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State grants-in-aid modify the full fiscal income and tax price for education services faced by 
voters in local school districts. If aid is non-linear in the local property tax rate, as occurs with 
District Power Equalization coupled with an aid floor, then individual budget constraints are 
non-linear and least squares estimation is inappropriate. We develop and estimate a model that 
incorporates these effects, derive and extensively illustrate the comparative statics, present global 
and local elasticities, and simulate the impact of parameter changes on the variance of spending 
and the cost of the program. 

1. Introduction 

State contributions are the largest source of revenues available to public 
elementary and secondary schools, followed closely by property tax revenue.’ 
Given the magnitude of aid, it seems we should account for it carefully when 
modeling the spending choices of local school districts. This is made difficult 
by the fact that the rules governing the state’s contribution generally make 
the aid positively or negatively contingent on any number of district 
characteristics, including the local property tax rate. If aid is linear in the tax 
rate, then one can use the standard models that incorporate matching and 
block grants [Craig and Inman (1986)] and estimate them with ordinary 
least squares [Borcherding and Deacon (1972), Bergstrom and Goodman 
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(1973) Inman (1979), Oates (1986)]. This holds, for example with the 
simplest District Power Equalization (DPE) formulas [Coones, Clune and 
Sugarman (1970), Stern (1973), Feldstein (1975), Aronson and Hilley (1976) 
Inman and Rubinfeld (1979), Phelps and Addonizio (1981, 1983)]. However, 
the simplest formulas are never used, and aid is generally non-linear in the 
local tax rate. This produces a number of conceptual and econometric 
problems that require a careful analysis. 

We begin with the conceptual problems and derive the individual budget 
constraint when state aid is non-linear in the property tax rate. This result is 
then used to analyze expenditures in our sample of Michigan school districts 
in 1981-1982, when a modified power equalization formula was in effect. For 
property poor districts, the state’s contribution increases linearly with the tax 
rate (without bound), while for property rich districts it decreases linearly to 
a non-negative value and then remains constant. This produces a single non- 
convexity for the subsample of property rich districts at the point where aid 
stops falling. A series of papers by Burtless and Hausman (1978), Hausman 
and Wise (1980), Mofftt (1984, 1986, 1989), and Hausman (1985) develop a 
general maximum likelihood approach for obtaining consistent estimates in 
this context, called the ‘2-error model’. One form of this model is well suited 
to our problem [Hausman and Wise (1980)] and we apply it to obtain 
consistent estimates. 

We then derive, interpret, and extensively illustrate the comparative statics 
for the stochastic model. These consider how expected spending varies with 
changes in the parameters of the model, including parameters of the aid 
formula. This is done to a very limited degree in the literature on the 2-error 
model, no doubt because the analytical expressions become very complicated 
the more complicated the budget constraint. Our model is simple enough 
that the formulas are tractable and have a strong economic intuition. 
Furthermore, they provide a complete analysis of the impact of the power 
equalization program, something a purely numerical approach cannot 
accomplish. 

Following the introduction we give a general expression for the individual 
budget constraint in the presence of state aid, as well as definitions of the 
marginal tax price and full fiscal income. We use these results to derive the 
budget constraint for any individual in a property rich district. The 
constraint is piecewise linear and the budget set is non-convex. Section 3 
contains a model and stochastic specification that allows us to consistently 
estimate the parameters of this model. Technically, this adapts the Hausman 
and Wise (1980) model to the case of a non-convex budget set. Section 4 
presents and evaluates the econometric results. Section 5 contains the 
comparative statics for the stochastic model and illustrates them in a number 
of ways with our estimates. We also consider different definitions of the 
income and price elasticities and illustrate the power of the model for 
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simulating policy changes and developing recommendations. Section 6 
summarizes the results. 

2. Preliminaries 

2.1. Tax price and full fiscal income with state aid 

In each district, we group school revenues into three classes: local property 
taxes, ‘formula aid’ that may depend on the local property tax levied, and 
other aid. Letting Q denote district operating expenditures per pupil, we 
equate this with district revenues to obtain: 

Q=mV+S(m)+F, (1) 

where m denotes the local property tax rate and V, S, and F measure the 
per-pupil tax base, formula aid, and other aid, respectively. 

Wherever S is differentiable the relationship above implicitly defines the 
differentiable function m(Q), which is the property tax rate that equates 
expenditures with revenues. Substituting m(Q) back into (1) gives an identity 
which we differentiate to obtain am/aQ = (V+ &S/am)- I. Since the marginal 
price of Q is the extra money the individual pays to increase Q one dollar, 
we have 

,M.i,aCm(Q)Hil = Hi 
aQ v + aslam’ (4 

where Hi is the assessed valuation of individual i’s house. 
Individual i in this district faces the constraint 

Y’=I’-m(Q)H’, (3) 

where I’ is before-tax income and Y’ is expenditures on all other goods. 
Adding P”,iQ to both sides of (3), then using (1) and (2) to eliminate Q and 
H, respectively, on the right-hand side yields 

(4) 

The left-hand side is that of a standard budget constraint, with the correct 
marginal price as the coefficient of Q. The right-hand side depends in general 
on the level of Q, through m. However, if state aid in linear in m, so 
S(m) = d + am, then PMsi = H/( V + a) and (4) becomes 
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Y'+ & Q=li+~H&(d+F). (5) 

The quantity on the right is now called individual i’s full fiscal income 
[Craig and Inman (1986)]. This captures the impact of the lump-sum portion 
of aid and yields a constraint in the marginal price that is fully analogous to 
the standard individual budget constraint. 

2.2. Power equalization 

State aid per pupil is given by the basic Michigan district power 
equalization formula for 198 1-1982:2 

S(m)=max[R+b+m(V*-V),R/3], (6) 

where b =$360 for all districts and is called the ‘front end allowance’, 
V* = $50,550 for all districts and is called the ‘guaranteed base’, and R 2 0 

may vary across districts but is constant in m. S(m) is never negative, so there 
is no ‘recapture’ in the formula. Combining (1) and (6) yields 

Q=max(c,+mV*,c2+mV), (7) 

where 

c,=R+b+F>c,-R/3+F. (8) 

For districts with Vs I/*, state aid and district spending are always given 
by the first components of (6) and (7) and state aid is increasing in m. Fig. 1 
illustrates (6) and (7) for districts with V> V*. Expenditures at any level of 
property tax are given by the higher curve, and state aid is a decreasing 
function of the tax rate up until the cut-off point. State aid is therefore 
piecewise linear in m.3 

This suggests two distinct characterizations of the financial status of school 
districts and both prove to be important. High-tax-base districts are those for 
which V> V* while low-tax-base districts have Vz V*. In-formula districts 
are those for which S > R/3 while out-of-formula districts have S = R/3. It is 
easy to show that (i) the formula guarantees each district a property tax base 
of at least V*, (ii) low-tax-base districts are always in-formula, and (iii) high- 

*This formula is derived from a document prepared by the Michigan Department of 
Education (1986) and the discussion of the Michigan DPE program in papers by Phelps and 
Addonizio (1981, 1983). See section A.1 in the appendix. 

‘More generally, for districts with V> V*, a- grant on the front is necessary for the non- 
linearity if no recapture is allowed, since d> 0 implies S(m) = max[m( V* - V), d] = d. The grant is 
no longer necessary if d < 0 is allowed. 
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Fig. 1. Spending and aid in high-tax-base districts. 

tax-base districts are in-formula if and only if spending is low enough, 

specifically [using (6) and (8)] m <(cl - cz)/( I/ - V*), or equivalently [using 

(111 Q<(P,c, -~2cJIP, -Pd. 
The budget constraints now follow from (5). For in-formula districts 

d = R + b and a = (V* - V) and for out-of-formula districts d = R/3 and a = 0, 
so: 

Condition Defined Constraint 

Low-tax-base, vsv* Yi+P,Q=Zi+P,cI 

in-formula 

High-tax-base I/> V* and Q< p,c, -R,cz 

in-formula RI--P, 
Y’+P,Q=I’+P,c, (9) 

High-tax-base, I/> V* and Q2 R,c, -R,cz 

out-of-formula RI-R, 
Yi+P,Q=Ii+P,c2 

where P, = H/V* and P, = H/V. 
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Fig. 2. Budget constraints, high-tax-base districts (I/> V*). 

For the high-tax-base constraint, P1 >P,, so the two lines necessarily 
intersect. The value of Q at the intersection is the same as the spending level 
at which the regimes change, so the constraint is continuous. Since ci >c,, 
the value of Q at the intersection is positive. Define 

I+ P2cz I+P,c, _ 

p2 P, -p. 
(10) 

This is the difference in the horizontal intercepts of the two lines. The value 
of Y at the intersection is p[(l/P,)-(l/P,)]- ‘, and this is positive if and 
only if p is positive. Therefore, the two lines intersect in the positive 
quadrant if and only if p is positive. This quantity appears repeatedly in 
what follows. 

Fig. 2 draws the high-tax-base constraint for p ~0. It is the higher line at 
each value of Q. The budget set is non-convex. 

3. A model of education spending 

3.1. Theoretical model for high-tax-base districts 

Section 2 demonstrated that the aid formula creates two regimes with 
different tax prices and full fiscal incomes. The high-tax-base districts 
(V> V*) may fall into either regime depending on the level of spending they 
choose. Tax price and full fiscal income are therefore endogenous, con- 
ditional on the quantity of educational spending chosen. 

It is well understood from the work of Hausman (1985) and Mollitt (1986) 
that using observed tax price and full fiscal income in the standard log-linear 
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model and applying ordinary least squares produces biased and inconsistent 
estimates. The problem is that positive errors will be associated with the out- 
of-formula tax price and income, while negative errors will have the reverse 
association. The error term is therefore correlated with these independent 
variables. Similarly, we create selection bias by using a sample of only in- 
formula districts, since this omits observations with a high realization of the 
error term. More sophisticated estimation techniques are therefore required. 

The approach here follows Hausman and Wise (1980) and extends this 
model by developing the comparative statics along lines described by Moffrtt 
(1984). We suppose there is a representative individual, with preferences over 
education expenditures per pupil and other expenditures, who chooses the 
expenditures that give higher utility.4 Denoting indirect utility in regime j 

by UT, we then have 

UT = max U(Q, Y) 

S.t. Y+PjQ=I+PjCj (11) 

for j= 1,2. Preferences are given by 

u(Q, y)=Q@(~)yl-hf) , 0</3(Z)<l. (12) 

The exponent will be modelled as a function of a number of factors, but we 
indicate at the outset that it depends on before-tax income, I. Demand in 
regime j is then 

and indirect utility is 

(13) 

To solve for the unconditional demand, Q*, we first equate UT and U f to 
find the value of B at which the individual is just indifferent between the 
regimes: 

‘Moflitt (1984) and Romer, Rosenthal and Munley (1987) use the representative individual 
approach in 2-error models. The former argues the need for this ‘structural’ approach and the 
latter offer interpretations in light of the agenda-setter model in Romer and Rosenthal (1979). 
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In J+P,c, 
i 1 I + P,c, a=-- 

In $ 
[ 1 2 

(15) 

Since c1 >c2 and P, > P, for high-tax-base districts we know that p>O. It is 
not constrained to be smaller than 1. However, recalling (IO), 82 l+-+p~O, 
i.e. the curves do not cross in the positive quadrant. In this case the in- 
formula constraint lies everywhere above the out-of-formula constraint and 
necessarily Q* = QT. 

For a==z 1 (so p>O), we substitute p into (12) and (14) and set these 
equations equal to each other to obtain the indifference curve that is tangent 
to both legs of the budget constraint. Any lower level of p implies less of a 
taste for education spending and a choice of the in-formula regime, while any 
greater level of fi implies a stronger taste for education spending and a 
choice of the out-of-formula regime, i.e. p(I) < fl++Uy > U;. Unconditional 
spending may then be written 

(16) 

Recalling the definition of QT in (13), we know Q* is single-valued (except 
when j?=p, which is immaterial in the stochastic model), QT < QT by p I=- 0, 

and Q* cannot take values between the bounds defined in (1~5).~ 

3.2. Stochastic specification 

The stochastic specification is an application of the canonical 2-error 
model. We first suppose that B is a linear function of a vector of 

‘This formulation of preferences follows that in Hausman and Wise (1980). It is reasonable to 
ask whether the CES formulation in Burtless and Hausman (1978) is not obviously superior. 
Since one goal here is to develop analytical results, it is essential to have the closed-form 
expression for p in (15). This does not exist for the CES model [see eq. (14) in Burtless and 
Hausman]. Also, we provide a version of the model at the end of the next section with flexibility 
in the price elasticity [this follows eq. (4.1) in Hausman and Wise], while eq. (12) already gives 
flexibility to the income elasticity. The model of expenditures that results is therefore different 
from the CES model but not overly restrictive. Furthermore, the stochastic structures of the two 
models are the same [compare (22) with eq. (16) in Burtless and Hausman], except that we 
impose no restrictions on the coeficient. 
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characteristics, X, and a normally distributed random variable, q, reflecting 
unobserved attributes. This is the ‘heterogeneity error’: 

fi(Z)=X’6’+16,+Yj=X6+r], rpN(O,0,2). (17) 

No restrictions are imposed a priori. The density for fi is then f(b) = 
N(X6,c~z) and the density (up to a set of measure zero) for Q* is 

ifQ*<B(z+PICl) 
Pl ’ 

if Q* > B(’ ’ ‘zCZ) 
p2 ’ 

otherwise, 

where 

Pl = 
XiqZ+P,c,) 
-p,- 

~ =a,(l+Plcl) 
1 

Pl ’ 

P2 = 

X6(1 + P,c,) d =~,U+Pzcz) 

P, ’ 2 p2 . 

(18) 

(19) 

For each observation there is an interval where the density is indentically 
zero for any parameter vector 6, g4. If observed spending falls in this zone, 
the likelihood of this observation, and therefore of the entire sample, is 
identically zero [see also Moffitt (1986)]. This motivates introducing the 
second error: 

Q=Q*+E, E-N(0,0,2). (20) 

Now, for any realization of 4 and any spending level in the zero-interval, 
there is a corresponding value of E which makes the likelihood of the 
observation non-zero. 

To find the density for Q, we find the joint density of Q and /I and then 
integrate over /?. On the half-plane given by fl CD, the two random variables 
can be written as the following afftne transformations of two independent 
standard normal random variables: 
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Table 1 

Parameters and densities. 

Parameter Distribution Definition _ 

PI = 
XG(I+P,c,) 

PI 

XG(lfP,C,) 
p2= p 

2 

a:=,; 

P2= 
I+P,c, __~ 6 “2 

PZ 0 a: 

Bz=XG+p,(u,la,)(Q-~,) 
o:=u,z(l -p:, 

X@Z+P,c,) 
Q= p 

1 
(21) 

It is well known [Bickel and Doksum (1977, Theorem 1.4.1)] that Q and fi 
are therefore bivariate normal with means, variances, and correlation deter- 
mined by the constants in (21); see table 1. Call this density fi(Q,p). On the 
half-plane /?>Q we have the analogous density, S2(Q,/I). The joint density of 
Q and /I is then 

(we make an arbitrary assignment on the line /I= p, which has measure zero 
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in R2). This is obviously a valid density since integrating over Q returns the 
density for fl. Integrating over /I yields the density for Q: 

To keep the notation from proliferating we redefine (or and cr2 from (19) to 
incorporate the term (T,. Throughout, (p indicates the standard normal 
density and @ its cumulative distribution function.6 

We can also explore a model that is slightly more general in its treatment 
of the price effect of state aid. Modify p1 = [X6(1+P,c,)]/P, into P~,~= 
[XS(Z+P,c,)]/P: (with similar changes to obtain ~~,~,pi,~,0~.~, and o:,~). 
The parameter y may be interpreted as a ‘discount factor’ or ‘perception 
error’ in the pure price effect. For example, the fact that the guaranteed base 
changes most years and is therefore transitory may cause people to 
misperceive or discount it. In any case, this adds flexibility to the model and 
we can test the restriction y = 1. 

3.3. Model and stochastic specification for low-tax-base districts and the 

pooled sample 

For low-tax-base districts the derivation of the density of Q is straight- 
forward. Demand is given by Q: in (13) and the stochastic structure follows 
from (17) and (20): 

. (23) 

This model is linear in the parameter vector 6 but the error term is 

6The density in (22) is closely related to the sum of eqs. (1.13) and (1.15) in Hausman and 
Wise (1980). Since their derivation applies to a convex constraint, there are two distinct terms 
corresponding to 8, giving the range of values at which the individual locates at the kink, and a 
third term in the likelihood function giving the likelihood and probability of locating at the 
kink. 
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Table 2 

In-formula _ Out-of-formula Total 

High-tax-base 66 82 148 
Low-tax-base 229 0 229 

Total 295 82 377 

heteroscedastic7 We consider the more general version of the price 
elasticity for this model as well. 

For the pooled dataset, the likelihood is given by (22) or (23) depending 
on whether the observation is high-tax-base or low-tax-base, respectively. 

4. Economic results 

Our dataset combines information from the 1980 Census summary tapes 
for Michigan school districts and the Michigan Department of Education 
1981-1982 Annual School District Financial Reports. Districts that could not 
clearly be matched between the two sources were eliminated. This yielded a 
sample of 377 school districts, of which 148 are high-tax-base and 229 are 
low-tax-base (see table 2).8 

Table 3, part (a) shows the gap in the fiscal capacity of high-tax-base and 
low-tax-base districts. The latter average 3,829 students per district with an 
average median housing value of $35,643, while the former districts average 
2,295 students with a median housing value of $39,426. This translates into a 
striking difference in the tax base per pupil: $39,011 for low-tax-base districts 
versus $75,805 for high-tax-base districts. District power equalization 
narrows this gap by raising the tax base for the former group to $50,550, but 
this still leaves the tax base 50 percent larger for the latter. The net result is 
that spending per pupil is on average $250 higher in the high-tax-base 
districts. In contrast, the aggregate information in table 3, part (b) reveals no 
clear pattern of demographic differences between the two sets of districts. 

Our maximum likelihood results for high-tax-base, low-tax-base, and all 
districts combined are in table 4, parts (a)<c).9 We used least squares 
estimates for the low-tax-base districts as starting values for the maximum 
likelihood estimation of (23) and (22), although for the latter these were poor 
and were subsequently modified. Convergence is obtained in all cases and 

‘One may estimate it with least squares using a correction detailed in Kmenta (1986, pp. 
285-286). 

‘The dataset is described more extensively in section A.2 of the appendix. 
%ix observations in our sample have /? larger than 1, and for these the likelihood is given by 

(23). Since so few observations are involved we do not treat them in any special manner. 
Moreover, at the solution, X6 and 0, are sufficiently smaller than 1 that pr 1+ @( .) = 1, which 
implies (22) reduces to (23) at these observations. Their contribution to the likelihood at the 
solution is therefore identical to what their contribution would be if we had used (22). 
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Table 3 

(a) Means of finance variables, 

In out High 

Criterion S>R/3 S=Rl3 

Number of districts 
295 

Spending 

Q 2,015 

(265) 

Number of students 
3,606 

(13,016) 

Median house value 
H 36,535 

(10,467) 

Tax base 
V 42,667 

(9,377) 

Median price 
P, =HIV* 0.72275 

(0.20707) 
P,=HIV 0.88487 

(0.26772) 

Median family income 
I 20,408 

(4,214) 

Formula aid 
s 662 

(276) 

Local revenue 
mV 1,237 

(332) 

Fixed aid 
F 116 

(159) 

Categorical 
R 

82 

2,421 

(443) 

1,864 

(2,942) 

39,262 
(14,217) 

92,267 
(31,335) 

0.77670 
(0.28124) 
0.46827 

(0.23151) 

19,228 

(5,954) 

(:6: 

2,292 

(440) 

106 

(251) 

v> 50.550 

148 

2,252 

(418) 

2,295 

(3,097) 

39,426 
(13,429) 

75,805 
(29,756) 

0.77995 
(0.26566) 
0.58063 

(0.26379) 

19,943 

(5,533) 

(ll57 

1,986 

(506) 

121 

(201) 

Low 

vj 50,550 

229 

2,007 

(265) 

3,829 
(14,672) 

35,643 
(9,657) 

39,011 

(7,060) 

0.70511 
(0.19104) 
0.93232 

(0.25822) 

20,286 

(4,012) 

767 

(212) 

1,130 

(266) 

110 

(169) 

All 

377 

2,103 

(354) 

3,227 
(11,612) 

37,128 
(11,423) 

53,455 
(26,459) 

0.73449 
(0.22597) 
0.79426 

(0.31178) 

20,152 

(4,665) 

523 

(360) 

1,466 

(564) 

114 

(182) 
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Table 3 (continued) 

(b) Means of characteristic variables. 

In out High Low All 

Criterion S>R/3 S=R/3 v > 50,550 vs 50,550 

Number of districts 
295 82 148 229 317 

0 WNOC 0.8088 0.8057 0.8054 0.8099 0.8081 
(0.0748) (0.0788) (0.0801) (0.0722) (0.0753) 

NONWT 0.0429 0.0386 0.0368 0.0453 0.0420 
(0.0890) (0.0710) (0.0621) (0.0975) (0.0854) 

OLD 0.1514 0.2066 0.1842 0.1499 0.1634 
(0.0505) (0.0652) (0.0636) (0.0509) (0.0586) 

POOR 0.0592 0.0658 0.0623 0.0596 0.0607 
(0.0269) (0.0353) (0.0325) (0.0266) (0.0290) 

SFAM 0.8253 0.6837 0.7222 0.8412 0.7945 
(0.1216) (0.1153) (0.1228) (0.1189) (0.1336) 

URB 0.2054 0.1930 0.2264 0.1874 0.2027 
(0.3709) (0.3804) (0.3997) (0.3540) (0.3725) 

PRlV 0.0604 0.0779 0.0740 0.0578 0.0642 
(0.0586) (0.0810) (0.0749) (0.0559) (0.0644) 

Notes: 0 WNOC: fraction of occupied housing occupied by owner; NONWT: fraction of 
individuals non-white; OLD: fraction over 65; POOR: fraction with income below $5,000; 
SFAM: number of students per family; (IRB: fraction of population in an urbanized areas (at 
least 50,000 people with 1,000 people per square mile); PRIV: children in private kindergarten, 
elementary, and high schools as fraction of children age 5-17. 

small changes in the starting values, a few parameters at a time, lead to 
identical solutions. However, the rate of convergence is very sensitive to the 
starting values, and large perturbations or poor scaling of the variables can 
cause the procedure to fail to converge. These problems seem to be common 
with this model [Mofhtt (1986, 1989)]. No non-converging routines showed 
likelihood values superior to those in the respective converging routines. 
Techniques discussed in Cramer (1986) proved helpful. 

The implications of the estimates are best illustrated through the compara- 
tive statics and simulations in the next section. Here we briefly consider 
questions of tit and specification. First, although we do not constrain /I in the 
estimation, we find that all of the (4)( 148) +(4)(229) +(4)(377)=3,016 pre- 
dicted values (one prediction for each observation in each of the 12 models) 
lie strictly between 0 and 1. Next, compare the predicted and actual values 
for /I? and Q. Using the estimates from the second column of table 4, part (a), 
we calculate the predicted value of /I for each observation in the sample and 
then use the correct price and income term (depending on whether the 
district is in-formula or out-of-formula) to predict Q. The means (and 



Table 4 

(a) Maximum likelihood estimates for high-tax-base districts (V > V'). 

Constant 

0 WNOC 

NONWT 

OLD 

POOR 

SFAM 

URB 

PRIV 

I 

Ul 

,JE 

loe likelihood 

0.0592” 
(0.0202) 
0.0050 

(0.0161) 
- 0.0252 

(0.0176) 
- 0.0884” 

(0.0253) 
0.0443 

(0.0559) 
-0.0192 

(0.0126) 
0.0051 

(0.0045) 
- 0.0654” 

(0.0167) 
0.0149” 

(0.0045) 
1.2049 

(0.0792) 
0.0083” 

(0.0030)b 
0.3090” 

(0.0493) 

- 95.768 

0.0682” 
(0.0207) 
0.0049 

(0.0167) 
- 0.0295 

(0.0184) 
-0.1013” 

(0.0259) 
0.0421 

(0.0585) 
-0.0179 

(0.0130) 
0.0068 

(0.0045) 
- 0.0650” 

(0.0176) 
0.0118” 

(0.0045) 

111 

0.0086” 
(0.0030)s 
0.3085” 

(0.0472) 

-99.133 _ 

0.0534” 
(0.0190) 

-0.0135 
(0.0158) 

- 0.0264 
(0.0187) 

-0.0681” 
(0.0210) 
0.0527 

(0.0574) 
_ 

0.0145” 
(0.0032) 
1.2066” 

(0.0811) 
0.0094” 

(0.0030)s 
0.3022” 

(0.0475) 

103.725 

0.0617” 
(0.0182) 
0.0058 

(0.0130) 

- 0.0847” 
(0.0249) 

-0.0219 
(0.0118) 
_ 

- 0.0667” 
(0.0170) 
0.0154” 

(0.0032) 
1.2274” 

(0.0800) 
0.0083” 

(0.0030)b 
0.3183” 

(0.0490) 

- 97.557 

N = 148. 
“Significant at the 5 percent level. 
‘Value represents an upper bound. (Asymptotic standard errors.) 

(b) Maximum likelihood estimates for low-tax-base districts (Vs V*) 

Constant 0.1549” 0.0953” 0.1564” 0.1786” 
(0.0145) (0.0152) (0.0148) 

0 WNOC -0.0393" -0.0632" -0.0568" 
(0.0110) (0.0114) (0.0105) 

NONWT 0.0139 -0.0147 0.0258" 
(0.0100) (0.0089) (0.0100) 

OLD 0.0394 -0.0210 0.0308 
(0.0207) (0.0184) (0.0205) 

POOR 0.1216" 0.0054 0.0825 
(0.04993 (0.0454) (0.0495) 

SFAM 0.0013 0.0080 _ 

(0.0063) (0.0063) 
URB 0.0128" 0.0018 _ 

(0.0030)b (0.0030)b 
PRIV -0.0069 0.0099 _ 

(0.0122) (0.0134) 
I -0.0224 0.0088" -0.0150” 

(0.0045) (0.0032) (0.0045) 
Y 0.1389" Cl1 0.2390" 

(0.0534) (0.0557) 

GO 0.0000 0.0000 0.0026 
(0.0045) (0.0032) (0.0045) 

6, 0.1949" 0.28 16” 0.2021” 
(0.0089) (0.0130) (0.0327) 

log likelihood 49.512 - 34.724 31.827 

N = 229. 
“Significant at the 5 percent level. 
‘Value represents an upper bound. (Asymptotic standard errors.) 

(0.0141) 
-0.0751” 

(0.0095) 

0.0114 
(0.0205) 

0.0004 
(0.0063) 
_ 

0.0111 
(0.0122) 

-0.0164” 
(0.0032) 
0.3312” 

(0.0522) 
0.0033 

(0.0045) 
0.203 1 a 

(0.0396) 

24.414 
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Table 4 (continued) 

(c) Maximum likelihood estimates for all districts. 

Constant 

0 WNOC 

NONWT 

OLD 

POOR 

SFA M 

URB 

PRIV 

I 

1? 

00 

6, 

log likelihood 

N = 377. 

0.0919” 
(0.0130) 

- 0.0393” 
(0.0100) 

-0.01 I7 
(0.0095) 

-0.0621” 
(0.0161) 

- 0.0068 
(0.0392) 
0.0072 

(0.0063) 
0.0048 

(0.0032) 
-0.0190 

(0.0110) 
0.0059 

(0.0032) 
0.9514” 

(0.0427) 
0.0093” 

(0.0030)b 
0.2175” 

(0.0247) 

- 167.306 

0.0882” 
(0.0126) 

-0.0385” 
(0.0100) 

-0.0123 
(0.0089) 

- 0.0598” 
(0.0158) 

- 0.0035 
(0.0385) 
0.0054 

(0.0063) 
0.0042 

(0.0030)~ 
-0.0197 

(0.0110) 
0.0074” 

(0.0032) 

Cl1 

0.0090” 
(0.0030)b 
0.2255” 

(0.0243) 

- 167.948 

0.0962” 
(0.0126) 

- 0.0429” 
(0.0095) 

- 0.0092 
(0.0089) 

- 0.0700” 
(0.0138) 
0.0127 

(0.0387) 
_ 

0.0900” 
(0.0114) 

- 0.0400” 
(0.0084) 
_ 

-0.0616” 
(0.0161) 
_ 

0.003 1 
(0.0063) 

_ 

_ 

0.0077” 
(0.0032) 
0.9734” 

(0.0420) 
0.0093” 

(O.QO30)b 
0.2209” 

(0.0249) 

-0.0197 
(0.0110) 
0.0086” 

(0.0032)” 
0.9650” 

(0.0421) 
0.0092” 

(0.0030)b 
0.22 17” 

(0.025 I) 

- 171.945 169.816 

“Significant at the 5 percent level. 
bValue represents an upper bound. (Asymptotic standard errors.) 

standard deviations) are 0.0625 (0.0107) for fl and 2,292 (685) for Q. The 
actual value of /3 for each observation follows from the actual value of Q and 
the correct price and income terms. The means (and standard deviations) are 
0.0641 (0.0166) for fl and 2,252 (418) for Q, which are quite similar. 

The models in columns 2-4 are nested within that in column 1. This uses 
all of the demographic variables and the price term PI discussed at the end 
of subsection 3.2. If individuals correctly perceive the guaranteed base, then 
y= 1. The point estimate is 1.2 and the likelihood ratio test rejects (at the 5 
percent level) the restriction to 1.” This implies that high-tax-base districts 
slightly under-perceive the in-formula price (and so over-perceive the guaran- 
teed base). l1 The model in the third column excludes three less commonly 
used variables, but we can reject these restrictions as well. The last model 

“‘The likelihood ratio statistic equals 6.73= 2( -95.768+99.133) while the critical value of 
x’(l) is 3.841. 

“For high-tax-base districts we have on average P, =0.780, so (P,)‘< P,. 
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excludes three of the insignificant variables from the first model, and this 
restriction we cannot reject.” 

We now briefly consider the estimates for the low-tax-base districts. Using 
the estimates from the second column of table 4, part (b), we find the average 
predicted values of p and Q are 0.0662 (0.0059) and 1,984 (294) respectively, 
while the average sample values are 0.0679 (0.0117) and 2,007 (265). Again 
the tit is quite good. However, the point estimate of y is now 0.139, it is 
significantly different from both zero and 1, and the restriction y= 1 
substantially affects the estimates of 6. We therefore use only the perception 
error model for low-tax-base districts and the column 1 estimates. This 
suggests that low-tax-base districts over-perceive the tax price (under- 
perceive the guaranteed base), which is consistent with the notion that the 
state aid formula is somewhat poorly understood. All other restrictions are 
also rejected by the likelihood ratio test, giving substantial support to the 
larger model. 

Last, consider the consistency of the result across the two datasets. 
Comparing the first column of each table, we note on the one hand that the 
only estimate that is statistically significant in both datasets with the 
opposite sign is the coefficient of 1. The implications for comparative statics 
becomes clear in the next section. On the other hand, of the eight 
independent variables, only the coefficients of POOR, URB, and PRIV have 
the same sign. The correlations among them are reasonably 10~‘~ and 
neither dataset is very small. The results may reflect differences in the tastes 
of individuals who choose to live in the different districts or the need to find 
more direct measures of tastes than we capture with these variables. 

Further comparisons are developed in the next section. 

5. Comparative statics and simulations 

We begin by focusing on the high-tax-base districts. Comparative statics in 
the 2-error model consists of measuring the change in expected expenditures 
with changes in an independent variable. The density with respect to which 
the expectations are taken is f(Q*), given in (18). Expected expenditures are 
then 

“The likelihood ratio statistic equals 3.578=2( -95.768+97.557) while the critical value of 
x2(3) is 7.815. 

13The three highest are cor(l, POOR) = -0.81, cor(l,OLD)= -0.66, and cor(NONWT, 
OWNOC) = -0.52. 
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Actually, this is the expression for expected expenditures if p > 0, which holds 
when we set variables to the high-tax-base means. If this condition fails, then 
the district must be in-formula. However, for any observation where p 2 0 we 
have pz 1, and given our estimatesI this implies @( .) z 1 and 4( .) ~0. 
Substituting these values in (24) shows ,+,%Xx6(1 +P,c,/P,) =pl, the in- 
formula mean. The following comparative statics are therefore generally 
valid. 

Fig. 3(a) illustrates the initial situation, b = $360 and I/* = $50,550. Setting 
other variables to their means, we determine full fiscal income and price in 
both regimes, which then determine fl. If p<fl, then the district is in-formula 
and ideal spending must be less than 1,134, while /j’> B implies ideal spending 
must be larger than 1,672. The density is then given by the lower distribution 
to the left of 1,134 and the upper distribution to the right of 1,672, which we 
indicate by shading. The density is zero between these values. We find 
pi=1,632, a,=231, ~~=2,404, ~,=341, andpLat=2,397. 

Fig. 3(b) considers the impact of setting b=$700. Formally, this directly 
changes cr, which then enters /?, pl, and or. The new density is given by the 
lower distribution to the left of 1,994 and the upper distribution to the right 
of 2,900. The upper distribution is unchanged. However, the mean of the 
lower distribution increases, and we now have pL1 = 1,653, c1 =234, and 
/+ = 1,723. 

Notice that expected expenditures fall despite the fact that the in-formula 
mean must increase with the outward shift in the in-formula constaint. As fig. 
3(b) shows, the drop occurs because our typical district is now more likely to 
shift from being a relatively high-spending out-of-formula district to being in- 
formula, and this shift more than offsets the upward shift in pr. 

Fig. 3(c) considers changing the guaranteed base to $64,000. The story is 
the same as that just described for the front end allowance, and we have 

pi = 2,057, or = 291, and pLa* = 2,076. 
Now consider (24) somewhat more generally. The derivatives with b and 

V* are 

14Using mean high-tax-base values for X and estimates from table 4, part (a), column 2, we 
have X6 = 0.062 and CT,, = 0.009. 
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~;;=x&+$( .) 
[ 

PPIB o,+------- -~ ~,(~+plcl)ln(pllp2) 1 
’ (25) 

(26) 

Since p >O, the term in brackets in (25) is unambiguously positive and the 
term in (26) is positive for fl not too small. The derivatives are therefore 
negative when these terms dominate, as in the previous examples. Alternati- 
vely, for fl relatively large, @( .)z 1 and 4( .)%O, and (24) reduces to 
pQ.=X6(1+ P,c,)/P, =pl. The derivatives in (25) and (26) also reduce to the 
respective derivatives of pr, and are positive. For fl relatively small, @( .) ~0 
and b( .)%O and (24) becomes X6(1+ P,c,)/P, =p2, the out-of-formula 
mean. The derivatives now reduce to the respective derivatives of p2, which 
are zero. 

The basic intuition is that if the in-formula constraint is relatively high and 
flat, then the in-formula regime is relatively attractive. This occurs if b and 
V* are large, and we have from (15) that b + CC and V* 7 V each imply 
fl+ CC. Therefore @( .)z 1 and the district is in-formula, as expected. If the 
in-formula constraint is relatively low and steep, then the in-formula regime 
is relatively unattractive. This occurs if b is small and V* is moderately 
small, so /II is small and @( .) ~0. If the in-formula constraint is steep and 
high, as occurs when V * is very small, then the outcome is not as clear. 
However, V* JO implies fl+ 1, so @( . ) z 1. The increase in full fiscal income 
eventually dominates the increase in the slope and the district is in-formula. 

These general properties are illustrated in fig. 4. In fig. 4(a), the top portion 
shows pQ* as the front end allowance changes, at three values of the base. 
The bottom shows @( .). fl is monotonic and increasing in b and relatively 
small for small values of b (provided V*is not too small). @ therefore begins 
at zero and expected spending begins at the out-of-formula mean, $2,404. As 
b increases, the district moves in-formula, causing spending to fall [as in fig. 
3(b)]. Once the district is in-formula, spending equals the in-formula mean, 
and this increases slowly in b. 

Fig. 4(b) shows pLe. as the guaranteed base changes, at three values of the 
front end allowance. Very small values of V* imply the district is in-formula 
and spending equals the in-formula mean. As V* rises, spending increases 
both because the district moves out-of-formula and because the in-formula 
mean rises. Further increases induce the district to move back in-formula, 
which tends to cause spending to fall [as in fig. 3(c)]. Once the district is 
almost surely in-formula, nQ*=pl, which increase as V* approaches V. These 
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shifts are especially clear for the case b= 700, where the in-formula prob- 
ability never reaches 0 and expected spending falls as this probability rises. 

We complete the comparative statics by considering income and price 
elasticities. These can be based on at least three measures of expenditures. 
The first and truly ‘global’ measure is pLa*. For high-tax-base districts, the 
derivatives are 

+$%(.)+$$l-@(.)I 
1 2 

For low-tax-base districts, p”al = ~1~ =X6(1 + P Ic,)/P, so the derivatives are 
straightforward. The elasticities reported in the first two rows of table 5 use 
the estimates in column 2 of table 4, part (a), and the means of the 
independent variables. 

‘Local’ measures of expenditures are pr,,=X6(1+ Plcl)/P: and p2 = 
X6(1 + P,c2)P2. For purposes of comparison we report the former elasticity 
for both high-tax-base and low-tax-base districts even though the typical 
high-tax-base district is out-of-formula (so p2 is more appropriate). The 
elasticities reported in rows 3-6 use the estimates in column 1 of table 4, 
part (a). 

Last, elasticities (biased for high-tax-base districts) can be obtained using a 
log-log model and least squares: 

In QT =crInX’+cr, In(I+Pjcj)+a,InPj+error. (29) 

However, this model is parameterized differently from the ones above. This is 
clear from eqs. (13) and (17) if we neglect the second (a) error and take logs: 

In Qf = In (X’6’ + 16, + v) + In (I + Pjcj) - 7 In Pj. (30) 

The results are presented in table 5. The diversity of the estimates suggests 
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Table 5 

Income and price elasticities. 

Elasticity High-tax-base Low-tax-base 

Eq. (28) 

1.252 1.439 !%!+_‘- 
X6 IfP,C, 

0.048 - PIG, - 
1+p,c, 

1.466 I’+_ 
I 

X6 1+p,c, 
0.499 

1.184 ~ P,CI - Y - 
1+p,c, 

-0.120 

OLS” *I 0.446 c(, 0.362 

x2 -0.322 a2 -0.175 

“For low-tax-base districts, OLS regression of (log) per-pupil spending on 
I + P, c,, P,, 0 WNOC, NON WT, OLD, POOR. For high-tax-base districts, the 
regression uses the price and income term corresponding to whether the district is 
in-formula or out-of-formula. 

that conceptual differences among them are important, as well as behavioral 
differences between the high-tax-base and low-tax-base districts. The clearest 
evidence of the conceptual differences comes from comparing the results for 
the low-tax-base districts. In the first row, the income elasticity reflects the 
impact on 6 of the constraint y= 1, and the price elasticity reflects the Cobb- 
Douglas structure. In the third and fourth rows, the income elasticity 
changes because the estimate of 6 changes substantially, and the price 
elasticity now depends on an estimated parameter and falls into the familiar 
range. The OLS coefficients are unbiased and in fact similar to those in lines 
3 and 4, but the two models are structurally quite different. 

For high-tax-base districts, the price elasticity in the second row is 
positive, reflecting the fact that in the range of the estimation, increasing P, 
causes the districts to move out-of-formula. The income elasticity is positive, 
in contrast to the elasticity with the front end allowance, which would be 
negative since increasing b causes districts to move in-formula. Evidently, the 
dual role of I gives it a substantially different role from b.15 The local 
income elasticity is similar and the price elasticity now recovers the expected 

‘5Elasticities based on the column 1 estimates are substantially the same. 
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negative sign. The contrast in lines 3 and 4 with the estimates for the 
low-tax-base districts is somewhat stiking and reflects the differences in the 
estimates of 6. The (biased) estimates for the high-tax-base districts are 
presented in the last two 1ines.16 

This mode1 can be used to derive a tremendous amount of information 
about policy changes and therefore to explore policy goals. We conclude by 
considering two interesting questions.17 First, suppose that the state wants 
to minimize the variance in spending across its 377 districts by adjusting b 
and V*, regardless of the cost (measured by the formula aid, S) of the 
resulting program. Given any proposed front end allowance and tax base, we 
determine the desired spending [using (14)] for each of the 377 districts and 
then calculate the mean and standard error. The initial values are $2,124 
with a standard error of $570, an aggregate cost of $728 per pupil, and 73 
districts predicted out-of-formula (the actual number is 82). We then seek the 
minimum standard error as b varies from $10 to $1,000 (in increments of 10) 
and V* from $40,000 to $100,000 (in increments of 1,000). The solution is 
b=$990 and V* =$67,000, and at these values average spending is $2,576 
with standard error $509, aggregate cost $1,676, and 10 districts 
out-of-formula. 

This would obviously require a dramatic reordering of state spending 
priorities. Suppose instead we impose the constraint that the cost of the 
program can increase by no more than $100. The new solution is b=$30 and 
I/* = $60,000, and at these values average spending is $2,400 with standard 
error $521, aggregate cost $817, and 83 districts out-of-formula. This suggests 
that raising the tax base elicits a strong response from all low-tax-base 
districts. In comparison with the previous result, we see that a similar level 
and distribution of spending is bought at a substantially lower cost. 

6. Conclusion 

In summary, this research develops 
spending that incorporates the effects 

an econometric mode1 of school 
of a power equalization formula 

modified to include front end grants and exclude recapture. We derive the 
individual budget constraint in these circumstances, carefully deriving the tax 

16Recent work [MaCurdy, Green and Paarsch (1988)] demonstrates that maximum likelihood 
estimation of the piecewise linear 2-error model with convex constraints implicitly constrains the 
parameters to obey the structure of the theoretical model. Specifically, it implicitly constrains the 
probability of locating at a kink point to be non-negative, and this surprisingly constrains the 
parameters so the Slutsky effect is correct. Their analysis does not apply to the non-convex 
constraint considered in this paper, and in fact the problem they identify does not occur with 
only one non-convex kink. The likelihood function (22) by construction places non-negative 
probability of falling in either regime. This does not mean that other problems may not be 
present, though. 

“For these simulations we use the estimates for the pooled dataset in table 4, part (c), 
column 2. 
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price and full fiscal income from the community budget constraint, the 
individual tax constraint, and the state aid formula. This makes apparent the 
dependence of the structure of the individual budget constraint on the 
structure of the formula. 

We then develop a stochastic specification and obtain maximum likelihood 
estimates for a number of models. A nice feature of the dataset we gather is 
that there is a subsample for which simple methods are appropriate and a 
subsample for which the fully developed 2-error model is required. The 
comparison illuminates some of the strengths and weaknesses of the esti- 
mates we obtain. 

The comparative statics are developed to reveal the structure of this model 
and the impact of the aid formula. Changes in expected expenditures depend 
on changes in the density used in the expectation, so we begin by illustrating 
this for discrete changes. This explains why the derivatives change sign. 
Expected spending falls in some ranges as the tax base or front end 
allowance increases because the negative impact of high-spending out-of- 
formula districts moving in-formula overwhelms the positive impact on the 
in-formula mean. This lowers high-tax-base spending and narrows the 
variance of school district spending, which seems to be the intended 
qualitative effect of the non-linearity in the aid formula. 

The simulations then consider the quantitative effect more precisely. They 
suggest that leaving some districts out-of-formula may be the most effective 
way to narrow the variance, and the same variance may be bought at 
radically different costs. Any number of policy goals can be investigated in 
this way. 

Appendix 

A.Z. Derivation of the aid formula [eq. (6)] 

According to Michigan Department of Education (1986), the membership 
aid formula in 1981-1982 is: ‘$50.55 x operating mills levied, plus $360, minus 
(S.E.V. per pupil x operating mills levied)‘. In the notation of the paper, this 
is equivalent to 

V*m+b- Vrn=b+m(V*- V). (31) 

Eq. (31) also appears in Phelps and Addonizio (1983, p. 13). They call b the 
‘front end allowance’ and V* the ‘guaranteed base’, and we keep these 
definitions in the paper. They comment that by 1981 all local tax effort was 
reimbursable (p. 11) and that the Michigan formula has no recapture 
provision (p. 7). Therefore, the actual formula is not given by (31) but rather 

by 
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max(b+m(V*-V),O). (32) 

They define a district as ‘in-formula’ if it receives aid according to (32), and 
‘out-of-formula’ if it does not. 

This is not quite the entire story, although early versions of this work used 
(32) and the results are substantially the same. In 198&1981 the legislature 
adopted a restriction, ‘described as categorical recapture, [that] deducts from 
the categorical aid of out-of-formula districts an amount equal to the 
district’s local revenue which exceeds the DPE guarantee... . The 1981-1982 
act increased the recapture percentage to 66%. As a practical matter we treat 
these ‘categorical grants’ symmetrically with the grants from (32). Denote the 
ex ante (i.e. before the choice of m) categorical grant by R. Then the aid 
formula has the following structure: 

Low-tax-base districts receive aid equal to b + m( V* - V) > 0. 
High-tax-base districts with m< b/( V- V*) receive aid equal to 

b+m(V*-V)>O. 
High-tax-base districts with mzb/(V- V*) deduct the excess of local 

revenue over the guarantee, i.e. ml/- (b + mV*) = - [b + m( I/* - V)] 2 0, but 
the deduction cannot exceed 2R/3. This is equivalent to receiving aid equal 
to the larger of b + m( V* - V) 50 and - 2R/3. 

Since R > 0, the entire formula is summarized by 

max(b + m( V* - V), -2R/3). (33) 

Since we treat R symmetrically we add it to the formula, giving 

S(m) = max (R + b + m( V* - V), R/3). (34) 

This is eq. (6) in the text of the paper. 
We redefine ‘in-formula’ and ‘out-of-formula’ in terms of this rule. Thus, a 

district is in-formula if it receives more than the minimum R/3 (rather than 
0) and out-of-formula otherwise. 

A.2. Description of the dataset 

The dataset combines information from the annual school financial reports 
prepared by the state of Michigan and the 1980 U.S. Census Summary Tape 
Files STFlF and STF3F for Michigan school districts. The census codes for 
the districts differ from the Michigan codes, so two files were created, one 
with Michigan codes and district names and another with Census codes and 
district names. The tiles were then merged accordingly to district names, then 
merged to the Michigan data by Michigan codes and to the Census data by 
Census codes. The initial merging was done by hand to ensure the correct 
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districts were being matched and districts were not excluded because of 
different abbreviation and punctuation conventions in the datasets. The data 
were further merged to a Michigan dataset containing ‘yes’ and ‘no’ votes on 
school spending proposals, but we do not use that data in this paper. 

The Michigan portion of the dataset provides Total Operating Millage (m), 
District State Equalized Valuation (V), State Aid Members (number of 
students), Total Revenue From State Sources (S(m), D.P. 669), Revenue 
From State Sources - Restricted Grants (R, D.P. 649), and Total Current 
Operating Expenditures (Q, D.P. 2999). The census provides Median Family 
Income (I) and Median Owner Occupied Housing Value (H). From these we 
can determine whether a district is in-formula or out-of-formula; derive F as 
residual; and derive Pi, ci, P,, and c2. The Census also provides all of the 
demographic information in the X vector. 

We also verified that the theoretical relations described above are reflected 
fairly accurately in the dataset. In particular, Unrestricted State School Aid 
(D.P. 0550) closely fits (33) and Total Revenue from State Sources (D.P. 
0669) closely fits (34). 
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