
Specialization of Java Generic Types

Scott Lembcke, Sam BeVier, Elena Machkasova

Computer Science Discipline
University of Minnesota Morris

Morris, MN 56267
lemb0029, bevi0022, elenam@morris.umn.edu

Abstract

Generic types are a new feature in the Java programming language, and allow the
programmer to write a class or method that has a type parameter. Type parameters allow
the program to create different instances of the parameterized class or method replacing
the type parameter with a specific type such as String or Integer. This feature is similar to
C++ templates, but differs in implementation. Generic types in Java are implemented
using type erasure, which works by removing type information from variables at compile
time and automatically generating code to cast them to the correct type. This contrasts
with C++ templates, which create a specialized copy for each instance of a type
parameter.

Type erasure creates only one implementation for each generic class or method,
minimizing code duplication. However, erasure may not produce the most efficient
program. By producing an implementation specific to each instance type, the compiler
has an opportunity to optimize the program according to that type. This process is called
specialization.

We propose a transformation of program source code that allows the Java compiler to
create implementations of generic classes and methods specialized for the types used in
the program. Such a transformation is beneficial in some cases, but if applied too
aggressively, can decrease runtime efficiency. We explore how this specialization affects
the runtime efficiency of various programs. We demonstrate that for a variety of
programs that use generic methods and classes specializing generic types results in
substantially more efficient programs.

1 Introduction to Generic Types

Generic types are a feature that is present in many modern programming languages.
Using generic types, a programmer can write a data structure or a function that can work
for different data types. The type in such data structures or functions is specified as a type
parameter, i.e. it is denoted by a variable. When using a parameterized entity, the
programmer specifies a concrete type for the type parameter. This process is called type
instantiation. Type safety is still maintained: a linked list parameterized to contain
integers will give a compiler error if a string is added to the list. This makes code more
reusable and increases type safety. There are two basic ways that generic types can be
implemented. One is a template approach, and is implemented in C++. The other is type
erasure which is primarily geared towards user convenience. Java uses the type erasure
approach.

1.1 Implementations of Generic Types

In the template approach, the compiler produces a separate copy of the entire data
structure or function for each instantiation used in the program. Type erasure works quite
differently. There are no duplicate copies of code that are specific to different types. At
compilation time, the compiler removes all specific type information, replacing the type
with the most general supertype, and inserts appropriate type casts wherever needed.

Erasing the type information at compile time means that further type specific program
optimizations are unavailable. This can decrease the time efficiency of programs,
especially those with complicated type hierarchies. Templates do not present this
problem. However, templates create multiple copies of the code, which is less memory
efficient and can be confusing to the programmer.

2 Java Compilation Model

Java is unlike most other compiled languages in that it compiles a program to a platform
independent bytecode instead of native code. This part of the compilation is called static
compilation and allows Java to offer a compromise between speed, runtime safety, and
platform independence. Originally, the JVM (Java virtual machine) interpreted the
bytecode, but since this was slow, JIT (just in time) compilers were added to the JVM to
compile the bytecode into native code as it is run. However, JIT compilers can create an
additional overhead because compiling and optimizing code at run time adds to the
running time of the program. To address this problem, Sun developed the Java HotSpot™
VM which decreased this overhead by profiling the program being run to selectively
compile only "hot spots", or frequently called methods, into native code. This way time is
not needlessly spent performing expensive compilation and optimization on code that
does not significantly affect the runtime of a program. Compiling the bytecode to native
code as the program is running is called dynamic compilation.

2.1 Common Optimizations

Compiler optimizations relevant to our research include constant propagation and
folding, inlining, and devirtualization [3]. Constant propagation is when the compiler
replaces any instance of a constant in a program with its value. Constant folding is when
the compiler evaluates expressions in the code that can be evaluated at compile time.
Inlining is an optimization where a method call is replaced by the code of the method.
After inlining a method, the code can be further optimized. This could potentially allow
an entire method call to be replaced by a constant value which may open up even more
opportunities for constant folding.

Another optimization is called devirtualization. A virtual function call is when a function
must be looked up in the class hierarchy before it can be called. The name comes from
the virtual modifier in C++ which can be thought of as the opposite of the final modifier
in Java. Non-virtual (in particular, final) functions are those defined only in one class
along the class hierarchy, and therefore their address is known before the program runs.
Devirtualization eliminates an expensive function lookup when the address of a function
can be determined at compile time.

The static compiler transforms Java source into bytecode and does relatively few
optimizations. Such optimizations include constant propagation and folding [2]. Most of
the optimization is performed by the dynamic compiler as it compiles the bytecode into
native code. The reasons for that are explained in Section 2.3. Runtime, or dynamic,
optimizations would include more complex optimizations such as devirtualization and
method inlining, possibly followed by constant propogation and folding, and similar
optimizations. As mentioned before, dynamic optimizations are not performed
universally, but selectively. The JVM profiles the running program to identify "hot spots"
that would benefit the most from optimization.

2.2 JVM Client and Server Modes

There are two modes for running the JVM, a client and server mode. The client mode has
a simpler and faster compiler. It is intended to start a program running as quickly as
possible without performing heavy optimization. The client mode is also more memory
efficient. The server mode compiler focuses more on optimizing the runtime of a program
than on faster compilation speed and startup time [4].

2.3 Dynamic Loading

In Java, it is possible to load classes at runtime. This is known as dynamic loading, and is
the main reason for delaying optimizations until runtime. Inlining cannot be performed
by the static compiler because a class may be reloaded at runtime, replacing the code
running in the JVM with new code. Any code inlined by the static compiler could

become invalid. Similarly, a method call cannot be devirtualized by the static compiler
because it may not know all of the types that are used.

3 Java Type System

Like most object-oriented languages, Java supports type hierarchies. Classes can inherit
fields and methods from other classes. There are two kinds of types in Java: primitive
types, such as integers and booleans (denoted as int and bool, respectively), and object
types. Object types include some predefined types, for instance strings and arrays.
Additionally a user can define their own object types. A class may contain fields (i.e.
variables) and methods. To declare a method, a programmer specifies the method's name,
the number and types of its parameters, its return type, and, finally, the method’s code,
i.e. the actions performed by the method. All of the above, except for the method's code,
is called the method's descriptor.

3.1 Class Hierarchy

All object types are a part of Java class hierarchy: classes can inherit from each other. By
default, a class inherits from the predefined class Object. A class can inherit directly only
from one class, but if a class A inherits from a class B, it also indirectly (transitively)
inherits from all classes that B directly and indirectly inherits from, including the Object
class. When a class A inherits from a class B, it automatically includes all of B's methods
(those declared directly in B and those that B in turn inherits through inheritance).
However, A can also declare additional methods and overwrite its inherited methods. A
method in a superclass is overwritten by a method in its subclass if the two methods have
the same name and argument types, i.e. they have the same descriptor. If a method is
overwritten in a subclass, a call to this method on an object of this subclass will call the
method of the subclass, not the method of the superclass. However, if a subclass does not
overwrite a method, the method with this descriptor defined in the closest superclass will
be called. The program will compile only if all methods called on an object are defined in
the object's class or in one of its superclasses.

3.1 Interfaces

In addition to classes Java type hierarchy includes interfaces. An interface can be seen as
a class specification, but not an implementation. An interface lists method descriptors,
but not the code, of all methods required by this interface. A class can implement an
interface, in which case the class must define all methods declared in the interface. A
class can implement several interfaces. A common Java interface that we use in our test
programs is Comparable. This interface requires that the class provides a method

int compareTo(Object o) {...}

This method allows the object to be compared to other objects of the same type. The
result of the method is negative, positive, or 0, signifying that the given object is,
respectively, less than, greater than, or equal to the object passed as a parameter. Generic
methods that sort data or otherwise require that data items can be compared to each other
are usually defined for Comparable objects.

Arguments to type parameters can be any object type (i.e. one that is part of the class
hierarchy). This means that primitive types cannot be used as a type argument to a
generic type or method as they are not objects. Therefore Java provides object versions of
the primitive types, simple objects with a field that contains the value of the primitive
type. For instance, Integer is an object that contains a single integer value. Since Integer
objects can be compared to each other, the class Integer implements the Comparable
interface.

3.2 Type casting

Often objects are passed to a method or returned from a method as variables of their
superclass or an interface they implement, not as the most specific class of the object. For
instance, one can pass two Integers to a minimum method that works on Comparable
objects:

Comparable min (Comparable a, Comparable b) {
 if (a.compareTo(b) < 0) return a;
 else return b;
}

Note that the minimum is returned as a Comparable, not as an Integer. In order for it to
be used as an Integer (for instance, be assigned to a variable of type Integer), it has to
have a type cast applied to it. This is done by adding the type name in parentheses before
the value:

Integer i = (Integer) min(n,m);

4 Generic types in Java

Generic types were added to Java in release 1.5 (also known as Java 5). Many
programming languages provide the convenience of generic types, and their absence in
Java was viewed as a significant deficiency. There has been a variety of proposals for
extending Java with generic types. When adding generics to Java, it was highly desirable
to make such an extension compatible with the existing JVM and the existing
specification of Java bytecode so that the Java legacy code was not affected by the new
addition. Type erasure is such an implementation. The static compiler checks the type-
safety of the generic code, inserts all necessary type casts, and outputs the bytecode
which has no information about specific type parameters used to instantiate generic

classes or methods. This means that no instance-specific type information can be used by
generic code at run-time.

4.1 Generic Classes

When writing a generic, i.e. parameterized class, the class declaration contains the type
parameter in angle brackets. The methods in a parameterized class then can use that
parameter as a return type or use it for its parameter types. The methods now view that
type as they would any concrete type because it is declared in the class declaration. For
instance, consider the following class declaration:

public class LinkedList<K> {
 ...
 public K getFront() { ... }
 ...
 public void setFront(K k1) { ... }
 ...
}

Where <K> is the type parameter passed to the class upon instantiation. Notice that K is
then used as the return type for one method and a parameter type in another.

When writing parameterized code, it is also possible to restrict the range of acceptable
types by introducing an upper bound. An upper bound (a class or an interface) can be set
so that only subtypes of that bound can be passed as the type parameter. The keyword
extends is used to set the upper bound.

public class LinkedList<K extends Comparable> { ... }

Any class that implements the interface Comparable will be accepted by this
implementation of LinkedList.

Whenever an instance of a parameterized object is created, the type parameter must be
specified. For instance:

LinkedList<String> _list = new LinkedList<String>();

The above code creates a LinkedList which can only contain String objects. The compiler
checks that the actual type (in this case, String) is a subtype of the bound of the type
parameter. If it is not, the code will not compile.

4.2 Generic Methods

Methods can be parameterized even if the class they are in isn't. In these cases, the
method descriptors just have to contain the type parameter in angle brackets much like

the parameterized classes do.

public <K> K someMethod() { ... }

For example, consider a generic method min() that determines a minimum of two objects.
As we mentioned in section 3.1, Comparable is an interface requiring a class to have a
method compareTo() that determines the order of objects of that class. Any time the
method min() is called, it has to be on a class that implements Comparable. Note that,
unlike the example in Section 3.1, the method below is written using generic types.

public <K extends Comparable> K min(K k1, K k2) {
 if (k1.compareTo(k2) > 0) {
 return k2;
 } else { return k1;}
}

4.3 Implementation

Type erasure works by replacing the type parameter by its bound at compile time. If no
bound is specified, the compiler assumes that the bound is Object. Specifying Object as
the upper bound and not specifying any bound are actually the same thing. Here is a very
simple example of generic code:

public class GenericMethod{
 public static <T> T aMethod(T anObject){
 return anObject;
 }

 public static void main(String[] args){
 String greeting = "Hi";
 String reply = aMethod(greeting);
 }
}

The compiler would transform this into something equivalent to the following code:

public class GenericMethod{
 public static Object aMethod(Object anObject){
 return anObject;
 }

 public static void main(String[] args){
 String greeting = "Hi";
 String reply = (String)aMethod(greeting);
 }
}

Notice the generic information is gone, casts have been inserted, and the return value of
the method now has a type cast to String.

There are features of generic types in Java that we are not presenting at this point such as
wildcards and bounded wildcards. Optimizations related to these features will be the
subject of further research.

5 A Case for Specialization

While type erasure presents a simple implementation of generic types, it has several
inefficiency problems. By removing the type information, type erasure removes the
potential for some optimizations. A method call cannot be inlined or devirtualized unless
the type of the object that it is called on is known exactly. Additionally, type casts may
have to be added when calling methods or returning values because the type information
cannot be checked by the static compiler.

Replacing the parameter bound with a more specific bound opens more possibilities for
optimization. This can be done as a transformation of the source code. For example,
consider the following modified version of GenericMethod:

public class GenericMethod{
 public static <T> T aMethod(T anObject) {
 ((Comparable)anObject).compareTo(anObject);
 anObject.toString();
 return anObject;
 }

 public static void main(String[] args){
 String greeting = "Hi";
 String reply = aMethod(greeting);
 }
}

Now we will transform GenericMethod into SpecificMethod by changing the method
declaration for aMethod() to:

public static <T extends String> T aMethod(T anObject)

In SpecificMethod, the compiler will erase the return type and argument type of aMethod
to String. At static compilation time it is known that String is comparable, so the static
compiler will not actually have to add a cast of anObject to Comparable. The return type
is also String, so it will not need a cast to String to be assigned to reply.

Below we show the bytecode that the static compiler generated for aMethod() in both

classes and examine the differences.

The checkcast instruction checks that an object belongs to a given type. invokeinterface
dynamically finds the method required by the interface (in this case, the method
compareTo()) in the object’s class, and invokevirtual dynamically finds the right method
along the object’s class hierarchy. The other bytecode instructions are irrelevant to the
example.

GenericMethod.aMethod():

 0 aload_0
 1 checkcast #2 <java/lang/Comparable>
 4 aload_0
 5 invokeinterface #3 <java/lang/Comparable.compareTo> count 2
10 pop
11 aload_0
12 invokevirtual #4 <java/lang/Object.toString>
15 pop
16 aload_0

Specific.aMethod():

 0 aload_0
 1 aload_0
 2 invokeinterface #2 <java/lang/Comparable.compareTo> count 2
 7 pop
 8 aload_0
 9 invokevirtual #3 <java/lang/String.toString>
12 pop
13 aload_0
14 areturn

GenericMethod.main():

 0 ldc #4 <Hi>
 2 astore_1
 3 aload_1
 4 invokestatic #5 <Generic.aMethod>
 7 checkcast #6 <java/lang/String>
10 astore_2
11 return

SpecificMethod.main():

0 ldc #3 <Hi>
2 astore_1
3 aload_1
4 invokestatic #4 <Specific.aMethod>
7 astore_2
8 return

As you can see, there are extra checkcast instructions present in the bytecode of
GenericMethod. Checking casts, like method look ups, can be expensive to perform.
Interestingly, despite removing the cast to Comparable, the static compiler did not use
invokevirtual on the compareTo() method call. However, it is possible that this call is
further optimized (inlined or devirtualized) at run time since the method descriptor for
aMethod() in SpecificMethod specifies that the method parameter as a String. However,
calling a method on an object directly makes the type more explicit. Calling a final
method on a final object is a perfect candidate for method inlining or devirtualization

6 Results

6.1 Testing Methodology

Our testing consisted of creating a test program that would highlight one aspect of
generic programming, and then modify the bounds used for the type parameter. We then
recorded the runtime of the program in several ways. We placed a print statement inside
the program that would only time a specific section of the code. We also timed the
execution of the JVM with the Unix time command, which includes the system and user
CPU time, total elapsed time, and other statistics. Each program was run in both the client
and server mode of the JVM 20 times each. Programs that used random numbers were
seeded externally so that different versions of the same program could be run with the
same series of seed numbers. All tests were ran on the same machine running Fedora
Core with version 1.5.0_04 of both the Java HotSpot VM and the javac compiler.

We found in many of our test examples that the creation of a large number of objects
sometimes took more time than the runtime of the actual testing code. To avoid creating
too many objects, we loop the code many times on the same data. We refer to the
execution time of this loop as the loop time.

6.2 Bubble Sort Example

For our first example, we chose to use bubble sort. We did so because it is a well known
and inefficient sorting algorithm. To increase the number of comparison even further, we
sort the same array forward and backward several times. Since the worst case of bubble
sort is an array sorted in reverse order, this maximizes the number of comparisons. This
allowed us to make a large number of comparisons on a relatively small amount of data.
We focused on generic methods first by implementing it as a generic method that
accepted an array of a generic type.

We created several variations to test different bounds for String and Integer. We chose
<T> (Object), <T extends Comparable<T>> (Comparable), and <T extends Integer>
(Integer) as bounds for our Integer test, and similar bounds for String. Also, in our String
test we created fewer String objects and ran the loop fewer times to keep the runtime

from getting too long or the memory usage too high. The code for the Object bounded
version of our Integer test is as follows:

public class TestBubbleSortObjectBound {
 public static <T> void sortfront(T [] _list) {
 T temp;
 T current;
 T next;
 boolean whilecondition = true;
 boolean repeatcondition = false;
 while (whilecondition) {
 for (int i = 1; i < _list.length; i++) {
 current = _list[i - 1];
 next = _list[i];
 if (((Comparable)current).compareTo(next) > 0) {
 repeatcondition = true;
 temp = next;
 _list[i] = current;
 _list[i - 1] = temp;
 }
 }
 if (!repeatcondition) {
 whilecondition = false;
 } else {
 repeatcondition = false;
 }
 }
 }

 public static <T> void sortback(T [] _list) {
 ... same as sortfront, but works in reverse
 }

 public static void main(String[] args) {
 int n = 10000;
 Integer[] array = new Integer[n];
 for (int i = 0; i < n; i++) {
 array[i] = new Integer(n - i);
 }

 long time1 = System.currentTimeMillis();

 for(int i = 0; i < 2; i++){
 sortfront(array);
 sortback(array);
 }

 long time2 = System.currentTimeMillis();
 System.out.printlntime2 - time1);
 }
}

Our test results were as follows:

Bubble Sort Integer Client Server
<T extends Integer> 7536 - 7611 - 7835 3130 - 3171 - 3452
<Comparable<T>> 10006 - 10053 - 10447 6160 - 7061 - 7504

<T> 10549 - 10645 - 11028 8564 - 8884 - 9050
Loop run times in milliseconds. (minimum – median – maximum)

Bubble Sort Integer Client Server
<T extends Integer> 7.56 - 7.65 - 7.86 3.21 - 3.26 - 3.52
<Comparable<T>> 10.03 - 10.08 - 10.47 6.25 - 7.13 - 7.59

<T> 10.56 - 10.67 - 11.06 8.64 - 8.96 - 9.14
Executable runtimes in user CPU seconds. . (minimum – median – maximum)

Bubble Sort Integer Client Server
<T extends Integer> 7.60 - 7.71 - 7.94 3.29 - 3.29 - 3.62
<Comparable<T>> 10.06 - 10.12 - 10.51 6.31 - 7.21 - 7.66

<T> 10.62 - 10.74 - 11.13 8.72 - 9.06 - 9.30
Executable runtimes in seconds. . (minimum – median – maximum)

Bubble Sort String Client Server
<T extends String> 568 - 572 - 577 396 - 489 - 490
<Comparable<T>> 671 - 676 - 705 570 - 657 - 659

<T> 636 - 641 - 647 549 - 637 - 646
Loop run times in milliseconds. (minimum – median – maximum)

Bubble Sort String Client Server
<T extends String> 0.59 - 0.61 - 0.62 0.47 - 0.56 - 0.58
<Comparable<T>> 0.70 - 0.71 - 0.74 0.65 - 0.74 - 0.76

<T> 0.66 - 0.68 - 0.70 0.62 - 0.72 - 0.73
Executable runtimes in user CPU seconds. . (minimum – median – maximum)

Bubble Sort String Client Server
<T extends String> 0.66 - 0.66 - 0.66 0.54 - 0.60 - 0.60
<Comparable<T>> 0.77 - 0.77 - 0.77 0.72 - 0.77 - 0.78

<T> 0.71 - 0.71 - 0.71 0.66 - 0.77 - 0.78
Executable runtimes in seconds. . (minimum – median – maximum)

In our tests, we compare the minimum and median values. We do this because in many
sets of results, the maximum values are significantly different than the rest of the
runtimes. Comparing the lower half ignores these values. The maximum values are listed
for clarity.

These results clearly show that the generic bound does affect the runtime of the program.
Also of note is that the server mode of the JVM especially benefits from the added type
information as the runtimes for Integer were more than cut in half.

6.3 Sorted Linked List

Our next test was to try specializing one of the built in Java collections. TreeMap seemed
to be the most promising, since it’s a data structure that maintains a tree of ordered
elements, and thus uses compareTo() method extensively. Unfortunately, we found that
the type bound of the TreeMap class did not automatically propagate to its parameterized
inner classes. Changing the bound on the inner classes would have been very difficult due
to the way the class hierarchy had been set up, so instead we decided to make a more
controlled example. We created a sorted linked list class that used insertion sort and had
an inner node class. Because it was not part of a predefined hierarchy already, we could
set the bounds as we needed.

Like in our bubble sort example, we created several variations of the SortedLinkedList
class with different generic bounds. We tested the list by creating an array of random
Integer objects to be inserted and removed from the list. The source code is not shown
due to its length.

Our results were as follows:

Sorted Linked List Client Server
<T extends Integer> 2463 - 2514 - 2532 1137 - 1210 - 1300
<Comparable<T>> 2458 - 2497 - 2520 1216 - 1273 - 1421

<T> 2989 - 3038 - 3067 1647 - 1975 - 2133
Loop run times in milliseconds. (minimum – median – maximum)

Sorted Linked List Client Server
<T extends Integer> 2.50 - 2.56 - 2.58 1.23 - 1.31 - 1.40
<Comparable<T>> 2.50 - 2.53 - 2.56 1.29 - 1.38 - 1.52

<T> 3.03 - 3.08 - 3.12 1.74 - 2.07 - 2.23
Executable runtimes in user CPU seconds. . (minimum – median – maximum)

Once again, changing the bound has a significant impact on the runtimes, and especially
so in the server mode of the JVM. In the client mode, the variation using the Comparable
bound seems to fare slightly better than the Integer bound, but in the server mode the
variation using the Integer bound is clearly faster.

We also created two tests that used String and Integer instantiations of SortedLinkedList.
One test used the Object bounded variation of SortedLinkedList and the other used the
String and Integer bounded variations. The point of this test was to see how significant
the overhead of using two separate implementations was. Comparing the difference in the
minimum, median and maximum values we get:

Dual Sorted Linked List Client Server

Specialized 0.09 - 0.12 - 0.13 0.16 - 0.19 - 0.18
Object 0.08 - 0.09 - 0.11 0.17 - 0.14 - 0.17

Difference between loop and elapsed run time in seconds. (minimum – median –
maximum)

Here, we can see the overhead of the extra compilation. The SortedLinkedList class is a
fairly simple class with very little code. With more code and specializations the overhead
could grow to be far more significant. In our future research we will study when and if
this overhead could outweigh the benefits of specialization.

7 Conclusions and Future Work

Our results show that when a more specific bound of a generic class or a method is given,
the code produced by the compiler and further optimized by the JVM is significantly
more efficient. This proves that a program transformation that replaces the type bound by
the actual type parameter would lead to more efficient programs. This transformation can
be implemented as a source-to-source transformation, i.e. as a transformation of a Java
program into another Java program in which the type bounds are replaced by the most
specific types of instances.

We also observed that such transformations on real-life code may be non-trivial since
parametric types may form their own class hierarchy, and the transformation may affect
multiple classes in this hierarchy, as in the case of Java TreeMap collection. This may
produce a large number of extra classes, especially if the same generic class was
instantiated with several different type parameters in the same program.

Our future work is to implement the transformation outlined above as a preprocessor that
transforms the program before the compilation stage. Initially we will write a
preprocessor that handles programs with a simple type hierarchy (classes with no
inheritance among generic classes, no static fields or methods, etc.). As the next phase,
we plan to investigate the efficiency of this transformation for real-life Java programs
using the preprocessor. One of the goals is to study programs with several instantiations
of the same generic class with different type parameters and to find out when the addition
of extra classes leads to a noticeable overhead because of handling the extra classes in
JVM. The algorithm can then be modified accordingly so that it does not create too many
instances of the parameterized class. As a longer goal, we plan to extend the preprocessor
to handle other features of Java type, such as static methods and fields, parametric inner
classes, hierarchy of generic types, generic types instantiated with other generic types,
and wildcards.

Acknowledgements

The authors thank Nic McPhee and Matthew Justin of University of Minnesota, Morris
for helpful discussion of Java collections and other related material.

References

[1] Gilad Bracha “Generics in the Java Programming Language”. Tutorial by Sun
Microsystems, Inc., available at http//java.sun.com

[2] Steve Caudill, Elena Machkasova (Advisor) "Empirical Studies of Java
Optimizations", MICS 2005

[3] Michael Paleczny, Christopher Vick, and Cliff Click “The Java HotSpot™ Server
Compiler“, Java™ Virtual Machine Research and Technology Symposium 2001.

[4] White Paper “The Java HotSpot Virtual Machine, v1.4.1”, Sun Microsystems, Inc.,
available at http//java.sun.com

