
Web Services
Sanlig Badral

236 828

Betreut von Dipl.-Inform. Thomas Haase

Zusammenfassung

Web Services are a key component of the enterprise integration tech-
nology. In this seminar work will be explained what Web Services are and
how they work including main base technologies (that are XML, WSDL,
SOAP, UDDI) and their importance in the e-commerce environment (known
as business world). I will also explain in brief case what are Web Services
standards, potential, problems, current and future state. Main focus of this
writing is the integration of Web Services. In this work will be given an
overview about Web Services technology.

Inhaltsverzeichnis

1 Introduction 1-3

1.1 Overview . 1-3

1.2 Construction of work . 1-4

2 Fundamentals of Web Services 1-6

2.1 Web Services definition . 1-6

2.2 Architecture of Web Services life cycle 1-8

2.3 What is XML-RPC? . 1-9

2.4 What is SOAP? . 1-11

2.5 What is WSDL and why it used? 1-12

2.6 What is UDDI? . 1-16

2.7 Web Services standards . 1-17

3 Integration of Web Services 1-18

3.1 Service creating . 1-19

3.2 A simple implementation of SOAP 1-20

3.3 Service describing . 1-21

3.4 Services discovering . 1-22

3.5 How integrate two or more various applications? 1-23

3.6 Securing Web Services . 1-25

3.7 Web Services problems . 1-26

3.8 B2B . 1-26

4 Summary 1-27

4.1 Web Services today . 1-27

4.2 Future/potential of Web Services 1-28

1 INTRODUCTION 1 – WS

1 Introduction

The Internet is a long-reaching web of networks and a very big repository of the
information, that are increasing all the time. Thus it has become necessary to auto-
mat in many areas of the Internet. i.e. It is a purpose to communicate applications
with each other, without by hand regulated data exchange. Web Services are a new
way to implement networked and distributed applications.
In this seminar work I will explain what Web Services are and how they work
including main base technologies (that are XML, WSDL, SOAP, UDDI) and their
importance in the e-commerce environment (known as business world). I will also
explain in brief case what are Web Services standards, potential, problems, current
and future state. I will mainly focus on integration of Web Services. Therefore I
will implement a small example Web Services in programming language PHP.
The example name is „City distance service“. User can enter 2 city names and get
the distance as result.

This work is organized in three main parts that are fundamentals of Web Services,
integration of Web Services and summary. In this work will be given an overview
about Web Services technology.

1.1 Overview

I will give Web Services overviews and inquire the realization of Web Services
purposes with this work. Web Services include many other technologies such as
XML (eXtensible Markup Language), SOAP (Simple Object Access Protocol),
WSDL (Web Services Description Language), UDDI (Universal Description, Dis-
covery and Integration) etc. I would therefore explain all technologies as shortly
as possible, which are used for Web Services.
„Web Services make software functionality and data available over the Internet."
„Web Services allow you to encapsulate old applications standardized, consistent,
and reusable.“
„Applications can communicate with each other independent of platforms, pro-
gramming languages or protocols.“[2]
The aim of this work is an examination of the realization of the above goals.

1-3

1 – WS 1 INTRODUCTION

1.2 Construction of work

I have organized my writing in three parts.

• Fundamentals of Web Services

• Integration of Web Services

• Summary

Fundamentals of Web Services:In this chapter I will introduce following terms.
Web Services definition
Web Services are a term of wide comprehension thus it is not so easy to de-
fine. There are many miscellaneous definitions.
Illustration of Web Services architecture
I will observe the architecture for all below technologies. Here will be defi-
ned how the Web Services work and their interactions.
What are XML-RPC, SOAP?
These are the main protocols, which are used for Web Services. Certainly
these play very important use for the Web Services communication.
What is WSDL and why it used?
WSDL is the abbreviation of Web Services Description Language. Its goal is
to define the services understandable by communication protocols. „WSDL
is extensible to allow description of endpoints and their messages regard-
less of what message formats or network protocols are used to communica-
te, however, the only bindings described in this document describe how to
use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME.
[http://www.w3.org/TR/wsdl/]“
What is UDDI and how it works?
In this section will be introduced UDDI term. UDDI is the standard of Web
Services publication.
Web Services standards
Web Services are still in the early development stage. „We have not created
multiple standards, but rather we have gone out and supported interopera-
bility“, said Philip DesAutels, Microsoft’s product manager for XML Web
Services. It is safe to assume the goal is to have one standard. The Web
Services standards are mentioned here briefly.

Integration of Web Services: It is the main part of this writing.
Service creating
You can experience here how do create or use Web Services. What is intere-
sting? What do we need to create or to consume a Web Service? What do we
need to communicate with different Platforms and programming languages?

1-4

http://www.w3.org/TR/wsdl/

1.2 Construction of work 1 – WS

A simple implementation of SOAP
I will explain the main procedure of programming Web Service with SOAP.
I will implement here a very simple Web Service.
Service describing
Here will be defined how will be used WSDL document to describe a Web
Service and described what ßelf-describingmeans.
Service discovery
How can a developer publish a Web Services? How can a consumer disco-
ver the Web Services to use? In this section will be mentioned the Usage of
UDDI.
How to integrate two or more various applications?
The topic explains us for all. I will try to describe Web Services integrations
techniques and characteristics.
XML application interface
It looms large for loosely coupling of old applications and encapsulation of
the applications and their data. So I will briefly repeat about this interface.
Securing Web Services
Web Services security is today very critical topic. Why? So, I will mention
about the security of Web Services very briefly.
Web Services problems
What are the problems? How can be solved or more efficiently solved these?

Summary: The advantages and future/potential of Web Services go here.

1-5

1 – WS 2 FUNDAMENTALS OF WEB SERVICES

2 Fundamentals of Web Services

In this part we will concern oneself in fundamentals of Web Services and their ba-
sis technologies. Web Services are based on the SOAP, XML, WSDL and UDDI
and it can be described a protocol stack, as we see, each aspect is characterized by
one or more protocols defined on top of the lower layers. The layers described in
figure 1 take over the following tasks. The transport layer used as a base. Here the
used transport protocols and the most common one being HTTP are defined. The
higher layer is responsible to format and package the information to be exchan-
ged. This layer is represented by SOAP. The functionality of the service is defined
in the next layer (description). UDDI is a layer on top of standards-based techno-
logies such as TCP/IP, HTTP, XML, and SOAP to make up a uniform service
description format and service discovery protocol.

Descovery (UDDI)

XML messaging (SOAP...)

Transport layer (TCP/IP)

Description (WSDL)

Abbildung 1: Service interaction stack

2.1 Web Services definition

There are many different definitions of Web Services. Two of the most common
definitions are given below:

„A Web Service is any service that is available over the Internet, uses a
standardized XML messaging system and is not tied to any one opera-
ting system or programming language [1].“

„A Web Service is seen as an application accessible to other applicati-
ons over the Web [4].“

1-6

2.1 Web Services definition 1 – WS

However, despite the commonness of the two definitions, they are still too rough
for practical usage. In a broader sense of the word, anything that has an URL can
be considered as a Web Services.

UDDI consortium [6] provides us with a more precise definition.

„Web Services are self-contained, modular business applications that
have open, Internet-oriented, standards-based interface.“

Though this definition has narrowed down our scope, it is still not precise enough.
For instance: what are the open modular business applications and self-contained
is not clearly defined. An alternate definition has also been provided by the W3
consortium.[4] This definition is excellent in its clarity, and is as given below:

„A Web Service is a software system identified by an URL, whose pu-
blic interfaces and bindings are defined and described using XML. Its
definition can be discovered by other software systems. These systems
may then interact with the Web Services in a manner prescribed by
its definition, using XML based messages conveyed by Internet proto-
cols.“

This definition allows us to have an excellent understanding of Web Services.

From the above definitions, we can now derive a clearer perspective of the term
Web Services, and this definition can be given as follows:

„A Web Service is a communicating mechanism with standardized interface of
XML messaging, integrates loosely coupled and distributed applications via the
Internet independent from platforms, programming languages and operations sy-
stems.“

XML messaging uses XML as the data standard format. XML is an easy extensi-
ble powerful markup language that enables users to create their own vocabularies.
This makes increment of interoperability of application services. XML is very
popular and widely used today. The use of Web Services enables application-to-
application communication. The particular notable properties of Web Services are
self-describing and discoverable.

1-7

1 – WS 2 FUNDAMENTALS OF WEB SERVICES

2.2 Architecture of Web Services life cycle

The lifecycle architecture shown in figure2 compendiously summarizes client and
server side and illustrates the interactions between them with business operations
in the real world. The lifecycle covers three primary entities, which are Service
Provider, Service Registry, and Service Requester. Also this is a complete B2B
Web Services architecture model.

Service
registry

5. Retrieve

Service requester Service provider

1. Create

3. Publish
4. Find

6. Bind

UDDI

(SOAP)
(SOAP)

(SOAP)

(Client)
Service requester

User application

(Server)
Service provider

1. Create

2. Describe
(WSDL)

Abbildung 2: B2B Web Services architecture model

Web Services are independent from programming languages, so any programming
language can be used by the developer to create a service. The service will then
be described with WSDL for deploying. The service provider publishes the ser-
vice in a Service Registry, which can be used for service requesters in public. The
Service Registry contains complete information about the service. The service
requester will look for services, which it needs and retracts service information.
Now, service requester can communicate with its corresponding service. Certain-
ly, if requester has enough information about the service, then the required service
could be accessed directly.

1-8

2.3 What is XML-RPC? 1 – WS

2.3 What is XML-RPC?

XML-RPC emerged in 1998, published initially via UserLand software and im-
plemented in their Frontier product. XML - RPC (Extensible Markup Language -
Remote Procedure Call) is a simple protocol using XML messages for the func-
tion or procedure call between remote hosts. XML-RPC provides an XML- and
HTTP-based mechanism for making remote procedure calls across a network. The
authors’ definition is as given below:
„. . . XML-RPC is XML over HTTP, and a great way to develop Web Services. But
there’s actually more going on here - there’s a philosophy to XML-RPC that is
different from other software projects. The philosophy is choice, and from choice
comes power, and interestingly, a disclaimer of power. . . “ [Dave Winer, Userland
Software , 2001]
XML-RPC builds own instance parameter of objects based on XML elements and
posts as XML-RPC request. This object will be decoded simply at the Server. A
response will be generated and it converted in XML again then will be sent to cli-
ent. This response is called XML-RPC response. XML-RPC is structured as three
small parts: XML-RPC data model, XML-RPC request structures and XML-RPC
response structures.

2.3.1 XML-RPC data

XML-RPC parameter allows the following types.

Type Value Examples
Int or i4 32 bit integers 2,147,483,648 - 2,147,483,647 <int>11</int><i4>11<i4>
Double 64-bit floating-point numbers <double>11.27134</double>
Boolean 1(true) or 0(false) <boolean>1</boolean>
String ascii or unicode text <string>Hello!</string>

DateTime.iso8601 dates in ISO8601 format CCYYMMDDTHH:MM:SS <dateTime.iso8601>20040111T
6:8:5 </dateTime.iso8601>

base64 binary information encoded as base 64, as defined in
RPC 2045

<base64>zisfSDf=/hf</base64>

Tabelle 1:Number of turns and distance between top and bottom.

XML-RPC is designed to be as simple as possible, while allowing complex da-
ta structures to be transmitted, processed and returned. Following two examples
show us the complex types, which are allowed by XMP-RPC data.
1. Array type. This one dimensional array contains three elements which are one
string, one integer, one boolean, and two integer values.

1-9

1 – WS 2 FUNDAMENTALS OF WEB SERVICES

<array>
<data>

<value><i4>135</i4></value>
<value><string>Koeln</string></value>
<value><boolean>1</boolean></value>
<value><i4>368</i4></value>

</data>
</array>

2. Object type. In this example, the city struct contains a city name and a value.

<struct>
<city>

<name>Aachen</name>
<value><i4>200</i4></value>

</city>
<city>

<name>Freiburg</name>
<value><i4>520</i4></value>

</city>
</struct>

2.3.2 XML-RPC request

XML-RPC requests consist header information and a body. The body is imple-
mented in XML. The Root element of body is methodCall. Each methodCall con-
tains one methodName element and one params element.

<methodCall>
<methodName>myservice.getDistance</methodName>
<params>

<param>
<value><string>Aachen</string></value>
<value><string>Frankfurt</string></value>

</param>
</params>

</methodCall>

2.3.3 XML response

XML-RPC response is like request. MethodCall is replaced by methodResponse.
XML-RPC response can contain only one parameter namely params. If a problem
occurs in processing of the request then methodResponse element contain fault in-
formation. But HTML header information would be always "HTTP/1.1 200 OK"!

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><string>260</string></value>
</param>

</params>
</methodResponse>

1-10

2.4 What is SOAP? 1 – WS

If you want to develop a Web Services with XML-RPC you can see more details
from Programming Web Services with XML-RPC/O’Reilly". [3] A more detail
description of XML-RPC is available at thehttp://www.xml-rpc.com

2.4 What is SOAP?

SOAP is an abbreviation for Simple Object Access Protocol. SOAP allows appli-
cations to pass messages, which are a unit of communication with a Web Service,
representing the data exchanged in a single logical transmission, to one another
independent from any platforms via HTTP, SMTP protocols. SOAP specificati-
on defines a XML structure for the action of requests and responses but doesn’t
define how the requestor or the responder transmit and receive messages. The
implementation of receiving and sending is not the SOAP point but the software
developer affair. SOAP message is structured as follows. The Messages are used
as anenvelopewhere the application encloses whatever information needs to be
sent. SOAP Envelope provides a mechanism to identify the contents of a message
and to explain how the message should be processed. A SOAP envelope includes
aheaderand abody. The SOAP header provides an extensible mechanism to sup-
ply directive or control information about the message. The SOAP body contains
the payload that is being sent in the SOAP message.
All data transmitted through SOAP messages are encoded using XML. SOAP 1.1
defines bindings for HTTP and the HTTP Extension Framework. Services may be
designed to work on the raw XML payload, but it is more common for the payload
to be mapped or bound directly to data types in the host language. SOAP 1.2 de-
fines a default binding for HTTP and provides for other bindings such as SMTP,
JMS and others. Data can be passed as a literal XML document that validates
against some XML Schema document. SOAP is simple extensible and lightweight
alternative to CORBA and he supports peer-to-peer communications.

2.4.1 Creating a request

In my example „Myapplication“ will call the „getDistance“ function that is to
stand on a server across the Internet. „Anyapplication“ makes up a SOAP message
and use HTTP to send it. The request message looks like as below.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP:Envelope xmlns:SOAP="urn:schemas-xmlsoap-org:soap.v1">
<SOAP:Body>

<getDistance>
<fromCity>Aachen</fromCity>
<toCity>Frankfurt</toCity>

</getDistance>

1-11

http://www.xml-rpc.com

1 – WS 2 FUNDAMENTALS OF WEB SERVICES

</SOAP:Body>
</SOAP:Envelope>

There is a tag for the method name and tags for the parameters in the SOAP
Envelope tags.

2.4.2 Creating a response

When message is received on the remote server then the object is created and the
method is called, sending onward two parameters. Once the method is completed
processing, it creates a SOAP message to send the result back to Myapplication".
The response message looks like as below.

<?xml version="1.0" encoding="UTF-8">
<SOAP:Envelope xmlns:SOAP="urn:schemas-xmlsoap-org:soap.v1">

<SOAP:Body>
<getDistanceResponse>
<value>260</value>
</getDistanceResponse>

</SOAP:Body>
</SOAP:Envelope>

SOAP message contains the name of the response and the value of the result.
This message is returned to Myapplication"where it is worked up. SOAP is more
flexible and more efficient in particular for requests vs. XML-RPC. SOAP will
make possible for systems to become highly distributed. Developers will be able
to simply rely on the survey and existing code of other developers to more quickly
build more reliable systems.

2.5 What is WSDL and why it used?

WSDL is an abbreviation for Web Services Definition Language. WSDL is a Web
Services description mechanism used to describe and locate Web services. Its goal
is to define the services understandable by communication protocols. I can define
WSDL as an Interface Definition Language, written in XML, for architecting Web
Services applications. W3 has provided following more precisely definition.
„WSDL is extensible to allow the description of endpoints and their messa-
ges regardless of what message formats or network protocols are used to com-
municate, however, the only bindings described in this document describe how
to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME“.
[http://www.w3.org/TR/wsdl]
There is still no standard for WSDL. W3 Consortium has been busily working on

1-12

http://www.w3.org/TR/wsdl

2.5 What is WSDL and why it used? 1 – WS

this task. [http://www.w3.org/]
More simply, WSDL describes what Web Services can act, where it is, and how
is accessed by user. WSDL specifications are characterized by an abstract part
that describes the interface and a concrete part that defines the binding informa-
tion. This is personated below in figure 3. WSDL uses the same type of system
as XML Schemas, although the WSDL document can specify a diverse type of
system if necessary.

WSDL specification

Abstract part

Concrete part

types

messages

operations

port types

bindings

service and ports

Abbildung 3: A WSDL service specification [5]

„Definitions“ element defines set of related services. Located at the root, inside
the element, definitions of other elements are defined. It contains the attributes
‘name’, which specifies the name of the service, the target namespace, and other
standard namespace definitions.

<?xml version="1.0" ?>
<definitions xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:si="http://soapinterop.org/xsd" xmlns:tns="http://openmn.org/WS"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://openmn.org/WS">
. . .

</definitions>

1-13

http://www.w3.org/

1 – WS 2 FUNDAMENTALS OF WEB SERVICES

„Types“ element contains data type definitions. Usually, this element includes a
schema element that defines various data types.

<types>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://openmn.org/WS">
<xsd:complexType name="DistanceData">
<xsd:all>
<element name="dist" type="xsd:int"/>
</xsd:all>
</xsd:complexType>
</xsd:schema>
</types>

„Message“element describes the message parameters and return values with their
names. Messages that are defined are associated with their respective operations as
input and output messages. A message is protocol independent, so it may be used
with HTTP GET, SOAP, or any other protocol. To use web services in a remote
procedure call model, there are two messages that must be described. They are the
input (or request) message, which is sent from the client to the service, and the
output (or response) message, which is sent back the opposite way. Each contains
zero or more elements that describe the content of the message.

<message name="getDistanceRequest">
<part name="fromcity" type="xsd:string"/>
<part name="tocity" type="xsd:string"/>

</message>
<message name="getDistanceResponse">

<part name="return" type="tns:DistanceData"/>
</message>

„port type“ element defines the operations using the <operation > element. The
<operation > elements define the syntax for calling all methods in the Port Ty-
pes and input output messages. An operation is a transmission primitive that an
endpoint can support. A portType is „a named set of abstract operations and the
abstract messages involved.“ It is a collection of one or more associated operati-
ons.

<portType name="DistancePortType">
<operation name="getDistance">

<input message="tns:getDistanceRequest"/>
<output message="tns:getDistanceResponse"/>

</operation>
</portType>

„binding“ element is used to specify message format and protocol details for
each port. SOAP specific information stands here. The style attribute specifies
the style of request, which can be rpc or document-RPC for messages containing
parameters and return values, and „document“ for messages containing one of
more documents.

<binding name="DistanceBinding" type="tns:DistancePortType">

1-14

2.5 What is WSDL and why it used? 1 – WS

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getDistance">
<soap:operation soapAction="http://localhost/seminar/server" style="rpc"/>

<input>
<soap:body use="encoded" namespace="http://openmn.org/WS"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output>

<soap:body use="encoded" namespace="http://openmn.org/WS"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>

„service“ consists of a collection of related port addresses, with each port spe-
cifying a particular service. A WSDL may have 0, 1 or more <service> elements.
Each port element references a unique <binding> element, specified in the binding
section.

<service name="Distance">
<port name="DistancePort" binding="tns:DistanceBinding">
<soap:address location="http://localhost/seminar/server" />
</port>
</service>

WSDL can be used in different ways and for different purposes as any interface
definition language. The W3C Web Service Description Working Group has do-
cumented and published use cases that illustrate how a Web Service could be des-
cribed in WSDL. The Working Group has detected three potential uses of WSDL
description. Three of the most important potential uses are:
1. A WSDL description indicates how to interact with the service, what data needs
to be post, what data is to expected in return, what operation are involved and the
protocol and format necessary to invoke the service.
2. A another important use is as input to stub compilers and tools that, given a
WSDL description, will generate the required stubs and additional information
for developing both the service and the clients that invoke the service. This usage
is presented below in figure 5.
3. A WSDL description to capture information that will eventually allow designers
to cause about the semantics of a Web Service. Currently, each Web Service must
use a separate specification to pin down the actual semantics or use some other
mechanism outside the WSDL description to establish the necessary conventions.
One quite interesting to note that, in most scenarios, the WSDL itself is automa-
tically generated based on the API of the application. From the WSDL, stubs and
skeletons can be derived, as mentioned above. This is shown in figure 4.

1-15

1 – WS 2 FUNDAMENTALS OF WEB SERVICES

2

1
WSDL compiler
 (client side)

WSDL compiler
 (server side)

Service requestor Service provider

Application object
 (provider)

skeleton

SOAP-based
Middleware

SOAP-based
Meddleware

stub

Application object
 (client)

WSDL generator

WSDL of Service
 provider

Abbildung 4: WSDL documents can be generated from APIs. Dashed lines repre-
sent compile-time activities. First, WSDL is generated. Next, stubs and skeletons
are created. [5]

2.6 What is UDDI?

UDDI is a project that was launched by IBM, Ariba, and Microsoft as collabo-
ration. „UDDI creates a standard interoperable platform that enables companies
and applications to quickly, easily, and dynamically find and use Web Services
over the Internet. UDDI also allows operational registries to be maintained for
different purposes in different contexts. UDDI is a cross-industry effort driven
by major platform and software providers, as well as marketplace operators and
e-business leaders within the OASIS standards consortium.“ [6]

UDDI is itself a Web Services based on XML and SOAP and makes a list of ad-
dress data and achievement data as well as application-interfaces of different Web
Services available. It provides mechanism for run-time discovery from UDDI ser-
vers.
www.uddi.org encloses programmable interfaces to dynamic discovering and
integrating of Web Services.
UDDI specification defines data structures, they contain four type of information:
businessEntity, businessService, bindingTemplate and information about descrip-
tions of services known as tModel.
A businessEntitycontains information about an organisation that provides Web

1-16

www.uddi.org

2.7 Web Services standards 1 – WS

Services, including its name, URL, a short description, and some basic contact
information.
A businessServiceelement is a group of business services offered by the busines-
sEntity. Each businessService entry contains a business description of the service,
a list of categories that describe the service, and a list of binding templates that
point to technical information about the service.
A bindingTemplate element describes the technical information on where to find
the service and how to use the service. A businessService entry can contain mul-
tiple bindingTemplate elements but bindingTemplate belongs to only one Busi-
nessService. The bindingTemplate also associates the businessService with a tMo-
del.
A tModel element, namely „technical model“ contains information such as the na-
me of the organization that published the tModel, a list of categories that describe
the tModel, and pointers to technical specifications for the tModel. For instance,
a tModel may point to a WSDL document that describes an abstract service type.
When looking for a Web Service, a developer queries the UDDI Registry, sear-
ching for a business that offers the type of service that he wants. From the tModel
entry, the developer can obtain the WSDL description describing the service inter-
face. From the bindingTemplate entry for the specific service, the developer can
obtain the service binding and access point. Using the WSDL description, the de-
veloper can construct a SOAP client interface that can communicate with the Web
Service.

UDDI is a rather wide and a bit formal concept. A registry system of a university
could be a small UDDI! The main goal of UDDI is, on the one hand to support
developers finding information about services, on the other hand to enable dyna-
mic binding by allowing clients to query the registry and provide to services of
interest. Information are stored in UDDI registry into three simple categories.
White pagesThese are listings of business names, of contact information such as
names, phone numbers, websites, and known identifiers of company.
Yellow pagesThis category includes general classifications of both companies and
Web Services according to taxonomies that are industry, product/services and geo-
graphical locations.
Green pagesThis information is used to describe how a given Web Services can
be invoked. It can be also categorized.

2.7 Web Services standards

Web Services are still in the early development stage. „We have not created mul-
tiple standards, but rather we’ve gone out and supported interoperability,“ said

1-17

1 – WS 3 INTEGRATION OFWEB SERVICES

Philip DesAutels, Microsoft’s product manager for XML Web Services. It is safe
to assume the goal is to have one standard. Currently, two standards groups are
working on the definition of official Web Services standards:
W3C and the Organization for the Advancement of Structured Information Stan-
dards (OASIS). W3C concentrates on core infrastructure specifications, and OA-
SIS concentrates on higher-level functionality. W3C initiated its Web Services
standardization efforts with the launch of the XML Protocol Working Group
(XMLP) in September 2000. XML forms the basis of all Web Services-standards.
It is a meta language with which languages can be described in which then data
can be defined. All the other standards for Web Services refer to such data defi-
nitions. With XML every calculator can access directly the news on the Internet,
irrespective of the operating system platform. SOAP takes in the pile of the Web
Services-technologies a place as a standardized packaging protocol for messages
which are exchanged between applications. This protocol fixes how functional
calls with XML data are organized. It would be still pointed out to the fact that
SOAP not only about HTTP can be transferred, but also about other transport pro-
tocols, as for example SMTP, FTP.
You can find more detailed information for standards and coherence of Web Ser-
vices from following sources:http://www.w3.org/2002/ws/
„Programming Web Services with SOAP, By Pavel Kulchenko, James Snell, Doug
Tidwell, Appendix A.“

3 Integration of Web Services

The analysts are saying Web Service is the ideal solution for all IT systems in-
tegration tasks. "Web Services are today already interoperable and they simplify
information exchange. Actually, the main consideration of the Web Service is
lightweight integration of the new services and reusable, common-sense coupling
for old software systems. It is mentioned above that Web Services are application
to application oriented. UDDI registers the known Web Services and distribute to
public area. It has enabled very nice future in the business environment. Because
all company services can communicate with each other very effective, fast and
independently from any platforms as well as without affecting the infrastructure
of company programs. In this part will be implemented an example Web Services,
which is namely City Distance Calculating". You can see details also following
literatures.
„Web Services Building Blocks for Distributed Systems: By Dianne Kenne-

1-18

http://www.w3.org/2002/ws/

3.1 Service creating 1 – WS

dy ISBN:0-13-066256-9“ „Microsoft .NET for Programmers: By Fergal Grimes
ISBN 1-930110-19-7“

3.1 Service creating

The requirements for Web Services development from the developer point are
summarized as: a standard way to represent data, a way to discover service provi-
ders, and a common, extensible message format and service description language.
As standard representation of data used the XML Schema, which defines XMLs
type system. Common Service Description Language provides a way for service
providers to describe the basic format of Web Service requests over different pro-
tocols or encoding. WSDL is a template for how web services should be described
and bound to clients. UDDI provides a mechanism for clients to dynamically find
other web services. A UDDI registry is established to allow for clients to obtain
services and bind programmatically to them.
As consumer we need only WSDL specification. What do we need to communica-
te with different Platforms and programming languages? The answer is standards!
Standards are strongly recommended. There are surprisingly many SOAP Imple-
mentations and Toolkits today available to developers. The most popular tools:
Apache SOAP for Java, SOAP::Lite for Perl, Tomcat, and Microsoft .NET. No
matter which toolkit you use, the fundamental process of creating, deploying, and
using SOAP web services are same. There are SOAP toolkits for all the popular
programming languages and environments (Java, C, C++, Perl, PHP, Python, and
much more). Now, how do we bind SOAP to a Transport protocol? SOAP does
not force any transport protocol. In most common case it is associated with HTTP
but it can be used with other protocols such as SMTP. The specification of which
protocol to use is called a binding, which is defined as 6th activity in figure2 (Web
Services architecture). There exist two type of binding, which are static and dyna-
mic.
Static binding: Developers can bind clients to services either at runtime or at
compile time. Using the WSDL how (concrete) part, a developer can compile
a concrete SOAP client interface or stub that implements the binding required
to communicate with a specific Web Service implementation. This pre-compiled
stub can be included in a client application. The access point can be specified at
runtime.
Dynamic binding: A WSDL document is machine-readable thus dynamic bin-
ding is supported. Using just the WSDL what (abstract) part at compile time, a
developer can generate an abstract client interface that can work with any im-
plementation of a specific service type. At runtime the client application can dy-
namically compile the WSDL where part (containing the how part) and create
a dynamic proxy that implements the binding. When SOAP is used over HTTP,
what is being sent is the SOAP envelope within an HTTP request. Also SOAP can
use GET, POST or other HTTP primitives. I have written a small Web Service
example in PHP. This example is very small but shows programmers how easy to
build Web Services. Even though PHP does not have a SOAP extension, but there
are some nice PHP SOAP tools. One of these is NuSOAP toolkit, which is used
by my example. NuSOAP (formerly SOAPx4) is a toolkit that provides simple
API for building Web Services using SOAP. NuSOAP current version is 0.6.4,

1-19

1 – WS 3 INTEGRATION OFWEB SERVICES

which provides simple API for making SOAP server/client applications and also
supports features like WSDL generation, building proxy class, using SSL, using
HTTP proxy, HTTP authentication.
Our server is going to create the Web Services. For a server we (as developer)
need to create a soap_server object.

$soapServer = new soap_server();

We will register one method (getDistance) that accepts string type of two parame-
ters (fromcity, tocity) and return an array with distance.

// register method
$soapServer->register(’getDistance’, array(’
fromcity’ => ’xsd:string’, ’tocity’ => ’xsd:string’),
array(’return’=>’tns:DistanceData’),
’http://openmn.org/WS’);

Than it would be invoked by a client. What follows is the body of actual „get-
Distance“ function. First we check if argument is a string and return soap_fault
if it’s not. Our string parameters (fromcity, tocity) are used in SQL query, whe-
re we hopefully get some data. In case of error, or if there is no data accessible,
we also return soap_fault. If we got some data from the database, we return it
like associated array (our complexType). We pass to our service incoming data
$HTTP_RAW_POST_DATA. By the way, $HTTP_RAW_POST_DATA is only
set if type of the data is unknown. Please see the complete source code, that is
included in Appendix.
This module will be the code that sits behind our Web Service interface. Our Web
Services are ready to be used.

3.2 A simple implementation of SOAP

The implementation of SOAP based interaction follows the same principles as the
implementation of RPC. The client application invokes the service as a local call.
The call is in reality an invocation of a proxy procedure located in a stub appen-
ded to the client at compile time. Then client stub invoke SOAP engine to prepare
SOAP message. SOAP engine packages SOAP into HTTP format and passes it
to HTTP client module that will forward the request to the remote location. The
HTTP server module gets the HTTP message at the remote location and passes the
content of the message to the SOAP router. There, the HTTP wrap removed and
the XML document is extracted and analysed to retrieve its content. The router
passes the message, identifies the appropriate stub, and delivers the parsed messa-
ge. After that the server stub (skeleton) invokes the local procedure of the service.
The responding activity is treated in a similar manner. The SOAP engine and the

1-20

3.3 Service describing 1 – WS

stub can be combined or they can be independent modules. If the SOAP part is
independent, then it is often represented as emphSOAP router, since one of its
tasks is to route the call to the appropriate objects.

3.3 Service describing

The Web Services definition in fundemantals of Web Services part characterized
that Web Services are emphself-described. Here, we describe what that means.
The SOAP specification does not address any description. The standard specifica-
tion used to make Web Services self-describing is the Web Services Description
Language (WSDL). Using WSDL, a Web Service can describe everything about
what it does, how it does it, and how consumers can use it. There are several ad-
vantages to using WSDL:
1. WSDL provides a simplicity to implement and maintain services by providing
a more structured approach to defining Web Service interfaces.
2. WSDL provides a simplicity to consume web services by reducing the amount
of code (and potential errors) that a client application must implement.
3. WSDL provides a simplicity to implement changes that will be less likely to
„break“ SOAP client applications.

WSDL is not perfect, however. Another key point is that, for the most part, web
service developers will not be required to manually create WSDL descriptions of
their services. Here, it is interesting to mention that in most scenarios, the WSDL
itself automatically generated based on API of the existing application. Many tool-
kits supports this property. A WSDL service implementation description must
provide is the network location where the web service is implemented. This is
done by linking a specific protocol binding to a specific network address in the
WSDL service and port elements. In our example, at the next line of soap_server
object we are starting to generate a WSDL file. This file basically describes the
Web Services and let us know how to use Web Services or to access it.

// wsdl generation
$soapServer->debug_flag=false;
$soapServer->configureWSDL(’Distance’, ’http://openmn.org/WS’);
$soapServer->wsdl->schemaTargetNamespace = ’http://openmn.org/WS’;
// adding complex type
$soapServer->wsdl->addComplexType(’DistanceData’,

’complexType’,
’struct’,
’all’,’’,

array(’dist’ => array(’name’=>’dist’, ’type’=>’xsd:string’))
);

You can see more details the complete source code in Appendix.

1-21

1 – WS 3 INTEGRATION OFWEB SERVICES

3.4 Services discovering

In the first part we have experienced what is UDDI registry. A registry is impossi-
ble to use without some way to access it. Generally the UDDI standard describes
two SOAP interfaces for service providers and consumers to interact with the re-
gistry. UDDI InquInquire API includes operations to find a service, and UDDI
InquInquire API enables to providers to add, modify, list, and delete entries in the
registry. The biggest UDDI providers are:
http://uddi.microsoft.com/ (Microsoft)
http://uddi.ibm.com/testregistry/registry.html (IBM)
http://udditest.sap.com/ (SAP)
To register our Web Services we should use one of the above UDDI provi-
ders. Please visit to anyone, for example to thehttp://uddi.ibm.com/
testregistry/registry.html . There exist four fields that are described
in above part. (What is UDDI) You can enter all specific information and publish
own Web Service as developer. If a service is registered into UDDI then everyone,
who uses UDDI search. That is the advantage and main goal of UDDI. Now, it is
possible someone to write own program, who has interest to use our Web Services.
The full client implementation is attached in Appendix. We can also use WSDL
to create proxy class, which will hold method (getDistance) of our Web Services.

$soapClient = new soapclient(’http://127.0.0.1/distance.wsdl’, ’wsdl’);
$soapProxy = $soapClient->getProxy();

So, basically the programmer only needs to know webmethods name and required
parameters, and all this can be retrieved from WSDL. We can save WSDL file lo-
cally and use it. So let is make a SOAP client using WSDL. In „What is WSDL?“
section of Part 1 our WSDL file completely implemented.
Now, we can present more precisely the working scenario, how existing services
can be made available as Web Services, based on above discussions, what are
SOAP, WSDL and UDDI. We discuss the case of emphstored procedures. A si-
milar way is used for conventional middleware services such as EJBs, CORBA
objects, and COM object. The interaction is represented by figure. The stored pro-
cedures already have a defined interface that describes the name and parameters
of procedure. This information translated into description of Web Services with
WSDL structure. (step 1) The generated WSDL is stored at the provider’s site. A
WSDL compiler can then create a server stub and register it with the SOAP rou-
ter, so that the router knows that it has invoke server whenever a certain uniform
resource identifier (URI) is invoked.The stub will turn invoke the object. (step 2)
This constitutes the imlementation of the newly created Web Services. When ser-
vice is operational and can be invoked. But nobody knows about its existence as
yet. Thus, one more step (3) is needed. The final step is performed by a UDDI
client application and contains of two parts. The first part consists of publishing a
tModel that associated to the generated WSDL in some UDDI registry accessible
to the particular clients. The second part consists of publishing a new besinessSer-

1-22

http://uddi.microsoft.com/
http://uddi.ibm.com/testregistry/registry.html
http://udditest.sap.com/
http://uddi.ibm.com/testregistry/registry.html
http://uddi.ibm.com/testregistry/registry.html

3.5 How integrate two or more various applications? 1 – WS

vice and bindingTemplate elements, pointing the address at which the service is
available, and referencing the newly created tModel. Now, the Web Service is
online and ready to use. The consumers can develop client application using au-
tomatically generated client-side stubs through WSDL compilers.

Publisher
API

Inquiry
API

Publisher
API

Inquiry
API

UDDI registry

tModel
3

2

1

Publisher
API

3

2

33

businessEntity

bindingTemplate

businessEntity
businessService WSDL generator

WSDL service
description

Service
implementation

Service provider

UDDI publisherUDDI publisher

WSDL compiler

Server stub

SOAP router

HTTP engine

Service
implementation

Abbildung 5: Exposing an internal service as a Web Service

3.5 How integrate two or more various applications?

Web Services provide better automation and better tooling and run time support,
easier communication for applications. These make easier the enterprise applica-
tion integration (EAI) but do not solve the EAI problems in and themselves. Any
type of programs can be presented as a Web Services, which do not need to be a
accessed via internet. It is possible to make web Services available to clients in
LAN. We have to write XML specification adapters for each application additio-
nally for integration of old applications. Please see figure7. Then these adapters
could communicate each other with Web Services. We don’t need to change a co-
de in old applications. That is one of the great advantages of the use Web Services.

1-23

1 – WS 3 INTEGRATION OFWEB SERVICES

Adapter 1 Adapter 2

Client side

Application 1 Application 2

Server side

Web Services

Abbildung 6: Integration

3.5.1 XML application interface

An XML Application Interface can be written as an XML-API. Thus it looks al-
ready better. Of course XML technology plays a prominent role for the interope-
rability of applications. XML provides a generic, application and human readable,
consistent data format to manipulate all over enterprise and as well as a flexible,
adaptable interface, which is simply maintained using standardized XML tools.
XML-API illustrated as follows. The adapter translates application data to XML

Abbildung 7: XML-RPC interoperability

data and vs. The interface is specified by an XML schema, which encapsulates the
application and its data. Therefore, the resulting system is loosely coupled in the
traditional way, that is to say XML schema may be extended without changing
of the company’s infrastructure. New applications call the adapter simply and get
data but old applications integrated with help of this adapter without affecting.

1-24

3.6 Securing Web Services 1 – WS

3.6 Securing Web Services

Service requests and responses are encoded in XML as SOAP envelopes, and
transported over HTTP. Thus, XML communications can be encrypted via the
Service Sockets Layer (SSL). SSL is reliable technology, is widely applied and
maintains the security and integrity of the transmission channel by using encryp-
tion, authentication and message authentication codes. XML is human and app-
lication readable programming language. Therefore, it is critically important for
companies to secure their XML and Web Services traffic. Companies and orga-
nizations must to focus on their security infrastructure with centralized XML and
Web Services security policy definition and control. The minimal security is fire-
wall for HTTP. It could not ensure the content of SOAP message envelopes. There
established today many security toolkits. The first one is SOAP security Extensi-
on: Signature (SOAP-DSIG). DSIG adopts public key cryptography to digitally
sign SOAP messages. DSIG has been submitted to W3C and you can find more
explicitly athttp://www.w3.org/TR/SOAP-dsig/ .

Here is a good explicit documentation focus on SOAP Message Security. (By OA-
SIS) http://www.oasis-open.org/committees/download.php/
3281/WSS-SOAPMessageSecurity-17-082703-merged.pdf

OSIS consortium develops the Security Assertions Markup Language (SAML)
is an XML-based framework for Web Services that enables the exchange of au-
thentication and authorization information among business partners. SAML is de-
signed to deliver much-needed interoperability between compliant Web access
management and security products. SAML addresses the need to have a unified
framework that is able to convey security information for users who communica-
te with a provider so they can seamlessly interact with another but he does not
address privacy policies, however. Rather, partner sites are responsible or develo-
ping mutual requirements for user authentication and data protection. You can find
here more about SALM. (http://www.oasis-open.org/committees/
download.php/4865/sstc-saml-core-2.0-draft-02.pdf)

Microsoft has released a toolkit, called Web Services Enhancements (WSE).
You can find about this tools from:http://www.msdn.microsoft.com/
webservices/building/wse/default.aspx .

There are several companies have to put for onward the XML Key Management
services (XKMS). XKMS is designed to simplify the integration of PKI and di-
gital certificates (which are used for securing Internet transactions) with all kinds
of applications. The specification is available online athttp://www.w3.org/
TR/xrms/ .

1-25

http://www.w3.org/TR/SOAP-dsig/
http://www.oasis-open.org/committees/download.php/3281/WSS-SOAPMessageSecurity-17-082703-merged.pdf
http://www.oasis-open.org/committees/download.php/3281/WSS-SOAPMessageSecurity-17-082703-merged.pdf
http://www.oasis-open.org/committees/download.php/4865/sstc-saml-core-2.0-draft-02.pdf
http://www.oasis-open.org/committees/download.php/4865/sstc-saml-core-2.0-draft-02.pdf
http://www.msdn.microsoft.com/webservices/building/wse/default.aspx
http://www.msdn.microsoft.com/webservices/building/wse/default.aspx
http://www.w3.org/TR/xrms/
http://www.w3.org/TR/xrms/

1 – WS 3 INTEGRATION OFWEB SERVICES

3.7 Web Services problems

There are drawbacks to Web Services because the technology is still very new and
partly still in the development. Hence, standards are changing the versions quickly
and might make older versions incompatible very quickly. Web Services could not
guarantee security 100In the general occur following problem formulations, which
are still enough unsolved partly:

How can be guaranteed the security, availability and performance?

How behave cooperating services?

How can two partner protocols communicate?

How the services can be localized?

How can be realized effective, reliable and cost friendly services?

How practicable are the topical Web Services architectures?

From the consumer side: How does one find the most suitable service?

There is a difficulty for the developer in practice. For writing a Web Services in
Java you can get a RPC problem to analyse the variables from server, i.e. Web
Services are very restricted, so couldn’t run most of the classes and return per-
mission errors. Thus, the Web Services develops should observe for deploying of
Web Services.

3.8 B2B

B2B stands for Business-to-Business and refers to Electronic Commerce between
businesses rather than between a business and a consumer (referred as B2C E-
Commerce). Businesses can often deal with thousands of other businesses, eit-
her as customers or suppliers. There are obvious advantages for conducting these
transactions electronically over traditional methods. It’s faster, cheaper and more
convenient. Electronic transactions have been around for a while in the form of
EDI (Electronic Data Interchange). Web Services found their main use in the busi-
ness world in which e-commerce is increasingly inevitable regarding competition.
Many companies have got success in e-commerce by using Web Services techno-
logy and engaged in business-to business e-Commerce. For instance: T-Mobile (a
division of Deutsche Telekom), Amazon etc. UDDI plays main role in B2B world.
Any company can access the registry on the Internet enter the description of its
business, reach to a UDDI site and search through all the business services listed
in the UDDI registry. There is no cost to access information in the registry.

1-26

4 SUMMARY 1 – WS

Relevant literatures are:
Arthur Sculley and William Woods, „B2B Exchanges: The Killer Application in
the Business-to-Business Internet Revolution“
Michael J. Cunningham, „B2B: How to Build a Profitable E-Commerce Strategy“
Martha Rogers, Don Peppers „The One to One B2B“
Matthew Friedman „Understanding B2B“
Erik Brynjolfsson, Glen Urban „Strategies for E-Business Success“
Barry Silverstein, Jeffrey P. Papows „Business-to-Business Internet Marketing“

4 Summary

The purpose of this writing was to introduce how can be realized a Web Ser-
vices and how write Web Services. A big advantage for a business is that data
can be transferred without detailed knowledge of the other’s IT system. We can
access into entire company Infrastructure using only WSDL file. Web Services
orientation was human to application centric. Web Services make the application-
to-application programming interface available. It is extremely helpful. For ex-
amples include shopping, language translation credit card verification and more.
Web Services offer also integration of heterogeneous systems. The purposes of
Web Services are providing a flexible global integration between applications,
improvement of business processes and saving of costs. The use of Web Services
accelerates the business processes supporting widely used standard protocols.

4.1 Web Services today

Web Services made global e-commerce revolution. They allow companies to ea-
sily integrate their strategic applications with those of their partners, both inter-
nally and over the Internet. They can create cost-effective, flexible methods for
conducting B2B transactions. First of all, the development of the Web Services
technologies powered by Microsoft and IBM. Microsoft has releasedṄet plat-
form that oriented completely Web Services technology. The Web Services are
based on various new standards. But XML, SOAP, WSDL and UDDI are still
leading the technology. These standards are supported by most of OpenSource
products so that a very strong competition to the commercial products is emerged.
Many development tools programming languages supports this technology. A lot
of companies have success by using Web Services in business environment. Web

1-27

1 – WS 4 SUMMARY

Services also offer the promise of automated Web. The best real world examples
of Web Services are Amazon’s shop system and google search system.

4.2 Future/potential of Web Services

Web Services essentially make the Internet itself the basis of a new operating sy-
stem, and this has software vendors excited about the future. Most businesses are
now connected to the Internet, and the long-term vision for Web Services goes
beyond simply integrating existing programs to delivering plug-and-play software
applications on demand over the Internet[7]. In the long term, Web Services also
offer the promise of the automated Web. If Web Services easily discoverable, self-
describing, and stick to common standards, it is possible to automate application
integration[1]. Users will have no problems upgrading or troubleshooting appli-
cations. Web Services build the reliable system for an open, flexible, cooperative
and low-cost environment for business-to-business e-commerce.

Appendix The example of Web Service greating, which used in section 3-1.
(written in PHP)

<?php
//
require(’inc/nusoap.php’);
// create server
$soapServer = new soap_server();
// wsdl generation
$soapServer->debug_flag=false;
$soapServer->configureWSDL(’Distance’, ’http://openmn.org/WS’);
$soapServer->wsdl->schemaTargetNamespace = ’http://openmn.org/WS’;
// add complex type
$soapServer->wsdl->addComplexType(

’DistanceData’,
’complexType’,
’struct’,
’all’,
’’,
array(’dist’ => array(’name’=>’dist’, ’type’=>’xsd:string’))

);

// register method
$soapServer->register(’getDistance’, array(’
fromcity’ => ’xsd:string’, ’tocity’ => ’xsd:string’),
array(’return’=>’tns:DistanceData’),
’http://openmn.org/WS’);

// method code (get DB result)
function getDistance ($Start, $Target) {
if (is_string($Start)) {
$DBlink = @mysql_connect(’localhost’, ’root’, ’’);

1-28

4.2 Future/potential of Web Services 1 – WS

$DBresult = @mysql_db_query(’city’, ’SELECT dist
FROM distance WHERE fromcity = LCASE("’ .
mysql_escape_string((string)$Start) .’")
&& tocity = LCASE("’ . mysql_escape_string((string)
$Target) . ’") LIMIT 1’);

// simple error checking
if (!$DBresult) {
return new soap_fault(’Server’, ’’, ’Internal server error.’);
}

// no data avaible for x fromcity
if (!mysql_num_rows($DBresult)) {

return new soap_fault(’Server’, ’’, ’service contains data
only for a few cities.’);

}
mysql_close($DBlink);
//$temp = mysql_fetch_array($DBresult);
// return data

return mysql_fetch_array($DBresult, MYSQL_ASSOC);
}

// we accept only a string
else {
return new soap_fault(’Client’, ’’, ’service requires a
string parameter.’);

}
}

// pass incoming (posted) data
$soapServer->service($HTTP_RAW_POST_DATA);
?>

Here is the database table.

Id fromcity tocity dist
1 Aachen Koeln 60
2 Dresden Aachen 644
3 Frankfurt Aachen 460
4 Berlin Frankfurt 400

Tabelle 2:Distances between two cities.

Here goes the complete source code of Web Service consuming.

<?php
/**
* Description:
* Creates a simple SOAP Client using WSDL (client_wsdl.php).
**/
// use form data
if ((string)$_GET[’action’] == ’get_data’) {

// includes nusoap classes
require(’inc/nusoap.php’);

1-29

1 – WS 4 SUMMARY

// set parameters and create client
$soapClient = new soapclient(’http://127.0.0.1/distance.wsdl’, ’wsdl’);
$soapProxy = $soapClient->getProxy();

// call a webmethod (getDistance)
$Result = $soapProxy->getDistance((string)$_POST[’fromcity’],
(string)$_POST[’tocity’]);

// check for errors
if (!$soapClient->getError()) {

// print results
print ’<h1>>Current data for: ’ . (string)$_POST[’fromcity’] .’-->’
. (string)$_POST[’tocity’] . ’:</h1>dist: ’ . $Result[’dist’]
. ’’;

}
// print error description
else {

echo ’<h1>Error: ’ . $soapClient->getError() . ’</h1>’;
}

}

// output search fclientorm
print ’

<form name="input" action="’.$_SERVER[’PHP_SELF’].’?action=get_data"
method="POST">

Your fromcity: <input type="text" name="fromcity">
Your targetcity: <input type="text" name="tocity">
<input type="submit" value="Search">

</form>
’;
?>

1-30

LITERATUR 1 – WS

Literatur

[1] CERAMI , ETHAN (Herausgeber):Web Services Essential: Distributed
applications with XML - RPC, SOAP, UDDI and WSDL, Band 1. O’Reilly,
2002.

[2] COMPUTERZEITUNG, 2000-2003.
http://www.computer-zeitung.de/ . Computerzeitung.

[3] DOUG TIDWELL , JAMES SNELL , PAVEL KULCHENKO: Programming Web
Services with XML-RPC. O’Reilly, Dec. 2001.

[4] FISHER, M.: Introduction to Web services. New Riders, Aug. 2002.
htpp://java.sun.com/webservices/docs/1.0/tutorial/ .

[5] GUSTAVO ALONSO, FABIO CASATI , HARUMI KUNO und VIJAY

MACHIRAJU (Herausgeber):Web Services: Concepts, Architectures and
Applications, Band 1. Springer, 2003.

[6] UDDI CONSORTIUM: UDDI executive White Paper, November 2001.
http:
//uddi.org/pubs/UDDI_Executive_White_Paper.pdf .

[7] W3C CONSORTIUM: Web Services Architecture Requirements, 2002.
http://www.w3.org/TR/wsa-reqs/ . W3C Recommendation.

1-31

 http://www.computer-zeitung.de/
 htpp://java.sun.com/webservices/docs/1.0/tutorial/
 http://uddi.org/pubs/UDDI_Executive_White_Paper.pdf
 http://uddi.org/pubs/UDDI_Executive_White_Paper.pdf
 http://www.w3.org/TR/wsa-reqs/

	Introduction
	Overview
	Construction of work

	Fundamentals of Web Services
	Web Services definition
	Architecture of Web Services life cycle
	What is XML-RPC?
	What is SOAP?
	What is WSDL and why it used?
	What is UDDI?
	Web Services standards

	Integration of Web Services
	Service creating
	A simple implementation of SOAP
	Service describing
	Services discovering
	How integrate two or more various applications?
	Securing Web Services
	Web Services problems
	B2B

	Summary
	Web Services today
	Future/potential of Web Services

