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Abstract 
 
Generic types are a new feature in the Java programming language, and allow the 
programmer to write a class or method that has a type parameter. Type parameters allow 
the program to create different instances of the parameterized class or method replacing 
the type parameter with a specific type such as String or Integer. This feature is similar to 
C++ templates, but differs in implementation. Generic types in Java are implemented 
using type erasure, which works by removing type information from variables at compile 
time and automatically generating code to cast them to the correct type. This contrasts 
with C++ templates, which create a specialized copy for each instance of a type 
parameter. 
 
Type erasure creates only one implementation for each generic class or method, 
minimizing code duplication. However, erasure may not produce the most efficient 
program. By producing an implementation specific to each instance type, the compiler 
has an opportunity to optimize the program according to that type. This process is called 
specialization. 
 
We propose a transformation of program source code that allows the Java compiler to 
create implementations of generic classes and methods specialized for the types used in 
the program. Such a transformation is beneficial in some cases, but if applied too 
aggressively, can decrease runtime efficiency. We explore how this specialization affects 
the runtime efficiency of various programs. We demonstrate that for a variety of 
programs that use generic methods and classes specializing generic types results in 
substantially more efficient programs. 



1 Introduction to Generic Types 
 
Generic types are a feature that is present in many modern programming languages. 
Using generic types, a programmer can write a data structure or a function that can work 
for different data types. The type in such data structures or functions is specified as a type 
parameter, i.e. it is denoted by a variable. When using a parameterized entity, the 
programmer specifies a concrete type for the type parameter. This process is called type 
instantiation. Type safety is still maintained: a linked list parameterized to contain 
integers will give a compiler error if a string is added to the list. This makes code more 
reusable and increases type safety. There are two basic ways that generic types can be 
implemented. One is a template approach, and is implemented in C++. The other is type 
erasure which is primarily geared towards user convenience. Java uses the type erasure 
approach.  
 
 
1.1 Implementations of Generic Types 
 
In the template approach, the compiler produces a separate copy of the entire data 
structure or function for each instantiation used in the program. Type erasure works quite 
differently. There are no duplicate copies of code that are specific to different types. At 
compilation time, the compiler removes all specific type information, replacing the type 
with the most general supertype, and inserts appropriate type casts wherever needed. 
 
Erasing the type information at compile time means that further type specific program 
optimizations are unavailable. This can decrease the time efficiency of programs, 
especially those with complicated type hierarchies. Templates do not present this 
problem. However, templates create multiple copies of the code, which is less memory 
efficient and can be confusing to the programmer. 
 
 
2 Java Compilation Model 
 
Java is unlike most other compiled languages in that it compiles a program to a platform 
independent bytecode instead of native code. This part of the compilation is called static 
compilation and allows Java to offer a compromise between speed, runtime safety, and 
platform independence. Originally, the JVM (Java virtual machine) interpreted the 
bytecode, but since this was slow, JIT (just in time) compilers were added to the JVM to 
compile the bytecode into native code as it is run. However, JIT compilers can create an 
additional overhead because compiling and optimizing code at run time adds to the 
running time of the program. To address this problem, Sun developed the Java HotSpot™ 
VM which decreased this overhead by profiling the program being run to selectively 
compile only "hot spots", or frequently called methods, into native code. This way time is 
not needlessly spent performing expensive compilation and optimization on code that 
does not significantly affect the runtime of a program. Compiling the bytecode to native 
code as the program is running is called dynamic compilation. 
 



 
2.1 Common Optimizations 
 
Compiler optimizations relevant to our research include constant propagation and 
folding, inlining, and devirtualization [3]. Constant propagation is when the compiler 
replaces any instance of a constant in a program with its value. Constant folding is when 
the compiler evaluates expressions in the code that can be evaluated at compile time. 
Inlining is an optimization where a method call is replaced by the code of the method. 
After inlining a method, the code can be further optimized. This could potentially allow 
an entire method call to be replaced by a constant value which may open up even more 
opportunities for constant folding.  
 
Another optimization is called devirtualization. A virtual function call is when a function 
must be looked up in the class hierarchy before it can be called. The name comes from 
the virtual modifier in C++ which can be thought of as the opposite of the final modifier 
in Java. Non-virtual (in particular, final) functions are those defined only in one class 
along the class hierarchy, and therefore their address is known before the program runs. 
Devirtualization eliminates an expensive function lookup when the address of a function 
can be determined at compile time. 
 
The static compiler transforms Java source into bytecode and does relatively few 
optimizations. Such optimizations include constant propagation and folding [2]. Most of 
the optimization is performed by the dynamic compiler as it compiles the bytecode into 
native code. The reasons for that are explained in Section 2.3. Runtime, or dynamic, 
optimizations would include more complex optimizations such as devirtualization and 
method inlining, possibly followed by constant propogation and folding, and similar 
optimizations. As mentioned before, dynamic optimizations are not performed 
universally, but selectively. The JVM profiles the running program to identify "hot spots" 
that would benefit the most from optimization. 
 
 
2.2 JVM Client and Server Modes 
 
There are two modes for running the JVM, a client and server mode. The client mode has 
a simpler and faster compiler. It is intended to start a program running as quickly as 
possible without performing heavy optimization. The client mode is also more memory 
efficient. The server mode compiler focuses more on optimizing the runtime of a program 
than on faster compilation speed and startup time [4]. 
 
 
2.3 Dynamic Loading 
 
In Java, it is possible to load classes at runtime. This is known as dynamic loading, and is 
the main reason for delaying optimizations until runtime. Inlining cannot be performed 
by the static compiler because a class may be reloaded at runtime, replacing the code 
running in the JVM with new code. Any code inlined by the static compiler could 



become invalid. Similarly, a method call cannot be devirtualized by the static compiler 
because it may not know all of the types that are used.  
 
3 Java Type System 
 
Like most object-oriented languages, Java supports type hierarchies. Classes can inherit 
fields and methods from other classes. There are two kinds of types in Java: primitive 
types, such as integers and booleans (denoted as int and bool, respectively), and object 
types. Object types include some predefined types, for instance strings and arrays. 
Additionally a user can define their own object types. A class may contain fields (i.e. 
variables) and methods. To declare a method, a programmer specifies the method's name, 
the number and types of its parameters, its return type, and, finally, the method’s code, 
i.e. the actions performed by the method. All of the above, except for the method's code, 
is called the method's descriptor. 
 
 
3.1 Class Hierarchy 
 
All object types are a part of Java class hierarchy: classes can inherit from each other. By 
default, a class inherits from the predefined class Object. A class can inherit directly only 
from one class, but if a class A inherits from a class B, it also indirectly (transitively) 
inherits from all classes that B directly and indirectly inherits from, including the Object 
class. When a class A inherits from a class B, it automatically includes all of B's methods 
(those declared directly in B and those that B in turn inherits through inheritance). 
However, A can also declare additional methods and overwrite its inherited methods. A 
method in a superclass is overwritten by a method in its subclass if the two methods have 
the same name and argument types, i.e. they have the same descriptor. If a method is 
overwritten in a subclass, a call to this method on an object of this subclass will call the 
method of the subclass, not the method of the superclass.  However, if a subclass does not 
overwrite a method, the method with this descriptor defined in the closest superclass will 
be called. The program will compile only if all methods called on an object are defined in 
the object's class or in one of its superclasses.  
 
 
3.1 Interfaces 
 
In addition to classes Java type hierarchy includes interfaces. An interface can be seen as 
a class specification, but not an implementation. An interface lists method descriptors, 
but not the code, of all methods required by this interface. A class can implement an 
interface, in which case the class must define all methods declared in the interface. A 
class can implement several interfaces. A common Java interface that we use in our test 
programs is Comparable. This interface requires that the class provides a method  
 

int compareTo(Object o) {...} 
 



This method allows the object to be compared to other objects of the same type. The 
result of the method is negative, positive, or 0, signifying that the given object is, 
respectively, less than, greater than, or equal to the object passed as a parameter. Generic 
methods that sort data or otherwise require that data items can be compared to each other 
are usually defined for Comparable objects.  
 
Arguments to type parameters can be any object type (i.e. one that is part of the class 
hierarchy). This means that primitive types cannot be used as a type argument to a 
generic type or method as they are not objects. Therefore Java provides object versions of 
the primitive types, simple objects with a field that contains the value of the primitive 
type. For instance, Integer is an object that contains a single integer value. Since Integer 
objects can be compared to each other, the class Integer implements the Comparable 
interface.  
 
3.2 Type casting 
 
Often objects are passed to a method or returned from a method as variables of their 
superclass or an interface they implement, not as the most specific class of the object. For 
instance, one can pass two Integers to a minimum method that works on Comparable 
objects: 
 

Comparable min (Comparable a, Comparable b) { 
 if (a.compareTo(b) < 0) return a; 
 else return b; 
} 

 
 
Note that the minimum is returned as a Comparable, not as an Integer. In order for it to 
be used as an Integer (for instance, be assigned to a variable of type Integer), it has to 
have a type cast applied to it. This is done by adding the type name in parentheses before 
the value:  
 

Integer i = (Integer) min(n,m); 
 
 
4 Generic types in Java 
 
Generic types were added to Java in release 1.5 (also known as Java 5). Many 
programming languages provide the convenience of generic types, and their absence in 
Java was viewed as a significant deficiency. There has been a variety of proposals for 
extending Java with generic types. When adding generics to Java, it was highly desirable   
to make such an extension compatible with the existing JVM and the existing 
specification of Java bytecode so that the Java legacy code was not affected by the new 
addition. Type erasure is such an implementation. The static compiler checks the type-
safety of the generic code, inserts all necessary type casts, and outputs the bytecode 
which has no information about specific type parameters used to instantiate generic 



classes or methods. This means that no instance-specific type information can be used by 
generic code at run-time. 
 
 
4.1 Generic Classes 
 
When writing a generic, i.e. parameterized class, the class declaration contains the type 
parameter in angle brackets. The methods in a parameterized class then can use that 
parameter as a return type or use it for its parameter types. The methods now view that 
type as they would any concrete type because it is declared in the class declaration. For 
instance, consider the following class declaration: 
 

public class LinkedList<K> { 
 ... 
 public K getFront() { ... } 
 ... 
 public void setFront(K k1) { ... } 
 ... 
} 

 
Where <K> is the type parameter passed to the class upon instantiation. Notice that K is 
then used as the return type for one method and a parameter type in another. 
 
When writing parameterized code, it is also possible to restrict the range of acceptable 
types by introducing an upper bound. An upper bound (a class or an interface) can be set 
so that only subtypes of that bound can be passed as the type parameter. The keyword 
extends is used to set the upper bound. 
 

public class LinkedList<K extends Comparable> { ... } 
 
Any class that implements the interface Comparable will be accepted by this 
implementation of LinkedList. 
 
Whenever an instance of a parameterized object is created, the type parameter must be 
specified. For instance: 
 

LinkedList<String> _list = new LinkedList<String>(); 
 
The above code creates a LinkedList which can only contain String objects. The compiler 
checks that the actual type (in this case, String) is a subtype of the bound of the type 
parameter. If it is not, the code will not compile. 
 
4.2 Generic Methods 
 
Methods can be parameterized even if the class they are in isn't. In these cases, the 
method descriptors just have to contain the type parameter in angle brackets  much like 



the parameterized classes do. 
 

public <K> K someMethod() { ... } 
 
For example, consider a generic method min() that determines a minimum of two objects. 
As we mentioned in section 3.1, Comparable is an interface requiring a class to have a 
method compareTo() that determines the order of objects of that class. Any time the 
method min() is called, it has to be on a class that implements Comparable. Note that, 
unlike the example in Section 3.1, the method below is written using generic types.  
 

public <K extends Comparable> K min(K k1, K k2) { 
 if (k1.compareTo(k2) > 0) { 
  return k2; 
 } else { return k1;} 
} 

 
 
4.3 Implementation 
 
Type erasure works by replacing the type parameter by its bound at compile time. If no 
bound is specified, the compiler assumes that the bound is Object. Specifying Object as 
the upper bound and not specifying any bound are actually the same thing. Here is a very 
simple example of generic code: 
 

public class GenericMethod{ 
 public static <T> T aMethod(T anObject){ 
  return anObject; 
 } 
 
 public static void main(String[] args){ 
  String greeting = "Hi"; 
  String reply = aMethod(greeting); 
 } 
} 

 
The compiler would transform this into something equivalent to the following code: 
 

public class GenericMethod{ 
 public static Object aMethod(Object anObject){ 
  return anObject; 
 } 
 
 public static void main(String[] args){ 
  String greeting = "Hi"; 
  String reply = (String)aMethod(greeting); 
 } 
} 



 
Notice the generic information is gone, casts have been inserted, and the return value of 
the method now has a type cast to String. 
 
There are features of generic types in Java that we are not presenting at this point such as 
wildcards and bounded wildcards. Optimizations related to these features will be the 
subject of further research. 
 
 
5 A Case for Specialization 
 
While type erasure presents a simple implementation of generic types, it has several 
inefficiency problems. By removing the type information, type erasure removes the 
potential for some optimizations. A method call cannot be inlined or devirtualized unless 
the type of the object that it is called on is known exactly. Additionally, type casts may 
have to be added when calling methods or returning values because the type information 
cannot be checked by the static compiler. 
 
Replacing the parameter bound with a more specific bound opens more possibilities for 
optimization. This can be done as a transformation of the source code. For example, 
consider the following modified version of GenericMethod: 
 

public class GenericMethod{ 
 public static <T> T aMethod(T anObject) { 
  ((Comparable)anObject).compareTo(anObject); 
  anObject.toString(); 
  return anObject; 
 } 
 
 public static void main(String[] args){ 
  String greeting = "Hi"; 
  String reply = aMethod(greeting); 
 } 
} 
 

Now we will transform GenericMethod into SpecificMethod by changing the method 
declaration for aMethod() to: 
 

public static <T extends String> T aMethod(T anObject) 
 
In SpecificMethod, the compiler will erase the return type and argument type of aMethod 
to String. At static compilation time it is known that String is comparable, so the static 
compiler will not actually have to add a cast of anObject to Comparable. The return type 
is also String, so it will not need a cast to String to be assigned to reply.  
 
Below we show the bytecode that the static compiler generated for aMethod() in both 



classes and examine the differences.  
 
The checkcast instruction checks that an object belongs to a given type. invokeinterface 
dynamically finds the method required by the interface (in this case, the method 
compareTo()) in the object’s class, and invokevirtual dynamically finds the right method 
along the object’s class hierarchy. The other bytecode instructions are irrelevant to the 
example.  
 
GenericMethod.aMethod(): 

 0 aload_0 
 1 checkcast #2 <java/lang/Comparable> 
 4 aload_0 
 5 invokeinterface #3 <java/lang/Comparable.compareTo> count 2 
10 pop 
11 aload_0 
12 invokevirtual #4 <java/lang/Object.toString> 
15 pop 
16 aload_0 

 
Specific.aMethod(): 

 0 aload_0 
 1 aload_0 
 2 invokeinterface #2 <java/lang/Comparable.compareTo> count 2 
 7 pop 
 8 aload_0 
 9 invokevirtual #3 <java/lang/String.toString> 
12 pop 
13 aload_0 
14 areturn 

 
GenericMethod.main(): 

 0 ldc #4 <Hi> 
 2 astore_1 
 3 aload_1 
 4 invokestatic #5 <Generic.aMethod> 
 7 checkcast #6 <java/lang/String> 
10 astore_2 
11 return 

 
SpecificMethod.main(): 

0 ldc #3 <Hi> 
2 astore_1 
3 aload_1 
4 invokestatic #4 <Specific.aMethod> 
7 astore_2 
8 return 

 



As you can see, there are extra checkcast instructions present in the bytecode of 
GenericMethod. Checking casts, like method look ups, can be expensive to perform. 
Interestingly, despite removing the cast to Comparable, the static compiler did not use 
invokevirtual on the compareTo() method call. However, it is possible that this call is 
further optimized (inlined or devirtualized) at run time since the method descriptor for 
aMethod() in SpecificMethod specifies that the method parameter as a String. However, 
calling a method on an object directly makes the type more explicit. Calling a final 
method on a final object is a perfect candidate for method inlining or devirtualization 
 
 
6 Results 
 
6.1 Testing Methodology 
 
Our testing consisted of creating a test program that would highlight one aspect of 
generic programming, and then modify the bounds used for the type parameter. We then 
recorded the runtime of the program in several ways. We placed a print statement inside 
the program that would only time a specific section of the code. We also timed the 
execution of the JVM with the Unix time command, which includes the system and user 
CPU time, total elapsed time, and other statistics. Each program was run in both the client 
and server mode of the JVM 20 times each. Programs that used random numbers were 
seeded externally so that different versions of the same program could be run with the 
same series of seed numbers. All tests were ran on the same machine running Fedora 
Core with version 1.5.0_04 of both the Java HotSpot VM and the javac compiler. 
 
We found in many of our test examples that the creation of a large number of objects 
sometimes took more time than the runtime of the actual testing code. To avoid creating 
too many objects, we loop the code many times on the same data. We refer to the 
execution time of this loop as the loop time. 
 
 
6.2 Bubble Sort Example 
 
For our first example, we chose to use bubble sort. We did so because it is a well known 
and inefficient sorting algorithm. To increase the number of comparison even further, we 
sort the same array forward and backward several times. Since the worst case of bubble 
sort is an array sorted in reverse order, this maximizes the number of comparisons. This 
allowed us to make a large number of comparisons on a relatively small amount of data. 
We focused on generic methods first by implementing it as a generic method that 
accepted an array of a generic type. 
 
We created several variations to test different bounds for String and Integer. We chose 
<T> (Object), <T extends Comparable<T>> (Comparable), and <T extends Integer> 
(Integer) as bounds for our Integer test, and similar bounds for String. Also, in our String 
test we created fewer String objects and ran the loop fewer times to keep the runtime 



from getting too long or the memory usage too high. The code for the Object bounded 
version of our Integer test is as follows: 
 

public class TestBubbleSortObjectBound { 
 public static <T> void sortfront(T [] _list) { 
  T temp; 
  T current; 
  T next; 
  boolean whilecondition = true; 
  boolean repeatcondition = false; 
  while (whilecondition) { 
   for (int i = 1; i < _list.length; i++) { 
    current = _list[i - 1]; 
    next = _list[i]; 
    if (((Comparable)current).compareTo(next) > 0) { 
     repeatcondition = true; 
     temp = next; 
     _list[i] = current; 
     _list[i - 1] = temp; 
    } 
   } 
   if (!repeatcondition) { 
    whilecondition = false; 
   } else { 
    repeatcondition = false; 
   } 
  } 
 } 
 
 public static <T> void sortback(T [] _list) { 
  ... same as sortfront, but works in reverse 
 } 
 
 public static void main(String[] args) { 
  int n = 10000; 
  Integer[] array = new Integer[n]; 
  for (int i = 0; i < n; i++) { 
   array[i] = new Integer(n - i); 
  } 
   
  long time1 = System.currentTimeMillis(); 
 
  for(int i = 0; i < 2; i++){ 
   sortfront(array); 
   sortback(array); 
  } 
 
  long time2 = System.currentTimeMillis(); 
  System.out.printlntime2 - time1); 
 } 
} 



Our test results were as follows: 
 

Bubble Sort Integer Client Server 
<T extends Integer> 7536 - 7611 - 7835 3130 - 3171 - 3452 
<Comparable<T>> 10006 - 10053 - 10447 6160 - 7061 - 7504 

<T> 10549 - 10645 - 11028 8564 - 8884 - 9050 
Loop run times in milliseconds. (minimum – median – maximum) 

 
Bubble Sort Integer Client Server 
<T extends Integer> 7.56 - 7.65 - 7.86 3.21 - 3.26 - 3.52 
<Comparable<T>> 10.03 - 10.08 - 10.47 6.25 - 7.13 - 7.59 

<T> 10.56 - 10.67 - 11.06 8.64 - 8.96 - 9.14 
Executable runtimes in user CPU seconds. . (minimum – median – maximum) 

 
Bubble Sort Integer Client Server 
<T extends Integer> 7.60 - 7.71 - 7.94 3.29 - 3.29 - 3.62 
<Comparable<T>> 10.06 - 10.12 - 10.51 6.31 - 7.21 - 7.66 

<T> 10.62 - 10.74 - 11.13 8.72 - 9.06 - 9.30 
Executable runtimes in seconds. . (minimum – median – maximum) 

 
Bubble Sort String Client Server 
<T extends String> 568  - 572  - 577 396  - 489  - 490 
<Comparable<T>> 671  - 676  - 705 570  - 657  - 659 

<T> 636  - 641  - 647 549  - 637  - 646 
Loop run times in milliseconds. (minimum – median – maximum) 

 
Bubble Sort String Client Server 
<T extends String> 0.59 - 0.61 - 0.62 0.47 - 0.56 - 0.58 
<Comparable<T>> 0.70 - 0.71 - 0.74 0.65 - 0.74 - 0.76 

<T> 0.66 - 0.68 - 0.70 0.62 - 0.72 - 0.73 
Executable runtimes in user CPU seconds. . (minimum – median – maximum) 

 
Bubble Sort String Client Server 
<T extends String> 0.66 - 0.66 - 0.66 0.54 - 0.60 - 0.60 
<Comparable<T>> 0.77 - 0.77 - 0.77 0.72 - 0.77 - 0.78 

<T> 0.71 - 0.71 - 0.71 0.66 - 0.77 - 0.78 
Executable runtimes in seconds. . (minimum – median – maximum) 

 
In our tests, we compare the minimum and median values. We do this because in many 
sets of results, the maximum values are significantly different than the rest of the 
runtimes. Comparing the lower half ignores these values.  The maximum values are listed 
for clarity. 
 



These results clearly show that the generic bound does affect the runtime of the program. 
Also of note is that the server mode of the JVM especially benefits from the added type 
information as the runtimes for Integer were more than cut in half. 
 
6.3 Sorted Linked List 
 
Our next test was to try specializing one of the built in Java collections. TreeMap seemed 
to be the most promising, since it’s a data structure that maintains a tree of ordered 
elements, and thus uses compareTo() method extensively. Unfortunately, we found that 
the type bound of the TreeMap class did not automatically propagate to its parameterized 
inner classes. Changing the bound on the inner classes would have been very difficult due 
to the way the class hierarchy had been set up, so instead we decided to make a more 
controlled example. We created a sorted linked list class that used insertion sort and had 
an inner node class. Because it was not part of a predefined hierarchy already, we could 
set the bounds as we needed. 
 
Like in our bubble sort example, we created several variations of the SortedLinkedList 
class with different generic bounds. We tested the list by creating an array of random 
Integer objects to be inserted and removed from the list. The source code is not shown 
due to its length. 
 
Our results were as follows:  
 

Sorted Linked List Client Server 
<T extends Integer> 2463 - 2514 - 2532 1137 - 1210 - 1300 
<Comparable<T>> 2458 - 2497 - 2520 1216 - 1273 - 1421 

<T> 2989 - 3038 - 3067 1647 - 1975 - 2133 
Loop run times in milliseconds. (minimum – median – maximum) 

 
Sorted Linked List Client Server 
<T extends Integer> 2.50 - 2.56 - 2.58 1.23 - 1.31 - 1.40 
<Comparable<T>> 2.50 - 2.53 - 2.56 1.29 - 1.38 - 1.52 

<T> 3.03 - 3.08 - 3.12 1.74 - 2.07 - 2.23 
Executable runtimes in user CPU seconds. . (minimum – median – maximum) 

 
Once again, changing the bound has a significant impact on the runtimes, and especially 
so in the server mode of the JVM. In the client mode, the variation using the Comparable 
bound seems to fare slightly better than the Integer bound, but in the server mode the 
variation using the Integer bound is clearly faster. 
 
We also created two tests that used String and Integer instantiations of SortedLinkedList. 
One test used the Object bounded variation of SortedLinkedList and the other used the 
String and Integer bounded variations. The point of this test was to see how significant 
the overhead of using two separate implementations was. Comparing the difference in the 
minimum, median and maximum values we get: 



 
Dual Sorted Linked List Client Server 

Specialized 0.09 - 0.12 - 0.13 0.16 - 0.19 - 0.18 
Object 0.08 - 0.09 - 0.11 0.17 - 0.14 - 0.17 

Difference between loop and elapsed run time in seconds. (minimum – median – 
maximum) 

 
Here, we can see the overhead of the extra compilation. The SortedLinkedList class is a 
fairly simple class with very little code. With more code and specializations the overhead 
could grow to be far more significant. In our future research we will study when and if 
this overhead could outweigh the benefits of specialization. 

 
7 Conclusions and Future Work 

 
Our results show that when a more specific bound of a generic class or a method is given, 
the code produced by the compiler and further optimized by the JVM is significantly 
more efficient. This proves that a program transformation that replaces the type bound by 
the actual type parameter would lead to more efficient programs. This transformation can 
be implemented as a source-to-source transformation, i.e. as a transformation of a Java 
program into another Java program in which the type bounds are replaced by the most 
specific types of instances.  
 
We also observed that such transformations on real-life code may be non-trivial since 
parametric types may form their own class hierarchy, and the transformation may affect 
multiple classes in this hierarchy, as in the case of Java TreeMap collection. This may 
produce a large number of extra classes, especially if the same generic class was 
instantiated with several different type parameters in the same program.  
 
Our future work is to implement the transformation outlined above as a preprocessor that 
transforms the program before the compilation stage. Initially we will write a 
preprocessor that handles programs with a simple type hierarchy (classes with no 
inheritance among generic classes, no static fields or methods, etc.). As the next phase, 
we plan to investigate the efficiency of this transformation for real-life Java programs 
using the preprocessor. One of the goals is to study programs with several instantiations 
of the same generic class with different type parameters and to find out when the addition 
of extra classes leads to a noticeable overhead because of handling the extra classes in 
JVM. The algorithm can then be modified accordingly so that it does not create too many 
instances of the parameterized class. As a longer goal, we plan to extend the preprocessor 
to handle other features of Java type, such as static methods and fields, parametric inner 
classes, hierarchy of generic types, generic types instantiated with other generic types, 
and wildcards.  
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