Extending Desktop Applications to the Web

Arno Puder

San Francisco State University
Computer Science Department
1600 Holloway Avenue
San Francisco, CA 94132
arno@sfsu.edu

Abstract. Web applications have become the major means to allow ubiquitous access to backend
systems via a web browser. Several technologies such as JSP, ASP.NET, or Java Server Faces exist
today that help in developing web applications. These technologies do not support the migration
of existing legacy desktop applications written with a GUI class library such as Swing, Qt, or
GTK to web applications. The framework presented in this paper allows the programmer to expose
arbitrary desktop applications as web applications without requiring any changes in the source code
of that application. Dialogs are rendered using HTML and JavaScript and a flexible event model
transparently forwards user interaction at a web browser to the application running at the backend.
By employing a cross-language compiler it is also possible to transparently execute parts of the
application on the client side inside the web browser.

1 Motivation

Web browsers are generic clients that allow access to arbitrary services. Initially, the
standards of the World-Wide Web were document-centric and web browsers were mainly
used to view documents. With the rise of eCommerce, these standards were extended
to allow for operational interaction. The main protocol for a web browser to invoke an
operation at a web server is via the Common Gateway Interface (CGI). The least common
denominator for writing web applications are HTML/HTTP, JavaScript and CGI. Even
those few standards have different implementation in different browsers and the developer
needs to be careful to create portable web applications. All in all, it is difficult to develop
portable web applications. Different technologies exist today to help with the development
of portable web applications.

A different domain for Graphical User Interfaces (GUI) is the desktop. Several different
class libraries exist that ease the development of desktop applications. Among the more
popular class libraries are Swing, Qt, GTK, and MFC. Some libraries target a specific plat-
form (e.g., MFC targets the Windows environment) while others allow the development
of cross-platform applications (e.g., Qt is available for Unix and Windows environments).

The novel idea proposed in this paper is to bridge the chasm between desktop and
web applications by introducing a framework that allows to expose desktop applications
as web applications. This can be achieved without any modifications to the desktop ap-
plication. The benefit of this approach is that it is easy to port legacy applications to
web applications. It also allows the development of new web applications based on well
understood paradigms, thereby making it unnecessary to understand web technologies.



Section 2 gives a brief overview of existing web application development technologies.
Section 3 introduces a simple example showing how to implement a desktop application
based on Swing. Section 4 introduces the framework. Finally, Section 5 provides and
outlook for future work.

2 Web—Application Methodologies

This section gives a short overview of existing methodologies that facilitate the construc-
tion of web applications. By the term “web application” we mean interactive applications
that can be accessed through a web browser. There are three different basic approaches
to develop web applications:

1. HTML centric: the HTML page that is rendered by the browser is created by a pro-
gram.

2. Template centric: a template that contains HTML and program code, creates the
HTML page that is rendered by the browser.

3. Library centric: a library encapsulates the creation of an HTML page.

An example of a technology that uses the first approach are CGI scripts and servlets.
The problem with that approach is that there is no clear separation between flow of control
and the user interface as mandated by the MVC (Model View Controller) paradigm (see
2]). An example of the second approach is JSP (Java Server Pages). An HTML page
is interspersed with Java code that allow the creation of dynamically generated HTML
pages. Here again, there is no clear separation between flow of control and user interface.

Both of these approaches require intimate knowledge of HI'ML as well as a program-
ming language that is used for the dynamic aspects. The third approach for developing
web applications is through class libraries. In some sense, it is a specialization of the
HTML centric approach. The main difference is that with the library centric approach
knowledge of HTML is encapsulated and thereby hidden in the class library which is why
we view it as a separate approach. One example of a technology that uses the library
centric approach is ASP.NET. The interesting fact is that ASP.NET contains a specific
class library specially for web applications. It is not possible to expose a legacy MFC
(Microsoft Foundation Classes) application as a web application.

There are many different class libraries that support the development of desktop ap-
plications: MFC, GTK, Qt, Swing are only a few of them. The framework introduced
in this paper makes it possible to expose those applications as web applications without
having to change a line of code of the legacy application.

3 Sample Swing application

To demonstrate our approach, we have chosen a simple Swing application from Sun’s
own Swing tutorial (see [1]). The application allows the conversion from degrees Celsius
to Fahrenheit. The following listing is an excerpt from the original source code of the
tutorial:



© 00 ~NO O WN -

o e e e o e e e
0 N O W= O

N NDNDNDNDDNDNDDNDDN
0 ~NO O W = O

w
—

-
©

w N
o ©

import java.awt.*;
import java.awt.event.x*;
import javax.swing.*;

public class CelsiusConverter implements ActionListener {

}

JFrame converterFrame;

JTextField tempCelsius;

JLabel celsiusLabel, fahrenheitLabel;
JButton convertTemp;

public CelsiusConverter() {
converterFrame = new JFrame("Convert Celsius to Fahrenheit");
/...
tempCelsius = new JTextField(2);
fahrenheitLabel = new JLabel("Fahrenheit", SwingConstants.LEFT);
celsiusLabel = new JLabel("Celsius", SwingConstants.LEFT);

convertTemp = new JButton("Convert...");
convertTemp.addActionlListener (this);
/...

}

public void actionPerformed (ActionEvent event) {
int tempFahr = (int) ((Double.parseDouble(tempCelsius.getText()))
* 1.8 + 32);
fahrenheitLabel.setText (tempFahr + " Fahrenheit");
}

public static void main(String[] args) {
CelsiusConverter converter = new CelsiusConverter();

}

All Swing applications import packages that provide the basic functionality [Lines 1-
3]. If an application needs to respond to events such as the pressing of a button, it has
to implement the ActionListener interface [Line 5]. The constructor of the application
defines a frame [Line 12] and several widgets such as labels, entry fields and buttons [Lines
14-17]. Note that all the classes such as JButton used in this code come the Swing library.
By associating the button with the action listener [Line 18], the method actionPerformed
[Line 22] will be called every time the button is clicked. In this event, the Celsius value is
read from the entry field [Line 23]. After the conversion to Fahrenheit, the value is written
to the appropriate label [Line 25]. The main function simply creates an instance of the

application [Line 29].

eit B[]k

JTextField
T Celsius

Convert.. 32 Fahrenheit
JButton —— ®

Fig. 1. Native Swing application.




Figure 1 shows the Celsius converter application running as a native Swing desktop
application. The screenshot shows the conversion of 0 degree Celsius to 32 Fahrenheit. The
user entered 0 in the input field. After clicking on “Convert...” the label in the lower right
corner changes to “32 Fahrenheit”. The framework introduced in the following section
will allow to run the same application inside a web browser. This will be accomplished
without changing a line of code in the original Celsius converter application.

4 Framework

This section introduces the framework that allows easy migration of existing desktop
applications to web applications. Section 4.1 outlines the design goals we want to achieve
with our framework. Section 4.2 introduces the general architecture of the framework and
Section 4.3 makes some comments regarding our reference implementation.

4.1 Design goals

A GUI application is usually structured as shown in Figure 2. The layering depicts the de-
pendencies between the different components. The GUI library typically uses the function-
ality offered by the operating system while the application depends on the functionality of
the operating system and the GUI library. The horizontal lines denote API (Application
Programming Interfaces). A GUI library exposes its functionality through a specific API
to the application.

Application

. GUI

Operating §System

Fig. 2. Structure of a GUI application.

Based on this background, our framework is designed to achieve the following goals:

Language independence: we do not impose a particular programming language since
legacy applications can be written in many different languages.

GUI library independence: we want to support a wide variety of different GUI class
libraries.

Browser independence: the web applications should run on a wide variety of popular
browsers.

Since there exist several different GUI-libraries for different programming languages,
the framework should offer support for all of these programming languages. The same



applies to the GUI-libraries themselves. Since there are many different programming lan-
guages and GUI class libraries, a complete implementation of the framework will require
significant efforts. Our last goal is browser independence. The idea is to make as few as-
sumptions about the browser’s capabilities as possible. For that reason, we do not assume
any special plugins such as Java Virtual Machine. The only capabilities we assume are
subsets of HTML and JavaScript that are known to be supported by all major browsers.

4.2 Architecture

Figure 3 shows the architecture of our framework. The Application shown here is un-
changed from its desktop version. This implies that the GUI-proxy layer has to offer the
identical API as the GUI-library shown in Figure 2. Since there are several GUI-libraries,
it is beneficial to structure the GUI layer into a proxy and a Unified GUI (UGUI) library.
The purpose of the latter is to provide a unified library while the proxy offers the func-
tionality of the UGUI in the way the application expects it. This way it is possible to
reuse significant portions of the implementation and thereby facilitates to support other
GUTI libraries.

Application
GUI- PI'OXy HTML
vGul e Web
e
Operdting System Browser

Fig. 3. Architecture.

The UGUI layer emits the content of a window in HTML that the browser subsequently
renders. The user can then populate input fields displayed in the form. Every user action,
that would result in a callback to the application, will initiate an HT'TP POST request.
This will initiate an interaction with the web server that will forward the POST request to
an event manager. The event manager relays the user action to the UGUI. The user action
is then delivered to the application via some GUI-library specific mechanism. After the
application has handled the event, an updated version of the window content is created
via the translator and send back to the browser.

Depending on the kind of user interaction this might result in a very inefficient imple-
mentation. E.g., a MouseListener would trigger a page reload every time the user moves
the mouse. While it would be possible to mimic this behavior inside the browser through
an appropriate JavaScript function, it would clearly result in very inefficient runtime be-
havior. One way to deal with these situations will be outlined in the last section where
we discuss future work.



4.3 Reference implementation

We have implemented a prototype based on the framework introduced in the previous sec-
tion. As mentioned earlier, a complete implementation would require support for several
programming languages as well as GUI class libraries. While this would be possible with
appropriate resources, we have limited our prototype to support only one programming
language and a subset of one GUI class library. Our goal was to run the Celsius Con-
verter program introduced in Section 3 as a web application. For that purpose the current
prototype supports Java applications using the Swing GUI-class library. Because of the
GUI-proxy, the Celsius Converter application does not need to be modified from its orig-
inal version. The application can be accessed from any web browser. User interaction like
pressing the “Convert...” button results in transparently calling the actionPerformed ()
method of the Celsius Converter application.

5 Conclusions and Outlook

Easy migration of existing desktop applications to web applications has huge benefits with
regards to investment savings. Instead of manually developing a web-based user interface,
this task can be automated by the framework introduced in this paper. The framework
is general enough to be applied to different GUI class libraries. We intend to verify our
statements by supporting other libraries. However, we have not yet studied the question
if all aspects of a GUI class library can be turned into a web application. Some of the
more exotic capabilities might be difficult; if not impossible to support.

In the current version of our framework the user interface is passive; the applica-
tion logic is completely located on the server side. This incurs a high overhead for fine
grained operations that are triggered by user interaction such as the aforementioned mouse
events. We plan to extend our framework by migrating application code from the client
to the server side. Methods of the application can be labeled as client side methods
through JavaDoc style comments. The source code of those methods will be translated
to JavaScript in order to be able to execute it inside a browser. This opens up a field of
interesting research questions. E.g., if the client side method calls a server side method,
this requires a middleware to transport the actual parameters.

References

1. C.S. Horstmann and G. Cornell. Core Java 2, Volume I: Fundamentals. Prentice/Hall International, sixth
edition, 2002.

2. G. E. Krasner and S. T. Pope. A Cookbook for Using the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26-49, August 1988.



