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Prinbcipal component analysis (PCA) is an effective statistical technique for reducing the dimensions of a 

given unlabeled high-dimensional dataset while keeping its spatial characteristics as much as possible. It 

has found immense applications in image compression, pattern recognition (face recognition in particular) 

and data clustering. Depending on the field of application, PCA is also known as the discrete Karhunen-

Loeve transformation, or the Hotelling transform. 

 

More specifically, PCA transforms the dataset into a new coordinate system such that the projection onto 

the first coordinate have the greatest variance among all possible projections, and the projection onto the 

second coordinate have the second greatest variances, and so on. By finding these successive coordinates 

(or principal components), we can visualize the distribution of the original dataset after projecting it onto a 

low-dimensional space. In other words, PCA provides a best meaningful viewing angle that can disperse 

the dataset as much as possible. We shall have a gentle walk-through of the mathematics underlying PCA 

as follows. 

 

Assume that our dataset is composed of m d-dimensional column vectors ix , where 1, ,i n . Further, 

we also assume the dataset is zero justified. That is, the average across each dimension is zero: 
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If the original dataset does not satisfy this constraint, we can simply subtract the mean of each dimension 

from the original dataset. Our goal is now to find a unity vector u  such that the squared sum of the 

dataset’s projection onto this direction is the maximum. For simplicity, we can use an nd   matrix 

X  to represent the dataset: 
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Then the projection of each column of A onto u  can be represented by the following column vector: 
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where uxT

i  is the projection of vector ix  onto the unity vector u . The square sum of the total projection 

is a function of u , denoted by 

      uXXuuXuXpppu TTTTTTJ 
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To maximize the total projection  uJ  under the constraint 1u , we can use the Lagrange Multiplier 

to form a new objective function: 

   
~

1T T TJ    u, u XX u u u   

To maximize the new objective function, we can find its gradient and set it to zero, as follows: 
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Now it is obvious to see that the maximum occurs when u is one of the eigenvectors of 
TXX  and   is the 

corresponding eigenvalues. Under this condition, the corresponding total projection is: 
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We can arrange the eigenvalues of 
TXX  into an descending order 

1 2 d     , 

with the corresponding eigenvectors muuu 21, . Then the maximum value of  uJ  is 1  which occurs 

at 1uu  ; while the minimum is d  which occurs at du u . 

 

Once we have found the first principal component 1u  (as the unity eigenvector corresponding to the 

maximum eigenvague of 
TXX ), we can continue to find the second principal component that achieves the 

maximum total projection with the constraint that it is orthogoanl to 1u . To this end, we can form the 

objective function: 

     
~

2 1 2 1 2, 1T T T TJ        1u, u XX u u u u u  

Again, we can set its gradient to zero, as follows: 

  0220,,
~

121212  uuuXXuu  TJ  

If we pre-multiply the above equation by 1u , we have 

02 112111  uuuuuXXu
TTTT   

Since 01 uu
T

, the second term vanishes.  The first term also vanishes since 0111  uuuXXu
TTT  . 

Therefore 02  and the original gradient equation becomes 

022 1  uuXX T
, 

whch indicates that the second principal component is still an eigenvectors of 
TXX  and its total projection 

is the corresponding eigenvalue. As a result, the second principal component is 2u  and the corresponding 

total projection is 2 . By repeating this process, we can obtain the successive principal components as the 

eigenvectors muuu 21,  of
TXX . (Note that since 

TXX is symmetric, its eigenvectors  muuu ,, 21  

form an orthonomal basis with jiji
 ,0uuT . ) 

 

 

The step-by-step guide for performing PCA on a dataset is as follows:  

1. Find the sample mean of the dataset: 
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2. Compute the covariance matrix 
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3. Find the eigenvalues of C  and arrange them into descending order },,,{ 21 d  , with the 

corresponding eigenvectors },,,{ 21 duuu  . 
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4. The transformation matrix is then 
TU , with 
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21 duuuU  . In other words, vector x  after 

transformation is xUy T . If we only want to keep the first 3 dimention, we can simply put only 

the first 3 eigenvectors ( 321 ,, uuu ) into U  directly. 

 


