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A conjecture on multivariate polynomial interpolation

J. M. Carnicer and M. Gasca

Abstract. The generalization of Lagrange and Newton univariate interpolation formulae is one of the
topics of multivariate polynomial interpolation. Two classes of geometric configurations of points in the
plane, suitable for the use of those formulas, were given by Chung and Yao in 1978 for the Lagrange
formula, and by Gasca and Maeztu in 1982 for the Newton formula. The latter authors conjectured
that every configuration of the first class belongs to the second class and proved that the converse is not
true. In 1990 J. R. Busch proved the conjecture for polynomials of degree not greater than 4, showing
the difficulty of extending his reasoning to higher degree. In this paper we prove the same result using
different arguments with similar difficulties, in the hope that these arguments could shed more light to the
problem.

Una conjetura sobre interpolación polinómica en varias variables

Resumen. La generalización de las fórmulas de interpolación de Lagrange y Newton a varias variables
es uno de los temas habituales de estudio en interpolación polinómica. Dos clases de configuraciones
geométricas particularmente interesantes en el plano fueron obtenidas por Chung y Yao en 1978 para la
fórmula de Lagrange y por Gasca y Maeztu en 1982 para la de Newton. Estos últimos autores conjeturaron
que toda configuración de la primera clase es de la segunda, y probaron que el recı́proco no es cierto. En
1990 J. R. Busch probó la conjetura para polinomios de grado no mayor que 4, viendo la dificultad de
extender su razonamiento a grado superior. En este trabajo damos otra demostración del mismo resultado
con otros argumentos que muestran similar dificultad pero ofrecen alguna esperanza de generalización.

1. Introduction

Multivariate polynomial interpolation is a much more difficult problem than the corresponding univariate
one. Tensor product constructions can be reduced to univariate interpolation problems but the points must
be on a rectangular grid. For arbitrarily distributed nodes, it is not clear how to obtain a subspace of
polynomials suitable for interpolation. Even assuming that the number of points in the set of nodes equals
the dimension of a previously chosen space, the existence and uniqueness of the solution depends on the
geometrical distribution of the points. The relevance of all these questions can be seen for example in the
recent surveys [7], [10].

An interesting and standard problem is the study of distributions of points suitable for interpolation in
the subspace of polynomials of total degree not greater than � . The bivariate case is the simplest and most
important one for its application to the construction of surfaces.

Presentado por Baltasar Rodrı́guez-Salinas
Recibido: 13 de Julio 2001. Aceptado: 10 de Octubre 2001.
Palabras clave / Keywords: multivariate polynomial interpolation, geometric characterization
Mathematics Subject Classifications: 41A05, 65D05, 41A63.
c
�

2001 Real Academia de Ciencias, España.

145



J. M. Carnicer and M. Gasca

Figure 1. Two examples of sets satisfying ���	� and ����
 respectively.

Let us denote by ��
�������� the set of bivariate polynomials of total degree not greater than � with dimen-
sion ����������������� �"!#� . A set of nodes $ is said ��
��%� � � -unisolvent if the Lagrange interpolation problem
of finding a polynomial &(')��
��%� � � with prescribed arbitrary values on $ has always a unique solution.
A necessary and sufficient condition for a given set of nodes $ with cardinal * $+*-,.�����/���������0� �1!2� to
be ��
���� � � -unisolvent is that $ is not contained in an algebraic curve of degree � . This condition leads
in practice to solve the linear interpolation problem as a linear system of equations. However, as in the
univariate case, one tries to avoid this viewpoint looking for a simple formula which solves the problem. In
the univariate case, the simplest interpolation formulae are the Lagrange and Newton formulae, and their
successful extension to multivariate problems is always one of the topics of this theory.

A Lagrange formula in � 
 ��� � � for a set of nodes $ is

&�,43526�7�8 �:9;�=< 5->
where < 5 '?� 
 ��� � � is a Lagrange polynomial associated to the node 9 ,

< 5 ��9;�@,A� > < 5 ��BC�D,FE >HG BI'?$.JLK�9NM > �"� �
and 8 �:9;� is the prescribed value of & on 9 .

Let us remark that the Lagrange functions < 5 , 9.'O$ are linearly independent. So, if a Lagrange
polynomial (1) in ��
P��� � � exists for each node 9Q'�$ , then * $R*TS/UWVYX/�Z
���� � �D,[�:�I���\�����I�R���1!2� .

The most interesting approach for simple multivariate Lagrange formulae was provided by Chung and
Yao, who in 1977 [5] introduced a geometric characterization (GC) for a set $ whose associated Lagrange
polynomials are products of polynomials of first degree. In the bivariate case, the GC condition can be
stated as follows.

Definition 1 Let $^]_� � , * $R*W,.�:�?�/���������0� �1!2� . The set $ satisfies the geometric characterization����
 if for each 9Q'�$ , there exist lines ` 5 a >cbdbcbe> ` 5
 such that

$fJLKc9PM�]R` 5ahgjicidicg ` 5
 > 9�!'k` 5 algjicidicg ` 5
 b
We say that the lines ` 5 a >cbdbdbc> ` 5
 are used by the node 90'm$ . The set of lines used by 90'm$ will be
denoted by n 5 and n 7.o ,Op 526�7 n 5 is the set of lines used by some node. The set of nodes in $ using a
line of the plane ` will be denoted by $rq :

$Iqs,tKc9k'?$u*\`/'sn 5 M b
Let us remark that `/'sn 5 if and only if 9k'?$Iq and that $Iq is nonempty if and only if `+'kn 7 .

By abuse of notation, if ` is a line we shall also use the letter ` for denoting a polynomial of first degree
such that `L��9;�D,FE is the equation of the line ` .
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Figure 2. An example of a set satisfying (3)

Clearly the ���h
 condition implies the existence of Lagrange polynomials in �v
���� � �
< 5 , ` 5 alidici ` 5
` 5 a �:9;� ididi ` 5
 ��9;� �w���

and, since * $R*x,y�:�j�z�T�����j�{� �"!#� , $ is ��
��%� � � -unisolvent and the Lagrange functions are unique.
Therefore the set of lines n 5 used by a node is uniquely determined by 9k'?$ .

A different approach was considered in 1982 by Gasca and Maeztu [6], giving an easy way of obtaining
bivariate Newton formulae &I,}|3~1� a�� ~��C~ > �C~ ��9����D,mE >HG��@�(�
to deal with Lagrange and Hermite bivariate interpolation problems. Here we restrict ourselves to Lagrange
problems. The basic functions � ~ are, in [6], product of polynomials of first degree. In that paper, the
authors showed that their approach, applied to the Lagrange problem, produced the interpolation space� 
 �%� � � if and only if the nodes form a system of order � , which means that the nodes $ are distributed on
lines `�� > ` a >cbdbdbd> `�
 so that

* `��C��$fJZ��`�� gjididi g `l�:� a �d*#,m���m�x� ��>�� ,FE >cbdbcbe> � b �%�T�
In other words, �r�m� points lie on a line, � of the remaining points lie on another line, and so on. The last
line contains a point which is not on the previous lines. Condition (3) had been previously used by several
authors, but not in connection with Newton formulae. In 1948, Radon [11] constructed cubature formulae
based on it. It appears also in a paper by Guenter and Roetman [9] in 1970, for decomposing a multivariate
interpolation problem in two simpler problems. For more details on this condition, see the survey [8].

Figure 2 shows an example of a set of points in the plane satisfying the condition (3). Let us observe
that the sets in Figure 1 also satisfy condition (3). However, the set of Figure 2 does not satisfy ��� � .
Proposition 1 Let $�]t� � and assume that there exist lines `l� > ` a >cbdbcbd> `l
 such that (3) holds. Then$ is ��
���� � � -unisolvent.

The proof can be found in [6], see also [4]. The authors in [6] also showed that there exist set of nodes$ satisfying (3) but not ���h
 . However, they could not find sets of nodes satisfying the ���	
 condition but
not (3). They conjectured that (3) must hold for every set of points satisfying ���L
 .

Why is this conjecture interesting? Condition ��� 
 provides an elegant characterization of sets which
are � 
 �%� � � -unisolvent and give rise to very simple Lagrange formulae with basic functions product of
polynomials of first degree. Chung and Yao gave in [5] some nice examples of distributions of points
satisfying ��� 
 , but not a systematic classification of all sets which satisfy that condition. In a precedent
paper [3] we have looked for a better understanding of it and a starting point for a classification. On
the other hand, condition (3) is an extremely simple condition for ��
N��� � � -unisolvence which gives rise
to very simple Newton formula with basic functions product of polynomials of first degree. Therefore it is
important to know if the sets satisfying ���h
 are always included among the class of those which satisfy (3).
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2. Preliminary results and statement of the problem
In Proposition 2.1 of [3], several auxiliary properties of the GC condition were stated and proven. The
following Proposition contains some of these properties which will be repeatedly used in this paper.

Proposition 2 Let $ be a set of nodes satisfying the ���h
 condition. Then

(a) A set of � lines cannot contain more than �W�%�2�������(�2�1!2� points of $ . In particular, no line contains
more than �I�F� points.

(b) A line ` containing �v�)� points of $ must be in n 7 and it is used by each point not lying on it ( �j�0� ).
(c) Two lines, each containing ���m� points of $ , cannot be parallel and meet at a point 9Q's$ .

(d) Three lines, each containing �I��� points of $ , cannot be concurrent.

We shall also use the following result:

Proposition 3 Let $ be a set of nodes satisfying ��� 
 , ` a line and � the set of nodes which neither lie
on ` nor use ` � o ,tKcB�'�$fJ�`z*=`A!'knP�TM�,m$�JZ�%` g $�q�� b �����
Then one has:

(a) If * `Q�r$R*#,/�r�m� , the set � is empty and $fJ�` satisfies ��� 
�� a .
(b) If * `Q�r$R* � �r�m� , the set � is nonempty and cannot be contained in a � 
�� a ��� � � -unisolvent set.

PROOF.
(a) By Proposition 2 (b), $rq�,{$�JL` and so �4,.� . Take any B)'R$�JL` . Since $ is ��� 
 , there

exist � (unique) lines ` a >dbcbdbd> ` 
�� a > ` 
 '?n 7 which are used by B and ` must be one of the ` � ’s. We may
assume without loss of generality that ` 
 ,m` . The lines ` a >dbdbcbe> ` 
�� a satisfy��$�J�`h��JLKcB�M�]R` a g�icidicg `l
�� a > B�!'?` a gjidicicg `�
�� a
and since B is any point of $fJ�` , this set satisfies the ��� 
�� a condition.

(b) Let us assume that �[,m� , that is, ` is used by all points in $mJ�` . Let < 5 'k� 
 �%� � � be the Lagrange
polynomial corresponding to 9�'Q$�Jh` in the interpolation problem defined by the set of nodes $ . Then`L��9;��< 5 !\`�'A��
�� a ��� � � is a Lagrange polynomial corresponding to 9 for the interpolation problem on$�JL` with �L
W� a �%� � � as interpolation space. Since the Lagrange polynomials are linearly independent,* $FJ;`Z*TSRUWV�X/�L
�� a �%� � �D,m�@�:�L��� �1!2� . Then * ` ��$R*T�+�L��� and, by Proposition 2 (a), * ` ��$R*2,m�L�Q� .

So, if * `(�Q$R* � �k�t� , the set � is nonempty. Let us assume that � is contained in a �v
�� a �%� � � -
unisolvent set. For each B�'Q� , there exists &Q'Q�Z
W� a ��� � � such that & vanishes on �FJ�K�B�M but &¡��BC�v¢,0E .
The polynomial &�` has degree not greater than � . Taking into account that $ is � 
 �%� � � -unisolvent, we
can use the Lagrange formula to obtain

&�`£, 3526 q-¤ 7 &¡��9;��`��:9���< 5 �A3526�¥ &¡��9;��`��:9���< 5 ��3526�7§¦ &¡��9;��`��:9���< 5 b
The first term of the right hand side is zero because `L��9;�@,0E for all 9�'k`Q��$ . The second term reduces
to &¡��BC�=`L��BC�=<¨� because &©�:9;�D,FE for all 9k'k�FJLK�B�M . Then we have

<¨��, �&¡�:B-�=`L�:B-�¡ª &�`)� 35#6�7 ¦ &©�:9;�=`L��9;��< 5T«§b
Since all the points in $Iq use the line ` , each < 5 in the sum inside the brackets must contain ` as a factor.
So, ` divides < � , which implies that B uses ` , contradicting the definition of � . ¬

Proposition 2 analyzes some properties of the lines containing �v�(� nodes of a ����
 set. The following
shows some properties of the lines containing at least � nodes.
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Proposition 4 Let $ be a set of nodes satisfying ���x
 and let­ o ,tK�`m*\` is a line of � � > * `Q�r$R*��+�§M b
Then we have

(a) For all 9Q's$ , *®K�`+' ­ * 9k'k`xM�*TS+� , .

(b) * ­ *WS/�\�I�£¯L�£��!\� , and, if equality holds, then for all 9k's$ one has *®K�`/' ­ * 9Q'?`xMW*2,�� .

(c) If ` a '?n 5 and ` � is a line of
­

such that ` a ��` � ��$°,0� and 9�!'k` � , then ` � 'kn 5 .

(d) If n 7 � ­ ¢,0� , ���F� , then there exists a line `/'?n 7 such that * $Iq§*W±R�¡!2� .

PROOF.
(a) If there exist 5 different lines `��D' ­

, 9k'k`�� , � ,A� > � > � > � >�² , then

*³�%` a g ` � g `l� g `�
 g `l´�����$R*T� ² �s��� >
contradicting Proposition 2 (a) with ��, ² .

(b) Let us define the set µ o ,zKT�:9 > `h�h* 9k'?$ > `+' ­ > 9�'s`	M b
By (a), one has ��* ­ *�St* µ *�SR�;* $+*
and then * ­ *CS �� �:�r�R���e�:�I���\�� ,F�2����¯L� �� b
If equality holds, then * µ *#,���* $R* .

(c) If * ` � �)�:$fJLKc9PM\�e*C�R� and ` � !'kn 5 then each of the � lines in n 5 must contain exactly one node
of ` � . Since ` a '?n 5 , we would have that ` a �s` � ��$¶¢,m� .

(d) Let ·¸'sn 5 � ­
for some 9k's$ . If * ·¶�I$+*#,��I�/� , then, by Proposition 2 (b), $s¹f,�$�J�· .

Therefore * $�¹�*#,[�:���R� �º�¡!#��±+�¡!2� . Otherwise, if * ·u�»$+*#,/� , let ` a >cbdbcbe> `l
 be the � lines joining 9
with each of the nodes in ·¶�s$ . By (c), each of the points in $�Jx· uses at least one of the ���m� lines· > ` a >dbcbdbd> `�
 , and then there exists a line `/'jK · > ` a >dbcbdbe> `�
�M such that

* $�q§*�� * $�Jh·.*���m� , � � � ��I��� ±+�¡!2� b ¬
In [6] the following conjecture was stated.

Conjecture 1 Let $ be a set satisfying the ��� 
 condition. Then there exists a line ` in the plane such
that * `Q��$R*#,��I�m� .

Conjecture 1 is equivalent to saying that all ��� 
 sets satisfy (3). This equivalence is a consequence of
Proposition 3 (a).

Conjecture 1 is trivial for ��,�� . In the case ��,�� , we have 6 points. For each of these points, the
five remaining ones must lie on two lines and one of the lines must contain at least 3 nodes, and no more by
Proposition 2 (a). This proves the conjecture for �Q,F� .

The case �),A� was checked by Gasca and Maeztu as mentioned in [6], analyzing all possible combi-
natorial configurations of the alignments of 9 points on 3 lines. In the preprint [1], Busch gave a proof of
the cases �k,F� and �Q,�� . However, in the paper [2], only the case �Q,/� was detailed. Busch recognized
in [2] that his method cannot be extended for ��±+� because the number of different cases to be analyzed is
much higher. His proof is based in 5 lemmas, where he shows the following properties for a set $ satisfying��� 
 :
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¼ Lemma 1 of [2]: If a set of three lines intersect another set of three lines at 9 points of $ and a cubic
polynomial vanishes on 8 of the 9 points, this polynomial must also vanish at the remaining point.¼ Lemma 2 of [2]: If for some 9+'R$ there exists `{'Rn 5 with * `(�k$R*�,½� , then there exist three
nodes in $ using the same line.¼ Lemma 3 of [2]: Let 9 > B be distinct nodes such that * n 5 �?nP�C*C,O� , and let ` be the line used by 9
and B . Then * `Q�r$+*���� . If a third node ¾�'�$ uses ` then * `Q��$R*2, ² .¼ Lemma 4 of [2]: Let 9 > B be distinct nodes such that * n 5 ��nP�C*�,m� . Then at least one line of n 5 ��nP�
contains five nodes.¼ Lemma 5 of [2]: Let 9 > B > ¾ be distinct nodes such that there exists `['�n 5 �Qn � ��nP¿ and assume
that for each ·À'kn 5 one has * ·Á��$R* �/² . Then there exist three lines ` a > ` � > ` � used by the three
nodes 9 > B > ¾ . Each of the lines ` a > ` � > ` � contains exactly 4 nodes and two of the lines have no node
in common. If another node Â uses some of the lines ` a > ` � > ` � , it uses the three lines.

From the previous lemmas, Busch showed that, if no line contains 5 nodes, one always gets a contra-
diction.

Our present paper is devoted to provide an alternative proof of the cases �k,F� and �k,m� trying to shed
more light on the conjecture.

3. Solution of the conjecture for ÃÅÄÇÆ and ÃÅÄÉÈ
Let us first consider the case �Q,m� .

Theorem 1 Let $ be a set of nodes satisfying ��� � . Then there exist 4 points in $ which are collinear.

PROOF. Assume that no line of the plane contains 4 points of $ . Let
­

be the set of lines such that* `Q�r$R*#,m� . By Proposition 4 (b), * ­ *WS0�c� .
For any 9Q's$ , the remaining 9 points of $ lie on three lines ` 5 a > ` 5� > ` 5� ' ­

. Let us defineÊ o ,tK��:9 > `��h* 9k'?$ > `+' ­ �sn 5 M b
If each line `[' ­ ��n 7 would be used exactly by one point of $ , then ������* ­ *©�f* Ê *N,O��* $+*�,O��E
which is a contradiction. So, at least one line `/' ­

is used by two points 9 a ¢,m9 � in $ . By Proposition 3
(b), the set � o ,zKcBI'?$�J�`A*=`z!'?n � M
cannot be contained in a � � ��� � � -unisolvent set. However, neither 9 a nor 9 � belong to � and so this
set contains no more than 5 points, with no 4 of them collinear. Therefore � is contained in a � � �%� � � -
unisolvent set of the type of condition (3) and we get a contradiction. ¬

Let us now consider the case ��,z� . Let $¶Ëz� � be a set satisfying ���h
 and from now on we shall
assume that no line contains 5 points of $ , obtaining finally a contradiction.

Let us define ­ o ,zK�`�*\` is a line of � � > * `Q��$R*2,m�CM b � ² �
The following lemma shows some properties of $ under the above assumptions.

Lemma 1 Let $ be a set satisfying ����
 and assume that no line of the plane contains 5 nodes. Let
­

be
the set (5). Then we have

(a) If ` a > ` � > ` � ' ­
and `��=��` ~ �D$Á,F� for all � ¢, � in KT� > � > �CM , then the three nodes in $£J���` a g ` � g ` � �

are not collinear and each of them uses the lines ` a > ` � > ` � .
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(b) For each 9k'?$ one has * ­ �sn 5 *W�/� .

(c) If `+' ­
, then * $IqD*�S/� .

(d) If ` a ' ­ ��n 5 Ì � n 5�Í � n 5�Î , where 9 a > 9 � > 9�� are distinct nodes in $ , then there exist lines ` � > `��v' ­
such that ` � ��` ~ ��$Ï,F� for all � ¢, � in K�� > � > �WM , n 5\Ì ��n 5cÍ �sn 5�Î ,tK ` a > ` � > `��2M and $Iq Ì ,m$�q Í ,$Iq Î ,zKc9 a > 9 � > 9��#M .

PROOF.
(a) The 3 points in $.JL�%` a g ` � g ` � � are not collinear. Otherwise $ would be contained in a set of 4

lines and would not be �L
���� � � -unisolvent. If · is the line joining two of the points in $tJ���` a g ` � g `�� � ,
then the remaining point uses the lines · > ` a > ` � > `�� .

(b) For any 9�'Q$ , n 5 is a set of 4 lines containing 14 nodes. If no line contains 5 nodes, then at least
two lines of n 5 belong to

­
.

(c) If a line `m' ­
is used by more than three points, then the set �O,0$�J���` g $sqN� would have less

than 8 nodes and, since no five of them are collinear, � is contained in a ���T��� � � -unisolvent set of the type
(3), contradicting Proposition 3 (b).

(d) Let ` a > ` � > `l� > `@
 be the lines associated to 9 a . Since ` a ' ­
, * ` a ��$R*h,Ð� . Let us defineÑ o ,[�:${J©` a �CJ�Kc9 a > 9 � > 9 � M and let Ò � o ,{* ` � � Ñ * , Ò � o ,[*Y��` � � Ñ �-J©` � * , Ò 
 o ,{*Y��` 
 � Ñ �CJ��%` � g ` � �d* .

Taking into account that no line contains 5 nodes and reordering the lines ` � > ` � > ` 
 , we may assume thatE»S+Ò 
 S+Ò � S/Ò � SR� . Since
Ñ

contains 8 nodes, Ò � ��Ò � ��Ò 
 ,mÓ and Ò 
 S�� .
If Ò � SO� then we would have ÒT��SO¯»� � , � ,4� > � > � and, by Proposition 1,

Ñ
would be contained

in a � � �%� � � -unisolvent set of the type (3). This contradicts the fact that, by Proposition 3 (b),
Ñ

cannot
be contained in a � � ��� � � -unisolvent set. Hence Ò � ,¶� and consequently Ò � ,yÒ � ,¶� , Ò 
 ,yE .
Then we have that ` � > `��j' ­

and ` � �)` ~ �j$Ô,°� for all � ¢, � in KT� > � > �CM . By Proposition 4 (c),` � > `��Õ'jn 5 Ì �?n 5cÍ �?n 5�Î and * n 5 Ì �?n 5�Í �?n 5�Î *��F� . If * n 5\Ì �?n 5cÍ �?n 5cÎ *W,_� then n 5\Ì ,tn 5cÍ ,tn 5cÎ
and the Lagrange polynomials associated to 9 a > 9 � > 9�� would be linearly dependent, a contradiction. Son 5\Ì �?n 5�Í �?n 5�Î ,{K�` a > ` � > `l�\M b Moreover, we have shown that Kc9 a > 9 � > 9��2M»]m$IqWÖ , � ,{� > � > � , and by
(c) we get $Iq Ì ,m$�q Í ,�$Iq Î ,tK�9 a > 9 � > 9��\M b ¬

Let us define $ � o ,zKc9k's$u*-* n 5 � ­ *#, � M > ­ � o ,_K `R' ­ *C* $IqD*#, � M
for each � . Clearly, for all 9�'?$ one has * n 5 � ­ *CS+� and, by Lemma 1 (b), * n 5 � ­ *W�m� . Moreover, by
Lemma 1 (c), for all `/' ­

, * $rq§*WSR� . Then we have

$°,m$ � g $ � g $ 
 > ­ , ­ � g ­ a g ­ � g ­ � b
By Proposition 4 (b), * ­ *WS0� ² and so we obtain

* ­ �W*d�F* ­ a *d�0* ­ � *c�0* ­ � *#,{* ­ *�S0� ² ,[* $R*2,{* $ � *c�F* $ � *c�0* $ 
 * b �%¯T�
Let us define an equivalence relation in

­ � :

`�×0·ÙØu$ q ,�$r¹ > ` > ·Ô' ­ � b
By Lemma 1 (d), each equivalence class in

­ � consists of 3 lines.
Let us also define an equivalence relation in $r� g $�
 :

9s×mB ØÅn 5 � ­ � ,Fn � � ­ � > 9 > B�'s$ � g $ 
 b
Recall that any point 9k'�$I� g $�
 uses 3 or 4 lines in

­
.

The set of points 9Q'�$I� g $�
 such that n 5 � ­ ��,F� , form an equivalence class. For all the rest of the
points 9k'?$ � g $ 
 we have n 5 � ­ � ¢,0� . Then there exists ` a 'kn 5 � ­ � with 9k'?$ q Ì ,_Kc9 a > 9 � > 9 � M .
By Lemma 1 (d), there exist lines ` � ¢,m` � different from ` a

such that n 5 Ì �hn 5 Í �hn 5 Î � ­ � ,zK�` a > ` � > ` � M
and Kc9 a > 9 � > 9 � MZ,/$ q Ì ,m$ q Í ,�$ q Î . So, 9 � > 9 � '?$ � g $ 
 and K ` a > ` � > ` � M�]+n 5 ÖÚ� ­ � for � ,z� > � > � .
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Let us assume that for some 9�� , � '�K�� > � > �WM > n 5 Ö¡� ­ � ,�K�` a > ` � > ` � > ` 
 M , where ` 
 ' ­ � . Then,$Iq�Ûj,ÅKc9 � > 9�
 > 9�´#M and, by Lemma 1 (d), there exist lines `�´ > `�Ü£' ­ � , different from `�
 > such that$Iq�Ûv,z$�qCÝv,z$�qCÞZ,½K�9 � > 9�
 > 9�´2M . Therefore `l´ > `lÜ»'jn 5 ÖN� ­ � ,OK�` a > ` � > `l� > `�
2M . Then `l´ and `lÜ
are in K�` a > ` � > `�� M and we obtain that $rq�Ûv,OKc9 � > 9�
 > 9�´2M�,OKc9 a > 9 � > 9��2M . So ` a ×A` � ×t`���×z`�
 and
since the equivalence classes of lines in

­ � are formed by 3 elements we get that `�
r'/K�` a > ` � > `l�\M and
then n 5 Ö�� ­ ��,zK�` a > ` � > `�� M .

So n 5\Ì � ­ �Z,mn 5cÍ � ­ �L,mn 5cÎ � ­ �L,tK ` a > ` � > `��2M and we deduce that 9 a > 9 � > 9�� are equivalent. By
Lemma 1 (c), no other point can be equivalent to them, and consequently the equivalence class is formed
by exactly 3 elements.

In summary, the equivalence classes in $I� g $�
 are formed by 3 points (which use the same 3 lines of­ � ) except for the class of points which do not use any line of
­ � .

We can now define an injective map from
­ � !r×���ßÀ��$ � g $ 
 �"!I× associating to each equivalence

class K�` a > ` � > ` � M the set $ q Ì ,/$ q Í ,m$ q Î ,tKc9 a > 9 � > 9 � M . So we deduce that

* ­ � *�Sz* $ � g $ 
 * b �ºà#�
Let us now define Ê o ,tK��:9 > `��h* 9k'?$ > `+' ­ �sn 5 M b

We can compute the cardinal of this set either counting the number of lines used by each point or counting
the number of points using a given line:

* Ê *�,m�-* $ � *d����* $���*d�£��* $�
T*#,{* ­ a *�����* ­ � *d�R��* ­ ��* �%ÓT�
Using (6) and (7) we can substitute * $ � *L,á� ² �{* $��T*��{* $»
�* , * ­ � *vS¶� ² �{* ­ � *��{* ­ a *��{* ­ ��* and* ­ ��*�Sz* $��T*d�0* $�
W* to obtain

��EL�F* $���*�����* $�
�*#,{* Ê *�SR��Ev�)��* ­ � * ��* ­ a *c�0* ­ ��*�S/�#EZ�(�-* ­ � *2�/* ­ a *d�0* $��T*c�0* $�
T* >
which means that * $�
�*c�R�-* ­ � *c�0* ­ a *�S/E > that is,

$�
�,m� > ­ � , ­ a ,m� b �%âT�
Therefore no point uses 4 lines of

­
and any line in

­
is used by at least 2 points of $ . Taking this into

account (6), (7) and (8) can be rewritten as

* ­ � *c�0* ­ � *�SF� ² ,{* $ � *c�0* $ � * > * ­ � *�St* $ � * > �-* $ � *d����* $ � *#,0�-* ­ � *d�£��* ­ � * >
and from these inequalities, we deduce that

* $���*�,F��* $ � *��£��* $���*\����E�,0�-* ­ � *d����* ­ ��* ����E»St* ­ �T*WS_* $���* b
Then all inequalities of this chain must be equalities and we obtain

* $��T*#,{* ­ �T* > * $ � *#,A* ­ � * b �=��ET�
From here, it follows that * ­ *#,{* ­ � *e�m* ­ �T*#,[* $ � *���* $��T*�,t� ² , and therefore equality in Proposition

4 (b) holds. So we deduce that each point of $ is the intersection of exactly 4 lines of
­

.
Since $Å,t$ � g $�� we know that each node in $ uses at least two lines of

­
. By Proposition 4 (d),

there exists a line ` such that * $rqD*W±/� , that is,
­ � is nonempty. Let ` a ' ­ � and Kc9 a > 9 � > 9��2M o ,�$�q Ì . By

Lemma 1 (d), there exist lines ` � > `��v' ­
such that ` � ��` ~ ��$Á,F� and n 5 Ì ��n 5cÍ ��n 5cÎ ,zK�` a > ` � > `l�\M .

Let ã a > ã � > ã�� > ã�
 be the four lines in
­

such that 9 a '£ã � , � ,.� > � > � > � . By Lemma 1 (a) 9 a > 9 �
and 9 � are not collinear, which means that for each � '/K�� > � > � > �CM either 9 � !'Rã ~ or 9 � !'�ã ~ . On the
other hand, `l�§'?n 5 Í �rn 5 Î and, if `l�C��ã ~ �r$Ï,0� , Proposition 4 (c) would imply that either ã ~ 'kn 5 Í
or ã ~ '£n 5 Î . Then either 9 � or 9 � would use four lines in

­
: ` a > ` � > ` � > ã ~ , contradicting the fact that
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$ 
 ,[� . Therefore one has `l�;�Qã ~ �?$ä¢,[� , � ,�� > � > � , � ,�� > � > � > � . So the 4 nodes of each ã ~ are9 a and ` � �?ã ~ , � ,[� > � > � , and since neither 9 � nor 9�� lie on ` a g ` � g `l� (because 9 � , 9�� use the lines` a > ` � > `�� ) we get that 9 � > 9�� are the two unique points of the set

$fJZ�%ã a g ã � g ã � g ã 
 � b
Since each of the points 9 a > 9 � > 9�� uses the lines ` a > ` � > `l� , the Lagrange polynomials (2) correspond-

ing to those points in the interpolation problem defined by $ contain the factor ` a ` � `l� . Each polynomial
of degree less than or equal to 4 vanishing on $�JZKc9 a > 9 � > 9��#M is, by the Lagrange formula, a linear com-
bination of those Lagrange polynomials and therefore contains the factor ` a ` � `l� . The product of the four
lines ã a ã � ãj�cã�
 vanishes in all points of $AJDK�9 � > 9��2M and consequently ` a ` � `�� divides ã a ã � ãj�cã�
 .
This implies that each ` � divides some ã ~ , which is impossible.

So we have seen that the initial assumption that no line contains 5 nodes on a ��� 
 set of nodes leads to
a contradiction, which means that we have proved the following theorem.

Theorem 2 Let $ be a set of nodes satisfying ����
 . Then there exist 5 points in $ which are collinear.

As we have seen, the conjecture holds for �jS+� but there is a strongly increasing difficulty in the proof,
which is very relevant passing from ��,O� to �/,½� . As in [2], it seems very complicated to extend the
arguments used above to ��±R� but we feel that some of these arguments could help.
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