
Tutorial
Creating a C Function Block in Scicos

Phil Schmidt

March 7, 2009

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second

Street, Suite 300, San Francisco, California, 94105, USA.

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 1

Table of Contents
1 Introduction...3
2 Defining the Model...3

2.1 Equations for The Example Block..3
2.2 Modes, Surfaces and Zero-Crossings..4

3 Creating the Computational Function...4
3.1 The Code...5
3.2 Commentary on the Code..6

4 Compiling and Linking...7
4.1 Starting Scilab...7
4.2 Invoking the Compiler and Linker..9

5 Testing the New Block..10
5.1 Block Diagram..10
5.2 Block Configurations...11

5.2.1 LeftHand CLOCK_c Block...11
5.2.2 Righthand CLOCK_c Block..11
5.2.3 GENSQR_f Block...12
5.2.4 Middle GEN_SQR Block..12
5.2.5 Bottom GEN_SQR Block..12
5.2.6 CMSCOPE Block..13
5.2.7 generic_block3 Block..14

5.3 Running the Simulation...15
6 Creating the Interfacing Function...16

6.1 The Code...16
6.2 Commentary on the Code..18

7 Testing the Interfacing Function...19
8 Debugging...21

8.1 First Steps..21
8.2 Starting a Debugging Session..23

9 Conclusion..25

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 2

1 Introduction
This document is a tutorial that describes the process of creating a custom Scicos function block in

C. Scicos is a graphical dynamic system modeling tool that is contained within Scilab, a Matlab-like

numerical analysis and simulation package.

I have created this tutorial for a couple reasons. First, this is my way to leave breadcrumbs for

myself, so that whenever I create my own function blocks, I have an example to follow. Second, I

found that the available Scicos documentation is sorely lacking in complete examples with thorough

descriptions of the steps to take. I spent many hours poring over what documentation I could find,

posting questions to the Scilab newsgroup, and engaging in plain trial-and-error, before I was able to

successfully build my own function blocks. I hope that by creating this tutorial, I can compress your

learning curve and help you to quickly become productive.

Regarding the development environment, I have used ScicosLab 4.3 on Ubuntu Linux to create the

example presented in this tutorial. If you are using Windows, I can’t say whether this stuff will work

exactly the same, though most of it should.

So, let’s get started!

2 Defining the Model

2.1 Equations for The Example Block

For this tutorial, we will create a custom integrator block that has constant high and low limits, and

variable gain. The equations of the block are as follows:

ẋ=gp u Lhix0
ẋ=gp u x=Lhi , u≤0
ẋ=gnu 0≥xLlo

ẋ=gnu x=Llo , u≥0
ẋ=0 x≥Lhi ,u0
ẋ=0 x≤Llo ,u0

(1)

where u, gp and gn are inputs to the block and Lhi and Llo are block parameters.

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 3

In addition to defining the block’s state, we will also want to define its output. We will choose the

state variable as one output, and the block’s current gain (gp, gn or zero) as a second output.

Notice in equations (1) the careful definition of the discontinuities in the derivative at Lhi and Llo.

This careful definition is important for the numerical integrator in Scicos, which needs to know where

the discontinuities are in order to properly simulate the system. This leads us to the next section...

2.2 Modes, Surfaces and Zero-Crossings

Generally, Scicos needs to know where there are discontinuities in the derivatives of the system in

order to properly simulate the system. To define these, Scicos makes use of modes and surfaces, which

you must define in your block code, to determine where those discontinuties are and what to do on

either side of them.

A surface is simply a variable in your system that has values that cross discontinuities in the system.

Scicos detects that a surface is crossing a discontinuity by detecting that the surface variable crosses

zero.

A mode is a variable that holds values representing each distinct region that exist in a surface. So, if

a surface has a single zero-crossing, then there would be two mode values to represent that the system

is on one or the other side of the zero crossing.

In the system in equations (1), there are three surfaces, defined as s0 = x – Lhi, s1 = x – Llo and s2 = x,

The three surfaces therefore each have a zero crossing; one at Lhi, one at zero and one at Llo. There is a

single mode variable that can have four discrete values representing each of the four zero-crossing

regions. We will make the following definitions for mode:

mode=1 x≥Lhi

mode=2 0xLhi

mode=3 Llox≤0
mode=4 x≤Llo

(2)

3 Creating the Computational Function
Once you’ve defined the equtions for the block, you are ready to write the C code that implements

it. In the code will be a function that Scicos calls to compute the behavior of the block. This is called

the computational function.

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 4

3.1 The Code

For our example block, I will simply present the code here, and then comment on key parts of the

code. So, here is the code, saved in the file lim_int_comp.c:

 1 // This is the computational function for a Scicos model block.
 2 // The model is of a variable-gain integrator with hard high and low limits.
 3
 4
 5 #include "scicos/scicos_block4.h"
 6 #include <math.h>
 7 #include <stdio.h>
 8 #include <stdlib.h>
 9
 10 #define r_IN(n, i) ((GetRealInPortPtrs(blk, n+1))[(i)])
 11 #define r_OUT(n, i) ((GetRealOutPortPtrs(blk, n+1))[(i)])
 12
 13 // parameters
 14 #define Lhi (GetRparPtrs(blk)[0]) // integrator high limit
 15 #define Llo (GetRparPtrs(blk)[1]) // integrator low limit
 16
 17 // inputs
 18 #define in (r_IN(0,0)) // integrator input
 19 #define gainp (r_IN(1,0)) // integrator gain when X > 0
 20 #define gainn (r_IN(2,0)) // integrator gain when X <= 0
 21
 22 // states
 23 #define X (GetState(blk)[0]) // integrator state
 24 #define Xdot (GetDerState(blk)[0]) // derivative of the integrator output
 25
 26 // outputs
 27 #define out (r_OUT(0, 0)) // integrator output
 28 #define Igain (r_OUT(1, 0)) // integrator gain
 29
 30 // other constants
 31 #define surf0 (GetGPtrs(blk)[0])
 32 #define surf1 (GetGPtrs(blk)[1])
 33 #define surf2 (GetGPtrs(blk)[2])
 34 #define mode0 (GetModePtrs(blk)[0])
 35
 36
 37 // if X is greater than Lhi, then mode is 1
 38 // if X is between Lhi and zero, then mode is 2
 39 // if X is between zero and Llo, then mode is 3
 40 // if X is less than Llo, then mode is 4
 41 #define mode_xhzl 1
 42 #define mode_hxzl 2
 43 #define mode_hzxl 3
 44 #define mode_hzlx 4
 45
 46 void lim_int(scicos_block *blk, int flag)
 47 {
 48 double gain = 0;
 49
 50 switch (flag)
 51 {
 52 case 0:
 53 // compute the derivative of the continuous time state
 54 if ((mode0 == mode_xhzl && in < 0) || mode0 == mode_hxzl)
 55 gain = gainp;
 56 else if ((mode0 == mode_hzlx && in > 0) || mode0 == mode_hzxl)
 57 gain = gainn;
 58 Xdot = gain * in;
 59 break;
 60
 61 case 1:

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 5

 62 // compute the outputs of the block
 63 if (X >= Lhi || X <= Llo)
 64 Igain = 0;
 65 else if (X > 0)
 66 Igain = gainp;
 67 else
 68 Igain = gainn;
 69 out = X;
 70 break;
 71
 72 case 9:
 73 // compute zero crossing surfaces and set modes
 74 surf0 = X - Lhi;
 75 surf1 = X;
 76 surf2 = X - Llo;
 77
 78 if (get_phase_simulation() == 1)
 79 {
 80 if (surf0 >= 0)
 81 mode0 = mode_xhzl;
 82 else if (surf2 <= 0)
 83 mode0 = mode_hzlx;
 84 else if (surf1 > 0)
 85 mode0 = mode_hxzl;
 86 else
 87 mode0 = mode_hzxl;
 88 }
 89 break;
 90 }
 91 }

3.2 Commentary on the Code

Line 5: Be sure to #include “scicos_block4.h”. This header defines macros that are used to access data
elements in the scicos_block data structure. The macros used in this example are GetRealInPortPtrs
(line 10), GetRealOutPortPtrs (line 11), GetRparPtrs (lines 14-15), GetState (line 23), GetDerState
(line 24), GetGPtrs (lines 31-33) and GetModePtrs (line 34). (More information on these and other
macros is available from the Scilab online help. Type help at the Scilab command prompt, then go to
Scicos: Bloc diagram editor and simulator | whatis scicos | C Macros.)

Lines 10-44 define a bunch of macros that make it easier to access elements of the Scicos block data
structure. I find it much easier to use names that correspond to each of my block’s parameters, states,
inputs and outputs, rather than to be constantly working with anonymous pointers and array elements.

Lines 10-11 are helper macros for accessing block inputs and outputs.

Lines 14-15 name the upper and lower limit of the integrator. The limits are passed to the block as real
parameters.

Lines 18-20 name the inputs to the integrator block. For this block, all the inputs are real-valued
values.

Lines 23-24 name the block’s state and derivative.

Lines 27-28 name the outputs of the integrator block. For this block, all the outputs are real-valued
values.

Lines 31-33 name the three surfaces in the block.

Line 34 names the single mode variable of the block.

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 6

Lines 41-44 name the four mode values that the mode variable may hold.

Lines 46-91 is the function that implements the behavior of the new block.

Line 46: The function name, lim_int, will be used later when linking the code into Scicos.

Line 52-59: When flag is zero, the Scicos integrator is requesting the block to compute its derivative.
The derivative equation to be used depends on the mode, which can be seen in lines 57 and 59.
Compare the equations in this section of the code to the equations given in sections 2 and 3.

Lines 61-70: When flag is one, the Scicos integrator is requesting the block to compute its outputs. As
you can see, the mode is not used to determine which gain value to use as output. I could not find
documentation explaining whether mode should be used, but in all the example code I looked at, it was
not used, so my assumption is that it should not be used here.

Lines 72-89: When flag is nine, the Scicos integrator is requesting information about modes and zero
crossings. Surface information is needed at every call, while mode information is only needed during
simulation phase 1.

Lines 74-76: The values of the three surfaces are assigned here.

Line 78: This is the test for simulation phase one.

Lines 80-87: Modes are calculated here based on the positions of the surface values.

4 Compiling and Linking
With the C code in hand, you are now ready to compile and link it into Scilab.

4.1 Starting Scilab

First, run Scilab. You will need to have Scilab running in the directory that contains your source
file. The easiest way to do that is to just open a terminal in your working directory, and invoke Scilab
from there. Otherwise, use the chdir() function inside the Scilab console to change to your working
directory.

The screenshots below show how I invoke Scilab for this tutorial:

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 7

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 8

4.2 Invoking the Compiler and Linker

Ok, so Scilab is running and is in the right directory. Compiling and linking is done simply by
invoking the following command in Scilab:

ilib_for_link('lim_int','lim_int_comp.o',[],'c','Makelib','loader.sce','','','-g');

This is kind of a scary looking command, but it’s pretty simple once you break it down (and note that
you can get help on this command from Scilab’s built-in help browser in the Utilities category).

● The first parameter, 'lim_int', is the name of the function we want linked into Scilab.

● The 2nd parameter, 'lim_int_comp.o', is the name of the object file that will be created when
our source code is compiled.

● The 3rd parameter, [], is a list of extra libraries needed for linking. Our example does not need
any, so an empty matrix is passed.

● The 4th parameter, 'c', tells Scilab that this is a C function (as opposed to a Fortran function).

● Parameters 5 and 6, 'Makelib' and 'loader.sce', are the names of the makefile and loader file
respectively. Both of the values I used are also the default values.

● Parameters 7 and 8 are the libname and ldflags. For this example, I just pass empty strings,
which also happen to be the defaults.

● Finally, parameter 8 is a list of the cflags to pass to the C compiler. I pass in a '-g' to make the
compiler generate debugging information. This is absolutely necessary if your C code has run-
time errors, so that you can use gdb to debug it.

When you run the command, you should get something that looks like the following picture:

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 9

That’s it! The C file is compiled and linked!

5 Testing the New Block
Now that we’ve linked the code, it would be nice to run it to try it out. We can do a quick-and-dirty

test using the GENERIC block in Scicos. Create a new Scicos diagram, and follow the instructions
below.

5.1 Block Diagram

The following picture shows the block diagram for the system. Open the Palette Tree and place the
necessary blocks onto the diagram and connect them as shown. You will need two CLOCK_c blocks,
one GENSQR_f block, two GEN_SQR blocks, one generic_block3 block and a CMSCOPE block.

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 10

5.2 Block Configurations

5.2.1 LeftHand CLOCK_c Block

5.2.2 Righthand CLOCK_c Block

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 11

5.2.3 GENSQR_f Block

5.2.4 Middle GEN_SQR Block

5.2.5 Bottom GEN_SQR Block

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 12

5.2.6 CMSCOPE Block

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 13

5.2.7 generic_block3 Block

The configuration for this block deserves some explanation:

● Simulation function: This is the name of the linked C computational function that
implements the block.

● Function type: A C block is type 4.

● Input ports sizes: The block has three 1x1 (scalar) inputs.

● Input ports type: The three inputs are of type real.

● Output ports sizes: The block has two 1x1 (scalar) outputs.

● Output ports type: The two outputs are of type real.

● The block has no input or output events.

● The initial condition for the blck’s state is 0.25.

● There are no discrete states, thus no initial condition.

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 14

● Initial object state: I have not figured out what this is yet!

● The block’s parameters (upper and lower limit) are real parameters.

● There are no integer parameters.

● There is one mode variable.

● There are three zero crossing surfaces.

● The block has direct feedthrough, i.e., it can form part of an algebraic loop.

● The block is time dependent, as it has a continuous state.

5.3 Running the Simulation

Now that our model is built, we can run it. First, set up the simulation parameters from the
Simulate | Setup menu in the Scicos editor:

Then run the simulation (Simulate | Run), to get the following plot:

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 15

And there you have it, a custom block written in C.

This is all great, but it would be nice to have a customized graphical block to go with the custom
computational function. The next section shows how to do this.

6 Creating the Interfacing Function
The interfacing function is written in Scilab language, and is used to define the appearance and

behavior of the graphical elements of the block in the Scicos editor. As I did with the computational
function earlier, I will simply present the code, and then provide commentary afterwards.

6.1 The Code

Save the following code into the file lim_int_intf.sci.

 1 function [x,y,typ] = LIMINT(job, arg1, arg2)
 2
 3 x = [];
 4 y = [];
 5 typ = [];

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 16

 6
 7 //disp(job)
 8
 9 select job
 10 case 'plot' then
 11 standard_draw(arg1)
 12
 13 case 'getinputs' then
 14 [x,y,typ] = standard_inputs(arg1)
 15 //disp(sci2exp(x))
 16
 17 case 'getoutputs' then
 18 [x,y,typ] = standard_outputs(arg1)
 19 //disp(sci2exp(x))
 20
 21 case 'getorigin' then
 22 [x,y] = standard_origin(arg1)
 23 //disp(sci2exp(x))
 24
 25 case 'set' then
 26 //message(sci2exp(arg1))
 27 x = arg1
 28 graphics = arg1.graphics
 29 exprs = graphics.exprs
 30 model = arg1.model
 31 while %t do
 32 [ok,Lhi,Llo,Xinitial,exprs] = getvalue('Set funny integrator parameters',..
 33 ['high limit';'low limit';'Xinitial'],..
 34 list('vec',1,'vec',1,'vec',1),..
 35 exprs)
 36 if ~ok then break,end
 37 model.state = [Xinitial]
 38 model.rpar = [Lhi;Llo]
 39 graphics.exprs = exprs
 40 x.graphics = graphics
 41 x.model = model
 42 break
 43 end
 44
 45 case 'define' then
 46 //message('in define')
 47 Lhi = 1.0
 48 Llo = -1.0
 49 Xinitial = 0
 50 model = scicos_model()
 51 model.sim = list('lim_int',4)
 52 model.in = [1;1;1]
 53 model.out = [1;1]
 54 model.state = [Xinitial]
 55 model.dstate = [0]
 56 model.rpar = [Lhi;Llo]
 57 model.blocktype = 'c'
 58 model.nmode = 1
 59 model.nzcross = 3
 60 model.dep_ut = [%t %t]
 61
 62 exprs = [string([Lhi;Llo;Xinitial])]
 63 gr_i = ['x=orig(1),y=orig(2),w=sz(1),h=sz(2)';
 64 'txt=[''Funny'';''Integrator'']';
 65 'xstringb(x+0.25*w, y+0.20*h, txt, 0.50*w, 0.60*h, ''fill'')';
 66 'txt=[''in'';'''';''gainp'';'''';''gainn'']';
 67 'xstringb(x+0.02*w, y+0.08*h, txt, 0.25*w, 0.80*h, ''fill'')';
 68 'txt=['''';''out'';'''';''gain'';'''']';
 69 'xstringb(x+0.73*w, y+0.08*h, txt, 0.25*w, 0.80*h, ''fill'')';
 70]
 71 x = standard_define([4 2],model,exprs,gr_i)
 72
 73 end
 74

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 17

 75 endfunction

6.2 Commentary on the Code

Before I begin with the commentary, let me point out that much of what’s in the interfacing
function I don’t fully understand. I have started with known working examples and the available
documentation to come up with this function. However, documentation is slim (which is one reason
I’m writing this tutorial!). So, I will explain only what I understand.

Line 1: The name of the function, LIMINT, will be used inside the Scicos editor to access the function
block. Keep this in mind for later.

Lines 7, 15, 19, 23, 26, 46: These are debugging lines. If you uncomment them, you will be able to see
debugging information in the Scilab console and in dialog boxes while you construct and run the
model.

Lines 10, 13, 17, 21: These cases just use the “standard” functions that are provided with Scilab. Good
luck finding documentation on how these functions work (and if you do find it, please let me know!)

Lines 25-43: This case defines the behavior of the dialog box that appears when you double-click the
block. It uses the getvalue() function in lines 32-35 to display the dialog and return the values entered.
The initial condition of the model state is assigned in line 37, while the parameters, Lhi and Llo, are
assigned to the model in line 38. All the return values are stored in the structure variable x in lines 40
and 41.

Lines 45-71: This case defines the appearance of the function block and initializes all the model
variables when the block is first placed into the Scicos diagram.

Lines 50-60 define the block’s model properties. Compare closely the assignments in lines 51-60 with
the initializers in the GENERIC (generic_block3) block shown earlier:

● Line 51 corresponds to Simulation function and Function type.

● Line 52 corresponds to Input ports sizes.

● Line 53 corresponds to Output ports sizes.

● Line 54 corresponds to Initial continuous state.

● Line 55 corresponds to Initial discrete state. I found that this cannot be an empty vector, thus I
assigned a value (which is unused by the computational function) to make Scilab happy.

● Line 56 corresponds to Real parameters vector.

● Line 58 corresponds to Number of modes.

● Line 59 corresponds to Number of zero crossings.

● Line 60 corresponds to Direct feedthrough and Time dependence.

Line 62 defines the initial values that will be displayed in the block’s configuration dialog.

Lines 63-70 define the Scilab code that will be executed to draw the block’s graphical and text
elements. The code must be captured as a list of strings. Be careful about quoting!

Line 71 creates the block, including both its graphical and model elements. The size of the block is
specified by the first parameter of the standard_define() function.

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 18

7 Testing the Interfacing Function
Now that we have written the interfacing function, it is a simple matter to use it. Assuming you

still have Scicos open, activate the Scilab window (from the Scicos Tools menu) and enter the
following command to create the interfacing function in Scilab:

exec lim_int_intf.sci;

Go back to Scicos by clicking the mouse in the Scicos window, open the dialog from the Edit |
Add new block menu, and enter LIMINT into the dialog. Then simply place the new block into the
diagram, and connect it up. The picture below shows what this looks like:

Here’s the configuration dialog for the CMSCOPE block:

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 19

Once again, run the model. You should get the following plot:

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 20

As expected, the outputs of the two blocks are the same because they use the same computational
function. Cool!

8 Debugging
All the above is well and good, however, when you’re writing your own functions, it is likely that

you will have errors, and will need to debug them. I showed in the interfacing function how to drop in
simple debugging lines, so I won’t discuss that any further. However, for C code, sprinkling printf()
calls into the code may not be sufficient or may not work at all, especially if your Scilab instance is
running as a separate process, as stdout may not go to a console. So, you will need to use gdb. In this
section, I’ll give you a (very) high level overview of the process. And remember, what I describe here
is what I do on my Ubuntu system. It will likely work the same on most *nix systems, but is liable not
to work the same on Windows systems.

8.1 First Steps

In order to make your life much easier, we will start by making a macro file for gdb that will
display Scicos model values. Create a file in your working directory called gdb_cmd, and put the

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 21

following content into it:

define showInputs
 printf "Inputs: "
 set $i = 0
 while $i < $arg0 -> nin
 printf "in%i = %g ", $i, *(double*)$arg0 -> inptr[$i]
 set $i = $i + 1
 end
 printf "\n"
end

define showOutputs
 printf "Outputs: "
 set $i = 0
 while $i < $arg0 -> nout
 printf "out%i = %g ", $i, *(double*)$arg0 -> outptr[$i]
 set $i = $i + 1
 end
 printf "\n"
end

define showParms
 printf "rParms: "
 set $i = 0
 while $i < $arg0 -> nrpar
 printf "rp%i = %g ", $i, $arg0 -> rpar[$i]
 set $i = $i + 1
 end
 printf "\n"
 printf "iParms: "
 set $i = 0
 while $i < $arg0 -> nipar
 printf "ip%i = %i ", $i, $arg0 -> ipar[$i]
 set $i = $i + 1
 end
 printf "\n"
end

define showState
 printf "State: "
 set $i = 0
 while $i < $arg0 -> nx
 printf "x%i = %g ", $i, $arg0 -> x[$i]
 set $i = $i + 1
 end
 printf "\n"
 printf "Deriv: "
 set $i = 0
 while $i < $arg0 -> nx
 printf "xd%i = %i ", $i, $arg0 -> xd[$i]
 set $i = $i + 1
 end
 printf "\n"
end

define showMZ
 printf "zCross: "
 set $i = 0
 while $i < $arg0 -> ng
 printf "g%i = %g ", $i, $arg0 -> g[$i]
 set $i = $i + 1
 end
 printf "\n"
 printf "jRoot: "
 set $i = 0

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 22

 while $i < $arg0 -> ng
 printf "j%i = %g ", $i, $arg0 -> jroot[$i]
 set $i = $i + 1
 end
 printf "\n"
 printf "Mode: "
 set $i = 0
 while $i < $arg0 -> nmode
 printf "m%i = %i ", $i, $arg0 -> mode[$i]
 set $i = $i + 1
 end
 printf "\n"
end

define Show
 showInputs(blk)
 showOutputs(blk)
 showParms(blk)
 showMZ(blk)
 showState(blk)
end

define hook-stop
 Show
end

break lim_int
continue

Just a quick comment on the script above: Notice that the Show function passes the name blk to the
various showXXX functions; blk is the very same blk parameter in the lim_int() C computational
function.

8.2 Starting a Debugging Session

Using the example block we created in this tutorial, follow these steps to debug the model:

1. Start Scilab as you did earlier. Once in Scilab, start Scicos, and load the example model file
lim_int_test.

2. In the console, enter the command ps ux | grep scilex. Scilex is the name of the Scilab
executable.

3. Run gdb.

4. Attach gdb to the scilex process.

5. Source the gdb_cmd file into gdb.

6. Now go to Scicos and run the model.

At this point, Scicos has been stopped at a breakpoint at the computational function lim_int(). This
whole interaction will look like the following screenshots:

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 23

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 24

Notice in the above screenshot that the values of the block data structure elements are displayed.
They will appear each time that gdb breaks program execution.

From here, you will use the standard gdb commands to inspect code and step through it. The help,
step and continue commands will be very useful. For further details on gdb debugging, use its online
help or consult the copious documentation that is available on the web.

9 Conclusion
This concludes this tutorial. I hope it has been helpful!

Tutorial: Creating a C Function Block in Scicos
Phil Schmidt, email:philfarm@fastmail.fm Page 25

	1Introduction
	2Defining the Model
	2.1Equations for The Example Block
	2.2Modes, Surfaces and Zero-Crossings

	3Creating the Computational Function
	3.1The Code
	3.2Commentary on the Code

	4Compiling and Linking
	4.1Starting Scilab
	4.2Invoking the Compiler and Linker

	5Testing the New Block
	5.1Block Diagram
	5.2Block Configurations
	5.2.1LeftHand CLOCK_c Block
	5.2.2Righthand CLOCK_c Block
	5.2.3GENSQR_f Block
	5.2.4Middle GEN_SQR Block
	5.2.5Bottom GEN_SQR Block
	5.2.6CMSCOPE Block
	5.2.7generic_block3 Block

	5.3Running the Simulation

	6Creating the Interfacing Function
	6.1The Code
	6.2Commentary on the Code

	7Testing the Interfacing Function
	8Debugging
	8.1First Steps
	8.2Starting a Debugging Session

	9Conclusion

