
A Code Migration Framework for

AJAX Applications

A. Puder

San Francisco State University
Computer Science Department

1600 Holloway Avenue
San Francisco, CA 94132

arno@sfsu.edu

Abstract. AJAX (Asynchronous JavaScript and XML) defines a new
paradigm for writing highly interactive web applications. Prominent web
sites such as Google Maps have made AJAX popular. Writing AJAX
applications requires intimate knowledge of JavaScript since it is difficult
to write cross-browser portable JavaScript applications. In this paper
we first discuss the benefits of AJAX compared to other technologies
such as Java applets. Then we propose a code migration framework that
allows the programmer to write AJAX applications in Java. The Java
application is automatically translated to JavaScript and migrated to the
browser for execution. Our approach requires no knowledge of JavaScript.
As web applications are written in Java, the developer benefits from
powerful debugging tools that are not available for JavaScript. We have
implemented a prototype that demonstrates the feasibility of our ideas.
The prototype is available under an Open Source license.

1 Motivation

The initial intend of the World-Wide Wide (WWW) was to give access to re-
mote documents. This document centric view soon proved to be insufficient as
eCommerce recognized the potential of the new media. Subsequently, HTML
was extended to allow the description of user interfaces based on web forms.
The web browser thus assumed the role of a generic client that is capable to ren-
der a priori unknown user interfaces. The technologies of the WWW therefore
have changed from being document centric to operational interaction centric.
Numerous technologies came into existence to facilitate the development of web
applications. Java Server Pages (JSP), PHP Hypertext Processor (PHP), and
Struts are only few of those technologies.

Despite these new technologies, the user is very much aware of latencies
because web applications are still based on web pages (i.e., user interfaces) be-
ing loaded from a remote web server. A light-weight scripting language called
JavaScript was introduced by Netscape in 1995 mainly for doing some user input
validation that does not require interaction with a remote web server. This can

already be seen as the first step towards migrating part of the application logic
to the web browser.

Other technologies such as Java applets have attempted to become a standard
for client-side processing, but they could not establish themselves mostly because
of political issues between different vendors. The lowest common denominator
today for writing client-side applications that can run inside any web browser
without requiring any additional browser plugins is thus JavaScript. It is in this
context that AJAX (Asynchronous JavaScript and XML) has emerged as a new
paradigm for writing highly-interactive web applications.

At the core of AJAX is JavaScript and writing an AJAX application thus
requires intimate knowledge of JavaScript. Matters become more complicated by
the fact that writing portable JavaScript that runs in all major browsers such
as Internet Explorer (IE) or Firefox is a daunting task. One of those problems is
the lack of powerful development tools for JavaScript. This paper introduces a
new approach for facilitating the creation of AJAX application based on a code
migration framework. The outline of this paper is as follows: Section 2 gives
a proper definition of AJAX and also discusses the difficulties in writing an
AJAX application. Section 3 introduces our code migration framework. Section
4 discusses our prototype implementation while in Section 5 we discuss related
work. Section 6 finally provides a conclusion and an outlook.

2 AJAX

In this section we first provide an introduction to AJAX (Section 2.1), explain
the benefits of AJAX (Section 2.2), and finally why it is so difficult to write
AJAX applications (Section 2.3).

2.1 Overview of AJAX

The term AJAX was first coined in [5]. The author of this article attempted to
describe a new class of web applications that differ significantly from previous
technologies such as PHP, JSP, or Struts. Figure 1 demonstrates this difference.
The left side of this figure shows the traditional way of implementing web appli-
cations. The web browser is used for rendering the user interface, typically a web
form that the user can populate. Apart simple input validation, no processing
happens during this phase. Once the user presses the submit button, the form is
sent via an HTTP request to the server. Upon unmarshalling the data, the web
application running on the side of the web server computes a new HTML page
that is sent back to the browser. While the browser is waiting for that response,
the user cannot use the interface.

The right hand side of Figure 1 shows how AJAX changes this picture. The
main difference is that AJAX application make use of the JavaScript interpreter
that is contained in every popular web browser. Part of the application logic
is thus implemented in JavaScript and executed on the side of the client. All
browsers support the so-called XMLHttpRequest object that allows JavaScript

Fig. 1. Traditional web application vs. AJAX.

to issue a HTTP request to the remote web server. The user can continuously
interact with the application as shown in the figure. Event handler invoke ap-
propriate JavaScript functions that use the DOM (Document Object Model) to
make fine-grained updates to the user interface without requiring complete page
reloads as in the traditional model.

The asynchronous nature of AJAX applications refers to the fact that the
JavaScript code may issue HTTP requests independent of user interaction. This
makes it possible to do processing in the background without the user having
to wait for a response from the web server. All parameters and responses have
to be marshalled in a way so they can be piggy-backed on HTTP requests and
responses. One obvious choice is XML as all popular browsers include XML
parsers that make the marshalling and unmarshalling of parameters relatively
simple.

2.2 AJAX vs. other technologies

AJAX allows the execution of application logic inside the browser. This increases
interactivity of web application dramatically compared to the submit-and-page-
reload paradigm. By doing so, AJAX applications get closer to the look-and-
feel of desktop applications and some analysts already foresee the browser as
the next-generation desktop replacement that could even threaten Microsofts

monopoly. Whether or not this vision will come true, it can certainly be expected
that more and more web applications will want to employ AJAX technologies.

AJAX makes use of the fact that JavaScript interpreters are ubiquitous in
all popular web browser. Moving application logic to the client side is not new.
One of the promises of the Java programming language was to enable web ap-
plications in a similar way as AJAX through Java applets. A Java applet is a
Java application running inside the browser. It is therefore possible to achieve
the same effect with applets as with AJAX applications. While Java is a much
more mature language than JavaScript with a more powerful GUI library, the
major downside of applets is that they require a Java Runtime Environment
(JRE) plugin for the respective browser. This requires the end-user to download
the plugin which creates an additional burden for the end-user.

Given a choice, end-users either intentionally or unintentionally choose not
to install additional software if they have an already existing solution and the
benefits of the alternative are not immediately apparent. As a specific example
of the reluctance of end-users to explicitly install software can be seen by the
proportion of Windows users who use IE, despite security issues compared to
other browsers. IE currently owns more than 85% of the market share (see [9]),
primarily because it is bundled along with Windows. If end-users are reluctant
or simply do not bother to use easy-to-install software such as alternate web
browsers, they are usually not willing to install a Java Runtime Environment.
This accounts for the fact that AJAX has become so popular because it only
uses the lowest common denominator available in virtually all web browsers.

2.3 Writing AJAX Applications

As outlined above, writing AJAX applications therefore requires JavaScript to
achieve the interactiveness desired by the latest generation of web applications.
JavaScript was created by Netscape and was first incorporated in Netscapes
browser version 2.0. The rationale behind JavaScript was to make Navigator’s
newly added Java support more accessible to non-Java programmers. The design
goals of JavaScript therefore focused on a loosely-typed scripting language suited
the environment and audience, namely the few thousand web designers and
developers back in 1995 who needed to be able to tie into page elements without
a bytecode compiler or knowledge of object-oriented software design.

Microsoft released a port of JavaScript called JScript with IE 3.0. JScript was
one revision behind Navigator’s JavaScript that made it difficult already back
then to write cross-browser portable JavaScript. In 1997, the European Com-
puter Manufacturers Association (ECMA) standardized a universally supported
core functionality called ECMAScript (see [3]). Despite this standardization ef-
fort, support for JavaScript is not as homogeneous as one might wish. Writing
portable JavaScript for all major browsers still requires intimate knowledge of
the different object models.

There are many pitfalls that a JavaScript programmer has to deal with to-
day. First and foremost, there are no powerful development tools available for
JavaScript. Mozilla offers a debugger, but IE merely indicates by an alert icon in

the status bar when something went wrong. Other issues in creating JavaScript
applications has to do with differences in the JavaScript object model supported
by various browsers. Sometimes events such as mouse events are offered from
inner-most nested elements to top-level elements (called Event Bubbling and
supported by IE); sometimes events are offered elements in the reverse order
(called Event Capturing and supported by Netscape/Mozilla). Advanced event
models such as Event Listeners that allow the registration of multiple listeners
for one particular event are not supported sufficiently in IE. The author of [6]
gives a more comprehensive list of issues.

This is only a short list of the problems that one will likely encounter when de-
veloping AJAX applications. These issues combined with the fact that JavaScript
supports object-oriented programming only through conventions and clever pro-
gramming tricks (e.g., to achieve the effect of inheritance one has to change the
prototype of the derived class) will place a high burden on anyone interested in
creating AJAX applications. The main idea of this paper is that a programmer
can write an AJAX application without requiring any knowledge of JavaScript.
Our approach is outlined in the following.

3 Framework

This section gives a detailed description of our framework. At its core is a code
migration framework that shields the programmer from the complexities of writ-
ing JavaScript applications. A developer can write an AJAX web application in
Java benefiting from powerful and mature tools and then migrate the code to
JavaScript. In Section 3.1 we briefly state our assumptions that guide the design
of our framework. Section 3.2 then introduces XMLVM, an XML-based program-
ming language that is at the core of our code migration framework. Section 3.3
then shows how to create JavaScript out of XMLVM. In Section 3.4 we finally
describe the underlying architecture of our framework.

3.1 Assumptions

Before describing the details of our approach, we first explicitly state the as-
sumptions that will influence some design decisions of our framework:

Universal access: We assume that potentially any user in the WWW might
be using the web application.

No special browser plugins: In order to support universal access, we do not
assume any special browser plugins such as the Java Runtime Environment.

Web applications using Java: We assume that the programmer is using Java
(not JavaScript) as the programming language of choice to write his or her
web application.

Self-contained applications: For now, we only consider self-contained appli-
cations that have no dependencies to external resources such as databases.

No JavaScript knowledge necessary: The programmer does not need to know
any JavaScript in order to develop AJAX-enabled web applications.

The reason for assuming universal access to a web application is that it is
generally much simpler to develop a web application for a closed environment.
Corporate intranets for example typically enforce the use of a particular desk-
top configuration. AJAX should only be considered in heterogeneous environ-
ments. The assumptions stated above basically lead to a development environ-
ment where the programmer is shielded from JavaScript. Since we do not assume
any special browser plugins, but yet allow the programmer to implement his or
her program in Java, we need a code migration framework that can translate
and migrate the Java application to JavaScript.

3.2 XMLVM

As a first step towards our code migration framework for AJAX applications, we
begin by defining an XML-based programming language. In this section we focus
on describing the details of this language and defer the usage of this language
to a subsequent section. Since this XML-based programming language is based
on the Java virtual machine, we call this language XMLVM. XMLVM basically
allows us to represent the contents of a class file (i.e., the output generated by a
Java-compiler) through XML. Another way to look at XMLVM is that it defines
an assembly language for the Java virtual machine using XML for the syntax.
The object model of XMLVM is consequently based on the object model of Java.
The virtual machine model of XMLVM is shown in Figure 2.

Fig. 2. XMLVM Virtual Machine Model.

The XMLVM program shown in Figure 2 contains the instructions of a
method to be executed. These instructions are essentially the byte code instruc-
tions supported by the Java virtual machine. The virtual machine maintains

an instruction pointer to the next instruction to be executed. Upon entering a
method, a new frame consisting of a stack and local variables is created. This
frame will be deleted upon exiting the method. The virtual machine maintains a
pointer to the current frame (which represents the most nested method call). A
method has only access to its own stack and local variables as well as the global
heap. The actual parameters of a method are automatically stored in the local
variables. Besides the stack frames, the virtual machine maintains a garbage
collected global heap where a program can allocate new objects. The following
template shows the general structure of any XMLVM program:

1 <xmlvm>

2 <class ...>

3 <field .../>

4 <method ...>

5 <signature>...</signature>

6 <code>...</code>

7 </method>

8 </class>

9 </xmlvm>

An XMLVM program consists of one class. Every class can have one or more
fields and methods. The attributes of the XML-tags, that are not shown in the
template above, give more details such as identifiers or modifiers. A method is
defined through a signature and the actual implementation, denoted by the tags
<signature> and <code> respectively. Consider the following simple Java-
class:

1 // Java

2 class Calc {

3 int x;

4 void add(int y)

5 {

6 x += y;

7 }

8 }

Class Calc has one field called x and one method called add. The method
adds the actual parameter given to it to the field x. Although this is a very
simple example, it allows us to show all basic aspects of an XMLVM program.
The following XML shows the representation of class Calc in XMLVM:

1 <xmlvm>

2 <class name="Calc">

3 <field name="x" type="int"/>

4 <method name="add" stack="3" locals="2">

5 <signature>

6 <return type="void"/>

7 <parameter type="int"/>

8 </signature>

9 <code>

10 <load type="Calc" index="0"/>

11 <dup/>

12 <getfield class-type="Calc" type="int" field="x"/>

13 <load type="int" index="1"/>

14 <add/>

15 <putfield class-type="Calc" type="int" field="x"/>

16 <return/>

17 </code>

18 </method>

19 </class>

20 </xmlvm>

It should be emphasized again that the above XMLVM program is essentially
an XML-representation of the contents of the Calc.class class file. The top-level
tags are identical to the XML-template shown earlier. The <method>-tag has
two attributes: stack and locals. stack tells the virtual machine the maximum
stack-size needed for this method. In this example, method add will never push
more than 3 elements at the same time onto its stack. The locals attribute tells
the virtual machine how many local variables are needed for this method. The
first local variable always represents the this-pointer. The next local variables
represent the actual parameters. Since method add has only one input parameter
and no additional local variables, the locals attribute is 2. Note that the Java
compiler computes the values for stack and locals and stores them in the class
file.

The more interesting part of the XMLVM-program shown above is the ac-
tual implementation of method add. The <load> instruction pushes the this-
pointer referred to by local variable with index 0 onto the stack. Instruction
<dup> duplicates the top of the stack so that the this-pointer now is pushed
twice on the stack. <getfield> pushes the current value of field x onto the
stack. Since every instance of class Calc has its own field x, <getfield> needs
a reference to the instance whose field x should be pushed onto the stack. This
reference has to be on the top of the stack. <getfield> pops off the reference
and replaces it with the value of field x. After this instruction, the stack contains
the this-pointer and the value of field x.

The next instruction <load> pushes the actual parameter y (referenced
through local variable index 1) onto the stack. The top two elements of the
stack are now the values to be added. The following instruction <add> pops off
the last two values and pushes their sum back onto the stack. At this point, the
stack contains the this-pointer as well as the sum. The <putfield> instruction
works similarly as the <getfield> instruction, except that a value is written
back to a field. After this instruction, the stack is empty. The final instruction
<return> exits the method.

The XMLVM instruction set feature a mix of low-level and high-level vir-
tual machine instructions. Next to the low-level instructions mentioned above,
there exist high-level instructions such as new (for instantiating new objects)
and invokevirtual (invoke a virtual method). These instructions go beyond
the capabilities of normal (hardware) machine languages and therefore require
substantial runtime support. Table 1 gives an overview of some of the instruc-
tions found in XMLVM. The table shows how the instructions introduced in
this section affect the stack by showing the stack before and after the respective
instruction.

Instr. Stack

<add> . . . , value1, value2 ⇒ . . . , result

<getfield> . . . , objref ⇒ . . . , value

<putfield> . . . , objref, value ⇒ . . .

<load> . . . ⇒ . . . , value

<new> . . . ⇒ . . . , objref

<invokevirtual> . . . , objref, [arg1, [arg2, . . .]] ⇒ . . .

Table 1. Representative XMLVM instructions.

3.3 Language transformation

As stated earlier, XMLVM can be seen as an assembly language for the Java
virtual machine. The difficult part is done by a Java compiler. Once a class
file has been created as the result of the compilation process, it can be easily
translated to XMLVM simply by analyzing the contents of the class file. The next
step consists in translating XMLVM to JavaScript. This translation can be done
by an XSL-stylesheet that maps XMLVM-instructions one-to-one to the target
language. Since XMLVM is based on a simple stack-based machine, we simply
mimic a stack-machine in the target language. An example helps to illustrate
this approach. The XMLVM instruction <add> introduced earlier pops off two
values and pushes the sum back onto the stack. Here is the XSL-template that
creates JavaScript code for this instruction:

1 <xsl:template match="add">

2 <xsl:text>

3 __op2 = __stack[--__sp];

4 __op1 = __stack[--__sp];

5 __stack[__sp++] = __op1 + __op2;

6 </xsl:text>

7 </xsl:template>

We mimic the virtual machine of XMLVM via the variables locals (for
local variables), stack (for the stack), and sp (for the stack pointer). Vari-

ables op1 and op2 are used as temporary variables needed by some XMLVM-
instructions. Those variables are declared for every method. The code below
represents the JavaScript version of the class Calc introduced in Section 3.2:

1 // JavaScript generated by stylesheet

2 function Calc()

3 {

4 this.x = null;

5

6 this.add = function(__arg1)

7 {

8 var __locals = new Array(2);

9 var __stack = new Array(3);

10 var __sp = 0;

11 var __op1;

12 var __op2;

13 __locals[0] = this;

14 __locals[1] = __arg1;

15 __stack[__sp++] = __locals[0];

16 __op1 = __stack[__sp - 1];

17 __stack[__sp++] = __op1;

18 __op1 = __stack[--__sp];

19 __stack[__sp++] = __op1.x;

20 __stack[__sp++] = __locals[1];

21 __op2 = __stack[--__sp];

22 __op1 = __stack[--__sp];

23 __stack[__sp++] = __op1 + __op2;

24 __op2 = __stack[--__sp];

25 __op1 = __stack[--__sp];

26 __op1.x = __op2;

27 return;

28 }

29 }

The JavaScript code was generated automatically by applying an appro-
priate XSL-stylesheet to the XMLVM version of class Calc. As can be seen,
there is a natural mapping from XMLVM to JavaScript. The intention is not
to generate readable code, but correct code that uses the API of the target
language. It should also be obvious that the above JavaScript code will be less
efficient than the original Java program. Our assumption is that we do not mi-
grate computational heavy applications to the browser. By carefully designing
the XSL-stylesheet one can generate portable JavaScript.

3.4 Architecture

The description of the architecture that is to follow in this section, explains how
XMLVM is embedded in an infrastructure for the code migration framework.

As shown in Figure 3, the main component is a Web Container that serves
as an HTTP server towards the web browser. The URL used to contact the
Web Container encodes a bootstrap web page as well as the application that is
to be executed as an AJAX application. As shown in Figure 3, the web page
index.html will be returned to the browser. This page has the following simple
structure:

1 <html>

2 <head>

3 <script type="text/javascript" src="xmlvm.js"/>

4 </head>

5 <body onLoad="bootXMLVM()">

6 <div id="AJAX_APP"/>

7 </body>

8 </html>

Fig. 3. Architecture.

The header of this page includes a JavaScript file called xmlvm.js that con-
tains a JavaScript version of the runtime library required by the application.
Without this library, running the application would result in unresolved exter-
nals. The <body> tag will invoke function bootXMLVM() once index.html has
been successfully loaded. This function, which is defined in xmlvm.js, will parse
the URL and retrieve the APP parameter (Calculator.class in this example).
bootXMLVM() will then issue an HTTP request containing the application to be
loaded to the Web Container. Upon receiving this request, the Web Container
uses XMLVM to create a JavaScript version of Calculator.class that is being
returned to the browser where it will be executed. The application will render
itself in a visual placeholder denoted by the <div> element with ID AJAX APP

in the index.html page shown above.

4 Prototype Implementation

We have implemented a prototype based on the ideas outlined in the previous
section to show the feasibility of our approach. We have leveraged as many Open
Source tools as possible. The Web Container is implemented using a light-weight
HTTP engine called Simple (see [4]). We use the Byte Code Engineering Library
(BCEL) from the Apache Foundation (see [2]) to inspect the contents of a Java
class file. Using BCEL, it is relatively easy to translate a class-file to XMLVM.
We have implemented an XSLT stylesheet to translate XMLVM to JavaScript.
Furthermore we have implemented a rudimentary JavaScript library for certain
Java-API that are used in the example explained below.

To test our framework, we have implemented a calculator using Sun’s Ab-
stract Windowing Toolkit (AWT). The calculator, which is shown on the left
side of Figure 4, allows simple mathematical operations. The source code of the
application is 322 lines of Java. The screenshot on the left-hand side of Figure 4
shows the desktop version of the calculator. Even this simple application makes
use of several external classes such as widgets (e.g., Buttons, Labels), Layout
Managers, and utility classes (e.g., String and Float).

The class file of this Java application results in 1920 lines of XMLVM. Af-
ter applying the stylesheet, the resulting JavaScript is 1693 lines of code. The
xmlvm.js library, which implements all the API that is needed by the calcula-
tor, adds up to another 1210 lines of JavaScript code. The right side of Figure 4
shows the calculator as an AJAX application running inside Firefox. The buttons
shown on the right side are HTML-buttons created by the AJAX application.

Fig. 4. Calculator as an AWT and AJAX application.

The xmlvm.js library contains implementation for all external references of
our calculator application. These external dependencies include JavaScript im-
plementations for java.awt.Button, java.awt.Panel, java.awt.BagLayout,
java.lang.String, java.lang.Float, and several other classes. The JavaScript
version of these classes is semantically equivalent to their Java counterparts.
The JavaScript version of java.awt.Button for example has the same API as
its Java counterpart, but will draw an HTML button inside the browser at the
appropriate location using CSS.

Ideally, xmlvm.js should contain JavaScript implementations for the com-
plete Java Runtime Library. Currently, xmlvm.js is hand-coded, specifically for
the needs of our calculator application. Since the majority of the Java Runtime
Library is itself written in Java, it is possible to automatically convert those class
files via XMLVM to JavaScript. The only portions of the Java Runtime Library
that would need to be hand-coded are JNI (Java Native Interface) calls. It is to
be noted that while we believe that the majority of the Java Runtime Library
can thus be automatically translated to JavaScript, this will not be possible for
certain features. For example, threads cannot be supported in JavaScript since
none of the JavaScript interpreters allow multithreaded applications.

5 Related Work
Several projects – commercial and Open Source – exist that aim at providing
an easy migration path for legacy Java applications to web applications. Web-
Cream is a commercial product by a company called CreamTec (see [1]). They
have specialized in providing AWT and Swing replacements that render the in-
terface of the Java application inside of a web browser. WebCream makes use
of proprietary features of Microsoft’s Internet Explorer and therefore only runs
inside this browser.

Two Open Source projects, both hosted at SourceForge, follow the same
idea of exposing Java desktop applications as web applications. The first one
is called WebOnSwing (see [8]). Unlike WebCream, this project is not tailored
for a particular browser. One feature offered by WebOnSwing are templates
that allow to change the look-and-feel of the application that is rendered inside
the browser. Another project with similar features, but not quite as mature, is
SwingWeb (see [7]).

The major difference between these approaches and the one introduced in this
paper is that none of them supports code migration. While the user interface
rendered inside the browser looks similar, every event such as pushing a button,
requires an HTTP request to the remote server. Migrating the application logic
to the browser dramatically increases the responsiveness of the application while
reducing the load on the remote server.

6 Conclusion and Outlook

AJAX applications have gained prominence as their interactiveness rivals that
of desktop applications. Writing portable JavaScript is a difficult task due to

the fact of cross-browser incompatibilities as well as lack of powerful develop-
ment tools for JavaScript. In this paper we propose a code migration framework
that would allow a programmer to write a web application in Java. Using our
framework, the Java application can be translated to JavaScript and executed
inside any browser. The prototype implementation is released under the GNU
GPL and is available at www.xml11.org. This web site also hosts the calculator
demo discussed earlier.

As for the next step, we will investigate the dynamic translation of the Java
Runtime Library in order to avoid hand-coding this complex library. We also
plan to investigate the restriction of self-contained applications. Fixed resources
such as databases can obviously not be migrated. We therefore need to investi-
gate a way to keep part of the application on the server side and use proxies to
communicate between the migrated and the stationary portions of the applica-
tion.

References

1. CreamTec, LLC. WebCream. http://www.creamtec.com/webcream/.
2. Markus Dahm. Byte code engineering. Java Informations Tage, pages 267–277,

1999.
3. European Computer Manufacturers Association. ECMAScript Language Specifica-

tion. http://www.ecma-international.org/publications/standards/Ecma-262.htm.
4. Niall Gallagher. Simple - A Java HTTP engine.

http://sourceforge.net/projects/simpleweb/.
5. Jesse Garrett. Ajax: A New Approach to Web Applications.

http://www.adaptivepath.com/publications/essays/archives/000385.php.
6. Peter-Paul Koch. Writing Portable JavaScript. http://www.quirksmode.org/.
7. Tiong Hiang Lee. SwingWeb. http://swingweb.sourceforge.net/swingweb/.
8. Fernando Petrola. WebOnSwing. http://webonswing.sourceforge.net/xoops/.
9. WebSideStory. U.S. Browser Usage Share. http://www.websidestory.com/.

