Stealing

Shade, Sample

Composite & Filter

Shade, Sample

Composite & Filter

Shade, Sample

Composite & Filter

Figure 11: Multi-GPU rendering with RenderAnts.

Our multi-GPU scheduler is based on work stealing [Blumofe et al.
1995] and is combined with the dicing scheduler. The dicing sched-
uler runs on each GPU as usual. Whenever a GPU becomes idle
(i.e., its DFS stack of unprocessed subregions becomes empty), it
checks other GPUs’ DFS stacks for unprocessed subregions. If such

thread local storage:

list(quad) stack

multi schedule(quad r, list(prim) l)

if memoryUse(r,l)<memoryFree()-C:

process(r,l)

return

(r0,r1) = BSPSplit(r)

(n0,n1) = countPrimInQuads(l,r0,r1)

if n0>n1: swap(r0,r1)

//push the larger region explicitly

stack.push(r1)

l0 = primInQuad(l,r0)

schedule(r0,l0)

delete l0

//return if the other region is stolen

if stack.empty(): return

r1 = stack.pop()

l = primInQuad(l,r1)

schedule(r1,l)

multi main(list(prim) l)

if inMainThread():

r = bucketQuad()

multi schedule(r,l)

while renderNotDone():

r = stealTask()

multi schedule(r,primInQuad(l,r))

Listing 4: Pseudo code of the multi-GPU scheduling algorithm.

a region is found, the idle GPU steals a region from the stack bot-
tom. It adds the region to its own stack and removes it from the
original one. The GPU then proceeds to process the stolen region.
The pseudo code of the multi-GPU scheduler is shown in Listing 4.
Note that this work stealing scheduler does not involve any sig-
nificant computation and is implemented on the CPU. One CPU
scheduling thread is created to manage each GPU. All stack opera-
tions are done by these CPU threads.

Recall that the dicing scheduler requires a region and a list of prim-
itives contained in this region. Stealing the primitive list along with
the region requires more inter-GPU communication, which is ex-
pensive and intrinsically sequential. To avoid this problem, we
maintain a complete list of all primitives on all GPUs. When a
GPU steals a region, it recomputes the list of primitives in this re-
gion using the complete list. This way, work stealing only requires
transferring one region description, a simple 2D quad.

Some preparations are required to set up this work stealing sched-
uler. At the beginning of the pipeline, all scene data is sent to all
GPUs. Each GPU performs the bounding/splitting stage once to
compute the complete primitive list. This redundant computation is
designed to avoid inter-GPU communication. Before executing the
scheduler, a region equal to the current bucket is pushed onto the
first GPU’s stack and other GPUs are set to idle.

Another important problem is load balancing. For the work stealing
scheduler to achieve good load balance, the total number of subre-
gions cannot be too small. Otherwise, some GPUs cannot get re-
gions and will remain idle. Generating many very small subregions
would not be good either because that would lead to suboptimal
parallelism on each individual GPU. Our scheduler deals with this
issue using an adaptive subregion splitting criterion. We first set a
primitive count threshold nmin such that good load balancing can
be expected if all subregions contain no more than nmin primitives.
Subregions that fit in memory and contain fewer than nmin primi-
tives are never split. When a scheduling thread encounters a subre-
gion that fits in available memory while containing more than nmin

primitives, it checks whether the work queue of any other GPU is
empty. If such a GPU is found, the subregion is split. Otherwise, it
is dispatched for processing. This strategy allows an adaptive trade-
off between parallelism and load balancing. It worked well in all
our experiments.

Figure 12: Armor with abundant geometric details is placed in a
church. Lights shining through windows cast volumetric shadows,
or light shafts. At 480×640, RenderAnts shades 2.7M micropoly-
gons and composites 41.4M sample points in rendering this image.
The view pass time with RenderAnts is about 1.2 seconds, allowing
the user to change the viewpoint at 0.8 frames per second.

Once a region finishes its rendering on a GPU, the rendering result
(i.e., the pixel colors) is sent to the CPU and stored. After all regions
have finished rendering, the final image is put into a file or sent to a
GPU for display.

Design Motivation Note that our multi-GPU scheduling strategy
comes out of our hard learned lessons. Our initial design was a
general task stealing scheduler aimed at balancing workloads in all
stages. However, this design did not work out. For a long period,
we were unable to achieve any performance gain, as the inter-GPU
task migration cost consistently canceled out any improvement in
load balancing. We eventually switched strategy and carefully re-
designed the scheduler to eliminate all significant communication.
The task representation was designed to allow each GPU to quickly
re-compute all necessary data from very little information, and non-
profitable parallelization was replaced by redundant computation.
The current strategy works reasonably well on our large test scenes
(see Fig. 14 in Section 7).

7 Results and Discussions

We have implemented and tested the RenderAnts system on an
AMD 9950 Phenom X4 Quad-Core 2.6GHz processor with 4GB
RAM, and three NVIDIA GeForce GTX 280 (1GB) graphics cards.

Rendering Quality We use our system to render a variety of scenes

Proog (Fig. 1) Ants (Fig. 10) Blur (Fig. 9) Indoor (Fig. 4) Grass (Fig. 6) Hair (Fig. 16)

Resolution 640×480 640×480 640×480 640×480 2048×1536 1600×1200
Supersampling 8×8 13×13 8×8 4×4 11×11 13×13
Lights 12 6 2 30 2 4
Light shader length 188 74 160 1,789 75 75
Surface shader length 266 132 113 7,555 266 154
Total texture size 368MB – 80MB 491MB 3.4MB –

PRMan
4 CPU cores 40s 133s 13s 197s 1038s 3988s

Gelato
1 GPU 29.92s 246.32s 20.74s – – –

RenderAnts
1 GPU 2.43s 71.82s 2.47s 10.12s 48.94s 700.73s
2 GPUs 2.26s 37.32s 1.64s 9.47s 27.46s 360.24s
3 GPUs 2.11s 25.71s 1.37s 9.26s 22.85s 256.02s
Rendering rates 2.4 fps – 1.0 fps 1.3 fps – –

Shader compilation 41.52s 4.26s 8.11s 147.80s 26.61s 17.86s
Micropolygons 1.0M 545.5M 29.7M 2.9M 30.1M 442.4M
Sample points 56.1M 328.1M 24.6M 48.9M 4.7G 24.0G

Table 1: Measurements of scene complexity and rendering performance of PRMan 13.0.6, Gelato 2.2, and RenderAnts. For all renderers,
the rendering time includes the file loading/parsing time, the shadow pass time, and the view pass time. For RenderAnts, we also report the
rendering rates on three GPUs when the user is changing the viewpoint (i.e., the reciprocal of the view pass time), the shader compilation
time, the number of shaded micropolygons, and the number of sample points. Note that shader compilation is executed only once for all
shaders. Also note that Gelato crashed and reported insufficient memory for the grass and hair scenes.

including characters, and outdoor and indoor scenes. Visual ef-
fects including transparency, shadows, light shafts, motion blur, and
depth-of-field have been rendered. For all scenes, our system gen-
erates high-quality pictures visually comparable to those generated
by PRMan, with slight differences due to different implementation
details of individual algorithms (e.g., shadow maps). Note that Ren-
derAnts could be implemented to produce pictures visually identi-
cal to those of PRMan if we strictly follow the implementation de-
tails of PRMan. Our current results, on the other hand, are already
convincing and could be useful in many applications.

Rendering Performance As shown in Table 1, our system outper-
forms PRMan by over one order of magnitude for most scenes. In
the ants scene (Fig. 10), the performance gain is only around five
times. This is because our current implementation of depth-of-field
needs to render scenes multiple times while PRMan only renders
once as described in Section 5.5.

RenderAnts is capable of rendering several moderately complex
scenes (Fig. 1, Fig. 4, Fig. 5 and Fig. 12) at interactive frame rates
on three GPUs when the user is changing the viewpoint. In this
case, the shadow pass time is saved – we do not need to re-render
shadow maps if only the viewpoint and materials are changed.
Also, since in practice only one light is modified at a time, only the
shadow map of this light needs to be re-rendered and other shadow
maps remain unchanged. This allows us to modify the viewpoint,
lights and materials while viewing high-quality results on the fly.

We also compared RenderAnts with Gelato on three scenes, the
Proog, the ants, and the motion blur scene provided in Gelato’s tu-
torial. As shown in Table 1, RenderAnts is about 12 times faster
than Gelato for the Proog scene. For the ants scene, RenderAnts
outperforms Gelato by a factor of three. Note that Gelato is not a
RenderMan compliant renderer and does not directly support RIB
file format and RenderMan shaders. Although some tools have
been developed by third parties to allow Gelato to read RIB scene
files [Lancaster 2006], these tools have limited functions and do
not work for our scenes. To perform a comparison, we had to load
a scene into Maya and manually replace all surface shaders using
Maya’s materials.

Proog Blur Ants Indoor Grass Hair
0

20

40

60

80

100
P

e
rc

e
n

ta
g

e
 o

f
ti

m
e

 s
p

e
n

t

schedule

comp. / filter

sample

shade

dice

split

initialize

Figure 13: Breakdown of the rendering time on a single GPU. The
initialization time is the time for data loading (i.e., copying data
from the CPU to the GPU).

Performance Analysis Fig. 13 shows the percentage of each
stage’s running time in the rendering time. Just like in traditional
CPU-based renderers, shading accounts for a large portion of the
rendering time for most scenes in our system. The grass and hair
scenes contain a lot of fine geometry, resulting in a huge number of
sample points. Therefore, the sampling and compositing/filtering
stages take a lot of time. The percentage for initialization is quite
different for different scenes. For the indoor scene (Fig. 4), copying
data from the CPU to the GPU consumes considerable time since
it contains 600K polygon primitives. On the other hand, although
the ants scene contains 100 ants, only one ant model needs to be
copied to the GPU – others are all instances of this model. The
initialization time for this scene is thus negligible.

Note that the scheduling time is insignificant for all scenes, which
demonstrates the efficiency of our stage scheduling algorithm. In
our experiments, the scheduling algorithm can improve the overall
rendering performance by 30%-300% over the bucketing approach,
depending on scene complexity and rendering resolution. For ex-

Fig. 15 (top) Fig. 15 (middle) Fig. 15 (bottom)

Lights 12 19 22
Texture size 1.24GB 1.38GB 1.19GB

PRMan
4 CPU cores 303s 440s 329s

RenderAnts
1 GPU 17.24s 16.45s 21.53s
2 GPUs 11.32s 10.34s 12.60s
3 GPUs 8.91s 8.84s 9.92s

Micropolygons 15.4M 12.2M 29.1M
Sample points 1.5G 1.2G 2.8G

Out-of-core
#fetches 3.15K 1.43K 2.53K
#threads 65.54M 12.15M 44.17M

Table 2: Statistics of three shots from Elephants Dreams. To eval-
uate the overhead of out-of-core texture fetches, we count the total
number of out-of-core texture fetches (#fetches) and the total num-
ber of interrupted shading threads (#threads).

1 2 3
1

1.5

2

2.5

Number of GPUs

S
ca

le
d

 P
e

rf
o

rm
a

n
ce

shot1

shot2

shot3

Figure 14: Scalability study: rendering performance of three im-
ages shown in Fig. 15 on 1 to 3 GPUs, with each shot’s results
plotted related to the performance on one GPU.

ample, for the Proog and the ants scenes rendered at 640×480 reso-
lution, our algorithm improves the performance by 38% and 164%,
respectively. If the two scenes are rendered at 1920×1440 resolu-
tion, the improvements increase to about 106% and 255%, respec-
tively.

The overhead of out-of-core texture fetches consists of two parts –
context saving at interrupts and texture copy from CPU to GPU. We
evaluate this overhead on three complex scenes shown in Fig. 15,
each of which has more than one gigabyte of textures. Table 2 gives
the total number of interrupted threads and the total number of out-
of-core texture fetches when rendering these scenes. For each inter-
rupted thread, a maximum of 236 bytes need to be stored. Assum-
ing the memory bandwidth is 100GB/s, context saving time should
be 20-150ms. Each out-of-core texture fetch copies a 128×128 tex-
ture tile (64KB) from CPU to GPU. Assuming CPU-to-GPU copy
has a 1.5GB/s bandwidth and 10µs per call overhead, the copy time
should be 70-170ms. The total estimated overhead is thus less than
5% of the total rendering time.

The vast majority of our system is implemented as GPU code and
runs on GPUs. GPU memory allocation, kernel launch configura-
tion, and some operations (e.g., stack) in the schedulers are nec-
essarily performed on the CPU with negligible costs. Since our
system is to maximize parallelism within available GPU memory,
it always consumes all available GPU memory to achieve high ren-
dering performance.

Performance Scalability The scalability of our system with re-
spect to the number of GPUs depends on the scene. As shown in
Table 1, the performance scales well for complex scenes such as

Figure 15: Three frames of Elephants Dream, rendered with Ren-
derAnts at 1920×1080 resolution with 13×13 supersampling.

the ants, grass and hair scenes. For scenes like the indoor scene,
the initial preparation required to set up the multi-GPU scheduler
takes a considerable portion of the running time, leading to much
less performance gain using multiple GPUs.

To better demonstrate the scalability of our system, we render three
shots (see the images in Fig. 15) exported from an open source
movie entitled Elephants Dream [Blender Foundation 2006], at
1920×1080 resolution with 13×13 supersampling. These scenes
are reasonably complex – the scene shown in the middle row of
Fig. 15 contains 407K primitives that are diced into 12.2M microp-
olygons, generating 1.2G sample points, which is comparable to
some examples shown in previous papers such as [Pellacini et al.
2005] and [Ragan-Kelley et al. 2007]. Table 2 and Fig. 14 show
the rendering time for the three shots, using 1 to 3 GPUs. For these
complex scenes, the performance scales well with the GPU number,
although the scaling is not perfectly linear.

Animation Rendering Since the animations of Elephants Dream
were produced using Blender, we use RIB MOSAIC [WHiTeRaB-
BiT 2008] to export Blender files to RIB files. Fig. 15 shows three
rendered pictures from the three shots. These shots contain 656

(a) rendering result (b) dicing regions (c) sampling regions

Figure 16: 215K transparent, long hairs (α = 0.3) rendered at 1600×1200 with 13×13 supersampling. The bucket size is set as 256×256.
RenderAnts shades 442.4M micropolygons in 256 seconds on three GPUs, which is about 15 times faster than PRman on a quad-core CPU.
Due to the highly complex geometry, a huge number of sample points (24.0G) are created – many individual pixels contain substantial
sample points, resulting in lots of small sampling regions as illustrated in (c). Note that our scheduling algorithm still significantly improves
the rendering performance – the simple bucketing approach works with the bucket size 16×16 and takes 451 seconds to render the image.

frames in total and were rendered in about one and a half hours
on three GPUs using RenderAnts, including the rendering time and
file input/output time. Note that our rendering results are different
from the movie released by the Blender Foundation due to different
rendering algorithms and file conversion problems.

Limitations Currently there are two major limitations in the Ren-
derAnts system. The first is the geometry scalability. We assume
grids generated during bound-split and their bounding boxes fit in
GPU memory. This may be problematic for production scenes that
contain a large number of primitives. For instance, increasing the
number of hairs in Fig. 16 to 600K would break the assumption and
make the system crash. Also, a huge number of sample points will
be created for scenes that contain a lot of transparent and fine geom-
etry. For example, 24.0G samples are generated in the hair scene.
The sampling scheduler splits the image region into small sampling
regions (see Fig. 16(c)). Increasing the number of hairs would re-
sult in more sample points and smaller sampling regions, greatly
reducing the degree of parallelism and slowing down the rendering
performance. In the extreme case, the system will crash if a sin-
gle pixel contains substantial sample points that are too many to be
stored in GPU memory. A complete solution to this limitation is a
virtual memory system with paging and is left for future research.
Another limitation is motion/focal blur. Our current accumulation
buffer based algorithm is more of a proof-of-concept approach and
is not intended for actual production. Efficient production-quality
motion/focal blur on the GPU is a non-trivial task that should be
investigated in future work.

8 Conclusion and Future Work

We have presented RenderAnts, a system that enables interactive
REYES rendering on GPUs. We make three major contributions in
designing the system: mapping all stages of the basic pipeline to the
GPU, scheduling parallelism at individual stages to maximize per-
formance, and supporting scalable rendering on multiple GPUs by
minimizing inter-GPU communication and balancing workloads.
As far as we know, RenderAnts is the first REYES renderer that en-
tirely runs on GPUs. It can render photorealistic pictures of quality
comparable to those generated by PRMan and is over one order of
magnitude faster than PRMan. For moderately complex scenes, it
allows the user to change the viewpoint, lights and materials while
providing feedback interactively.

Based on the RenderAnts system, there exist a number of inter-
esting directions for further investigation. First, some algorithms

in our system can be improved. For example, the current dic-
ing/sampling schedulers simply split a region at the middle point
of the longer axis. We believe that a splitting scheme which bal-
ances the number of primitives/micropolygons contained in the two
subregions will generate a better partitioning of the region and im-
prove performance. We also wish to avoid patch cracks which are
caused by various errors in the approximation of primitives by their
tessellations. These cracks will introduce rendering artifacts.

Second, we are interested in incorporating more advanced features
into the system, such as deep shadow maps, ambient occlusion,
subsurface scattering, ray tracing and photon mapping. Some fea-
tures can be added to RenderAnts by adapting existing algorithms.
For example, GPU ray tracing of production scenes has already
been demonstrated in [Budge et al. 2009]. For photon mapping,
Hachisuka et al [2008] proposed a progressive algorithm that can
achieve arbitrarily high quality within bounded memory, which
should fit well in our pipeline. Culling is also an important feature
in modern REYES implementations. It is possible to incorporate
some traditional culling techniques into our system, like computing
depth buffers prior to shading.

References

APODACA, A. A., AND GRITZ, L. 1999. Advanced RenderMan:
Creating CGI for Motion Pictures. Morgan Kaufmann Publish-
ers Inc.

APODACA, T. 2000. How PhotoRealistic RenderMan works. ACM
SIGGRAPH 2000 Course Notes.

BLEIWEISS, A., AND PREETHAM, A. 2003. Ashli - advanced
shading language interface. ACM SIGGRAPH Course Notes.

BLENDER FOUNDATION, 2006. Elephants Dream home page.
http://orange.blender.org.

BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISER-
SON, C. E., RANDALL, K. H., AND ZHOU, Y. 1995. Cilk: an
efficient multithreaded runtime system. ACM SIGPLAN Notices
30, 8, 207–216.

BUDGE, B. C., BERNARDIN, T., SENGUPTA, S., JOY, K. I., AND

OWENS, J. D. 2009. Out-of-core data management for path trac-
ing on hybrid resources. In Proceedings of Eurographics 2009.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The
Reyes image rendering architecture. In SIGGRAPH’87, 95–102.

COOK, R. L. 1984. Shade trees. In SIGGRAPH’84, 223–231.

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Gr. 5, 1, 51–72.

CYRIL, C., FABRICE, N., SYLVAIN, L., AND ELMAR, E. 2009.
Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering. In I3D’09.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. 1991. Efficiently computing static single
assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13, 4, 451–490.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
hardware support for high-quality rendering. In SIGGRAPH’90,
309–318.

HARRIS, M., OWENS, J., SENGUPTA, S., ZHANG, Y., AND

DAVIDSON, A., 2007. CUDPP homepage.
http://www.gpgpu.org/developer/cudpp/.

HOU, Q., ZHOU, K., AND GUO, B. 2008. BSGP: Bulk-
Synchronous GPU Programming. ACM Trans. Gr. 27, 3, 9.

HOU, Q., ZHOU, K., AND GUO, B. 2009. Debugging GPU stream
programs through automatic dataflow recording and visualiza-
tion. Tech. rep., May, 2009.

LANCASTER, T., 2006. RenderMan/Gelato utilities.
http://www.renderman.org/RMR/Utils/gelato/index.html.

LAZZARINO, O., SANNA, A., ZUNINO, C., AND LAMBERTI, F.
2002. A PVM-based parallel implementation of the Reyes image
rendering architecture. Lecture Notes In Computer Science 2474,
165–173.

NVIDIA, 2008. Gelato home page.
http://www.nvidia.com/page/gz home.html.

OLANO, M., AND LASTRA, A. 1998. A shading language
on graphics hardware: the pixelflow shading system. In SIG-
GRAPH’98, 159–168.

OWENS, J. D., KHAILANY, B., TOWLES, B., AND DALLY, W. J.
2002. Comparing Reyes and OpenGL on a stream architecture.
In Graphics Hardware 2002, 47–56.

PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
adaptive surface subdivision. ACM Trans. Gr. 27, 5, 143.

PATNEY, A. 2008. Real-time Reyes: Programmable pipelines and
research challenges. ACM SIGGRAPH Asia 2008 Course Notes.

PEACHEY, D. 1990. Texture on demand. Tech. rep., Pixar Techni-
cal Memo #217.

PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J. 2000.
Interactive multi-pass programmable shading. In SIGGRAPH
2000, 425–432.

PELLACINI, F., VIDIMČE, K., LEFOHN, A., MOHR, A., LEONE,
M., AND WARREN, J. 2005. Lpics: a hybrid hardware-
accelerated relighting engine for computer cinematography.
ACM Trans. Gr. 24, 3, 464–470.

PIXAR. 2007. PRMan User’s Manual.

RAGAN-KELLEY, J., KILPATRICK, C., SMITH, B. W., EPPS, D.,
GREEN, P., HERY, C., AND DURAND, F. 2007. The lightspeed
automatic interactive lighting preview system. ACM Trans. Gr.
26, 3, 25.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. In SIGGRAPH’87,
283–291.

TOSHIYA, H., SHINJI, O., AND JENSE, H. W. 2008. Progressive
photon mapping. ACM Trans. Gr. 27, 5, 127.

WEXLER, D., GRITZ, L., ENDERTON, E., AND RICE, J.
2005. GPU-accelerated high-quality hidden surface removal. In
Graphics Hardware 2005, 7–14.

WHITERABBIT, 2008. RIB MOSAIC home page.
http://ribmosaic.wiki.sourceforge.net/.

