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Stephan Brumme 
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Hasso-Plattner-Institute at the University of Potsdam 

Abstract  The introduction of programmable graphics hardware opened a door to a new era of 
real-time rendering. The manifold uses of vertex and fragment shaders enable developers and art-
ists to achieve many visuals effects at high frame rates on consumer level hardware, which has 
been formerly rendered offline. The increasing effort of writing efficient and effective shaders 
leads to the creation and establishment of new higher-level languages which can be compared to 
already existing general-purpose languages such as C or Java. One of these shading languages, the 
OpenGL Shading Language (known as GLSL), will be discussed and examined in depth. I de-
scribe its conceptual design, explain how key decisions were resolved and present a working im-
plementation. Moreover, I assess the current situation and what particular extensions or improve-
ments can be expected in the near future. These conclusions will be matched up to concurrently 
evolving languages like NVIDIA’s Cg or Microsoft’s High Level Shading Language (HLSL) in 
order to identify cross-pollinations. A 3D chess game written using GLSL demonstrates a real-life 
application of modern vertex and fragment shader programming. 
 
CR Categories and Subject Descriptors  D.3.2 [Language Classifications] Specialized Applica-
tion Languages; I.3.1 [Computer Graphics] Hardware Architecture; I.3.3 [Computer Graphics] 
Picture/Image Generation; I.3.6 [Computer Graphics] Methodologies and Techniques; I.3.7 [Com-
puter Graphics] Three-dimensional Graphics and Realism. 
 
Keywords  shading language, procedural shading, real-time image generation. 
 
 

1 INTRODUCTION 
Recent customer level graphics hardware un-
dergoes a major shift from hardly supporting 
basic drawing operations to rendering complex 
scenes in real-time. The astonishing demonstra-
tion of selected scenes from Square Studios’ 
movie Final Fantasy at SIGGRAPH 2001 
[NVIDIA01a] brilliantly underlined the amaz-
ing power of modern graphics accelerators. 

The fixed functionality enforced by graphic 
library standards like OpenGL [OpenGL03a] or 
DirectX [Microsoft02a] has been dominating 
the conceptual chip design for many years. 
Meanwhile, commercially successful software 
renderers such as Pixar’s Renderman [Hanra-
han90, Pixar] introduced fundamentally new 
concepts like procedural shading by allowing to 
program and configure almost each step of the 
rendering process. These programs are called 
shaders. 

Many applications, such as CAD software or 
the steadily growing market of computer 
games, would clearly benefit from the use of 
shaders if they could run at real-time frame 
rates thus allowing interactive user interfaces. 
Since software based solutions turned out to be 
too slow, graphics hardware vendors provide a 
limited set of shader processing units in hard-
ware. These shaders are written in a dedicated 
shader assembler languages mapping directly to 
the hardware. Only recently a standardized as-
sembler language evolved which does not ex-
ploit the actual hardware features to their full 
extent since it is restricted to the common sub-
set of the major vendors’ assembler languages. 

Inventing a completely new language does 
not always lead to a handy and intuitive syntax. 
Almost all high level shading languages borrow 
their basic concepts and structures from C 
[Kernighan88] which is well-known for its high 
performance and portability while being easily 
mapped to hardware instructions. The wide-
spread use of C (incl. C++) in the software in-
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dustry allows many programmers to get into 
touch with these shading languages without too 
much effort. 

A high level language pushes the program-
mer’s productivity by reducing hardware de-
pendencies, supporting abstraction layers and 
enhancing code readability. Even interactive 
shader development appears to be feasible right 
now [Maya, ATI]. 

Moreover, just-in-time compilation allows to 
map the language to the actual chip using code 
optimizers. These optimizers will improve over 
time and thus speed up application even after 
they were shipped already. New graphics chips 
and/or innovative architectures can be sup-
ported as well by providing adequate drivers 
that come with specialized shading language 
compilers. Vice versa, features not available in 
nowadays’ hardware can be emulated: yet, 
branching is replaced by equivalent operations 
and loops still get unrolled.  

In this paper, I present an overview of the 
OpenGL Shading Language (abbreviated GLSL, 
sometimes also called glslang), which is an 
essential part of the soon-to-be-released 
OpenGL 2.0 [OpenGL03b, 3Dlabs02]. I 
describe the evolution of the basic concepts of 
shading languages and their influence on 
GLSL. An emphasis will be put on the design 
of the language, how it is integrated in the 
OpenGL framework and what improvements 
can be expected in the future. 

Furthermore, the OpenGL Shading Lan-
guage’s ideas will be compared to similar lan-
guages recently developed by NVIDIA and Mi-
crosoft, too. 

A brief introduction to the language’s syntax 
accompanied by an example should assist the 
reader in writing shader based applications. 

2 RELATED WORK  
Cook’s shade trees [Cook84] laid the founda-
tions of hierarchically subdividing a shading 
process into simple routines called shaders. An 
exemplary shade tree is shown in figure 1. A 
shader’s task is to modify or create values asso-
ciated to a surface, such as its position or color 
[Akenine-Möller, pp. 213]. 

Renderman™ supports various kinds of 
shaders to increase the versatility according to 
the Reyes (Render Everything You Ever Saw) 
architecture of Cook et al. [Cook87]. These 
shaders include displacement, surface, light, 

volume, and image shaders which proved to be 
sufficient for rendering almost any visual effect 
of movies, games etc.  

The PixelFlow system [Olano95] attempted 
to implement a Renderman-like language in a 
real-time system. It was a SIMD (single instruc-
tion, multiple data) multiprocessor system and 
utilized the concept of deferred shading in order 
to shade only visible fragments. 

SGI’s OpenGL shader system removed the 
major fragment limitations of graphics hard-
ware by mapping mathematical operations to 
multipass techniques, mostly texture based. It 
has been shown that it is possible to generically 
map almost any shading computation to multi-
pass techniques [Peercy00]. Unfortunately, 
some of them require an enormous amount of 
memory bandwidth and a high floating point 
number precision due to their large number of 
rendering passes.  

The Quake III engine, one of the best selling 
computer game engines ever, provides its own 
shading language that targets at fragment level 
effects, too. It restricts the shaders versatility 
very much in order to achieve very high frame 
rates. 

The Stanford Shading Group decided to 
carefully change today’s hardware accelerators’ 
design to achieve a more efficient resource us-
age. They offload lots of fragment operations to 
the vertex level and rely on the hardware’s in-
terpolation abilities [Proudfoot01]. The paper 
identified four basic classes of scene data by 
classifying their computation frequency: 

− constant for the scene (e.g. lighting) 
− constant for a group of primitives (mate-

rial of a mesh) 

weight of ambient
component

ambient

*
weight of specular

component

normal

*

viewer
surface

roughness

specular function

+

*
copper color

final color

 
Figure 1. Shade tree for a copper shader [Cook84] 
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− constant per vertex   
− constant per fragment 

The first two classes are input to each vertex 
and/or fragment shader. The third class is both 
output of a vertex shader and input of a frag-
ment shader while the last class represents data 
generated by a fragment shader and usually 
written to the frame buffer. In consequence, 
graphics hardware’s pipelines tend to be subdi-
vided into vertex and fragment stages each be-
ing nearly fully programmable. Sometimes the 
term pixel shader is used when actually refer-
ring to a fragment shader. 

NVIDIA developed a C-based language 
called Cg (“C for graphics”) [NVIDIA03b] to 
bring high level shading languages to the mass 
market. Cg was one of the first real-time lan-
guages actually available for consumer level 
hardware. Its architecture shares many aspects 
with Microsoft’s DirectX9 HLSL because both 
companies collaborated closely in the process 
of creating these two languages. The flexible 
design of Cg is considerably open towards fu-
ture extensions and fortunately not limited to 
NVIDIA graphics processors. 

3 ARCHITECTUR 

3.1 Hardware Considerations 
GLSL is designed with the intention in mind to 
cover at least every functionality of the replaced 
OpenGL fixed functionality and to additionally 
provide advanced features. It is possible to 
write shaders that exactly match the operations 
being replaced without a loss of performance 
[NVIDIA01b]. 

Some vendors [ATI] do not even implement 
the fixed functionality in the chip design, in-
stead they fully emulate it by transparently exe-
cuting dedicated shaders. McCool et al. re-
ported that an optimized vertex shader outper-
formed the standard path of a NVIDIA Ge-
Force3 by about 25% [McCool01], too. 

3.2 Shader Concept in GLSL 
Although strongly related to each other, the 
OpenGL Shading Language is actually divided 
into two parts: one language for the vertex 
processor and one for the fragment processor.  

The OpenGL committee defines a shader as 
a unit of compilation where a set of shaders 
linked together is called a program. 

Each shader always operates on exactly a 
single entity, i.e. a vertex or a fragment, at a 
time. There is no explicit knowledge about any 
of the preceding or following entities, too. It is 
impossible to create new entities within a 
shader, and only fragment shaders are allowed 
to drop or discard an entity (i.e. a fragment). 

The data flow of a shader is shown in figure 
2. The vertex shader is granted read-only access 
at runtime to so-called attributes representing 
the standard OpenGL vertex attributes 
(gl_Color , gl_Normal , etc.). In contrast, 
constants are known at compile-time and thus 
offer a great potential of performance optimiza-
tions. 

A uniform variable does not change across 
the primitive being processed, e.g. the position 
of a light source. All uniforms are read-only, 
too, and initialized either directly by an applica-
tion via API commands or indirectly by 
OpenGL. The available storage for uniforms 
may be limited, exceeding that thresholds 

vertex processor fragment processor

standard OpenGL varyings

special
variables

user-defined varyings

user-defined uniforms built-in uniforms

texture maps

color &
depth

standard OpenGL
attributes &

generic attributes

drop fragment

 
Figure 2. Input, intermediate data flow and output of vertex and fragment shaders 
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throws a either a compile-time or a link-time 
error. 

Many effects rely on the availability of tex-
ture maps to implement lookup tables or to ren-
der images to object surfaces. Hence, GLSL 
permits read-only access via samplers that may 
perform filtering if desired. 

A very important stage is located between 
the vertex and the fragment processor: the 
rasterizer. It splits primitives modeled by verti-
ces into discrete portions called fragments. The 
rasterizer has to interpolate many values gener-
ated by the vertex processor in order to pass 
them the fragment processor. For example, the 
texture coordinates varies for each fragment but 
can be derived from the vertices via a suitable 
interpolation. These values – slightly varying 
for each fragment – are called varyings and 
guaranteed to be perspective correct. 

The final result of the graphics pipeline are 
two values which are usually written to the 
frame buffer: the fragments’ color and their z-
depths. Figure 3 visualizes the described rela-
tionships. 

3.3 Vertex Processor 
Whenever an applications invokes a 

glVertex  call (or one of its glDrawArray  
derivates), the vertex and its associated attrib-
utes – such as its color, its normal, its texture 
coordinates, user-defined attributes and so on – 
are forwarded to the vertex processor which is 
in charge of [OpenGL03a]: 

− vertex transformation 
− normal transformation and normalization 
− texture coordinate generation 
− texture coordinate transformation 
− lighting 
− color material application 
− clamping of colors 

It is important to be aware of the fact that a ver-
tex shader is fully responsible for all of the 
above functions. When bypassing the fixed 
functionality of OpenGL, the programmer has 
to perform all tasks on his own. This applies 
especially to vertex transformations which are 
usually done in the first few lines of a vertex 
shader. 

A great variety of vertex shaders employ 
texture lookup techniques in order to achieve 
interesting visual effects. Indeed, that capability 
of the vertex processor seems to be the most 
used one and hence requires a huge amount of 

careful optimizations to overcome cache stall 
issues as done in the recent NVIDIA Force-
Ware driver series [NVIDIA]. Vertex shaders 
often serve to provide the opportunity of han-
dling user-defined data formats fitting the ap-
plication’s specialized needs. Vertex compres-
sion/decompression [Deering95, Engel02] 
pushes the memory bandwidth efficiency by 
magnitudes which increases the overall system 
performance. Especially normals seem to offer 
a great potential of optimizations since in the 
most cases the viewer does not notice even a 
dramatically reduced precision. 

Some operations cannot be done in vertex 
shader since they require information about 
more than a single vertex: 

− perspective projection 
− primitive assembly 
− frustum and user clipping 
− backface culling 
− two-sided lighting selection 
− polymode processing 
− polygon offset 
− depth range 

These operations are performed subsequently to 
the vertex shader and still conform to the 
OpenGL 1.4 definitions. 

3.4 Fragment Processor 
The rasterizer splits primitives into fragments 
and interpolates all varyings across the primi-
tives. 

vertex processor

vertex

rasterization

fragment processor

frag-
ment fragmentfragment

fragment processor fragment processor

...

vertex
post-processing

fragment
post-processing

fragment
post-processing

fragment
post-processing

frame buffer

drop drop drop

...

...

drop drop drop

 
Figure 3. Data processing 
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The fragment processor operates on frag-
ment values and is executed after all vertex 
stages, including vertex shaders, were success-
fully completed. It generates just two output 
values, namely color and depth. They may be 
written to the frame buffer or an off-screen tex-
ture, too. 

Typical tasks of a fragment shader are: 

− operations on interpolated values 
− texture access 
− texture application 
− fog 
− color sum 

Like the vertex processor, some parts of the 
fixed functionality are executed past finishing 
the shader: 

− shading model 
− coverage 
− pixel ownership test 
− scissor 
− stipple 
− alpha test 
− depth test 
− stencil test 
− alpha blending 
− logical operations 
− dithering 
− plane masking 

These operations are implemented in hardware 
to improve the overall performance and reduce 
the shader’s overhead. Although they can be 
completely done in a fragment shader, vendors 
claim that they are cheap to add to the chip de-
sign and offer great optimization deals such as 
preventing pipeline stalls. If desired it is possi-
ble to disable all these operations. 

Fragment shaders are allowed to read multi-
ple texture multiple times. The corresponding 
filtering is done according to the set OpenGL 
state but can be computed in the shader as well 
in order to obtain specialized results. 

4 LANGUAGE  

4.1 Goals 
The OpenGL Shading Language aims at real-
time applications running at interactive frame 
rates. A shader written in GLSL has to run at a 
speed comparable to that of a shader written in 
assembler language. That does not mean that 

shaders need to be real-time, they can be used 
for slow and complex computations as well. 

OpenGL has been known for many years for 
its tremendous portability. Unlike the market of 
operating systems, a single vendor does not 
dominate the graphics hardware segment, 
which means that portability should play a still 
more important role when developing a shading 
language. On the other hand, almost anything 
available at the assembly language level should 
be supported by GLSL. 

It is desirable to add GLSL support to cur-
rently existing applications with as less as pos-
sible effort. The integration into OpenGL 
should be very tight, seamless, and transparent 
in order to achieve a high acceptance among 
programmers. 

The language should support means to struc-
ture the code and to allow the creation as well 
as the usage of shader libraries. Common 
mathematical operations, such as square root or 
even the noise function, have to be integral part 
of the system. 

4.2 Key Decisions 
Some of these goals are in conflict or contradict 
indeed. Even though the speed of graphics 
hardware is increasing at an astonishing rate, 
the emphasis of the OpenGL Shading Language 
is undoubtedly put on performance. 

Achieving an optimal performance requires 
deep knowledge of the system the shaders will 
run on. Due to the diversity of available hard-
ware and software configurations, it seems to 
be impossible to reach always the highest speed 
possible on each machine. When compiling the 
shaders just-in-time, i.e. while the application 
that uses shaders runs, the optimizer has the op-
portunity to adapt the generated assembler code 
to the host system. Since the graphics hardware 
vendors provide these optimizers and put much 
effort into it, the shaders will perform nearly 
optimal. Taking advantage of parallel vertex 
and/or fragment processors available on the 
chip and streaming extensions of the CPU [In-
tel], shaders written in a high-level language 
such as GLSL may even outperform hand-tuned 
assembler code.  

Today’s most often used general-purpose 
languages include C, C++, and Java. Their im-
perative language proved to be reasonably sim-
ple to learn but rather powerful in their applica-
tion. There is a deep knowledge available how 
to write fast but optimizing compilers and link-
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ers for these languages which simplifies the 
graphics driver development. On the other 
hand, the Renderman™ shading language tends 
to be more declarative or functional because the 
framework implicitly decides at runtime which 
kind of shaders (like surface, light, etc.) get in-
voked. Their order and calling frequencies is 
not fixed and usually cannot be determined in 
advance. 

Current shaders tend to be quite short in 
length, even when used for non-real-time digital 
imaging they seldom exceed 1,000 lines of 
code. Therefore, object oriented concepts were 
considered to be not much of help in these cases 
and therefore omitted. In consequence, GLSL is 
closer to C than to any of the aforementioned 
languages. It attempts to be a general-purpose 
language while still focusing on graphics func-
tionality and a clean, straightforward syntax. 
Domain-specific languages may perform better 
by means of productivity. On the other hand, 
they restrict the application of shaders to graph-
ics while some new innovative uses in non-
graphics areas like the computation of mas-
sively parallelized algorithms were shown 
[Krüger03]. 

The language is strictly case sensitive and 
supports implicit scoping the way C does. It re-
lies on the same pairing of compiler and linker 
to separate the process of code translation from 
the process of creating reference binding. 
Therefore, shader libraries only have to be 
compiled once in advance and then are inde-
pendent from the shaders invoking them. This 
approach saves valuable resources, e.g. compile 
time. 

Reducing type checking to compile-time de-
tects most of  the common errors but maintains 
a high performance at runtime. Usually, only 
wrong texture formats cannot be notified. 

4.3 Variables and Types 
Experiences gathered in using various lan-
guages to develop shaders, such as done in 
Renderman, revealed the need for just three 
elementary data types:: bool , int , and 
float . All integers are always signed and lim-
ited to 16 bits. float  should comply to the 
IEEE single precision floating-point definition 
for precision and dynamic range. Internal proc-
essing may be less accurate but has to match the 
OpenGL 1.5 specification. 

Pointers are forbidden in GLSL, there is no 
need for strings, too. An undefined return value 
of a function is void . 

New dedicated data types allow for an easy 
and simple access to vectors and matrices: 
vec2 , vec3 , and vec4  as well as mat2 , 
mat3 , and mat4 . Vectors support bool eans 
and int s if preceded by the letter b or i  (e.g. 
ivec3 ). Each vector or color is treated as an 
implicit union and its components can be read 
or written via its x , y , z , w or r , g, b, a mem-
bers. 

Matrices are always constructed using 
float s. A matrix’ number of rows equals its 
number of columns, i.e. the size is restricted to 
2x2, 3x3, and 4x4. 

Texture access needs the invocation of sam-
plers. They are available for 1D, 2D, 3D, and 
cube mapped textures. Shadow mapping is sup-
ported by 1D and 2D depth textures with auto-
matic comparison. 

Variables sharing a common semantics may 
be composed to a struct . It must not be 
empty, all members types have to be defined in 
advance. 

Another way to organize values are one-
dimensional arrays. They can be of any (posi-
tive) size, the indices always start at zero. 

4.4 Built-in Variables 
In the OpenGL Shading Language, there is a 
data flow from the fixed functionality to the 
programmable processors and back. These two 
main parts of the pipeline communicate their 
shared state through the use of built-in vari-
ables. All built-in variables have a global scope 
and start with the reserved prefix “gl_ ”, e.g. 
gl_Position . or gl_FragColor . 

Not all variables are available to each shader 
since some are restricted to vertex shaders 
while others are restricted to fragment shaders. 

In addition to the aforementioned special 
built-in variables, GLSL provides some built-in 
vertex attributes to access a vertex’ color, tex-
ture coordinates etc. 

Implementation-specific limitations like the 
number of available vertex texture units are ex-
posed through built-constants. 

Unlike the previously mentioned built-in 
variables, varying variables do not map strictly 
one-to-one between vertex shaders and frag-
ment shaders. The cause may be an interpola-
tion algorithm as it is applied for colors across a 
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primitive. Therefore, a fragment shader’s input 
front color does not need to exactly match the 
color generated by the vertex shader. 

4.5 Functions 
A function computes a result (output) by apply-
ing an algorithm to the function’s arguments 
(input) and the current state. Each argument is 
either in , out  or inout . If none of these 
qualifier is specified the argument is always as-
sumed to be in . All input and output values are 
addressed by-copy, i.e. the functions works 
with local copies and thus aliasing problem are 
avoided. A shader may write to in -parameters 
since that will modify only the local copy. The 
const  keyword prevents the shader writer 
from such a modification of in  arguments but 
the qualifier cannot be used for inout  or out  
for obvious reasons. All of the following func-
tions are essentially the same, only the last two  
differ slightly by their calling conventions: 

vec4  diffuse( vec4  N, vec4  L, vec4  C) 
{ 
    C = C* max(0, dot (N, normalize (L))); 
    return  C; 
} 
 
vec4  diffuse(in vec4  N, in vec4  L, 
             in vec4  C) 
{ ... } // same code as above  
 
vec4  diffuse(const in vec4  N, 
             const in vec4  L, 
             in vec4  C) 
{ ... } // same code as above  
 
void  diffuse(in vec4  N, in vec4  L, 
             in vec4  C,  
             out vec4 result) 
{ 
    result = C* max(0,  
               dot (N, normalize (L))); 
} 
 
void  diffuse(in vec4  N, in vec4  L, 
             inout vec4  C) 
{ 
    C = C* max(0, dot (N, normalize (L))); 
} 

All predefined functions can be subdivided 
into three groups: 

I. The first group cannot be emulated by a 
shader since they map to some hardware 
functionality such as texture mapping. 

II.  Another group represents functions 
achieving a high performance gain when 
implemented in hardware such as trigo-
nometric operations.  

III.  The third and last group are supported for 
convenience and are likely to perform 
trivial tasks such as clamping. The pro-
grammer should call predefined functions 
as often as possible since they can be 
translated to optimal code or even map 
one-to-one to a hardware instruction. 

Overloading of functions is not supported, 
hence two functions known under the same 
name must differ by at least one argument. 
Overwriting a built-in function is possible but 
not advisable. 

The language disallows direct or indirect re-
cursion yet. This feature may be added in later 
revisions of GLSL if proved to be necessary. 

4.6 Control Structures 
Five fundamental building blocks are available 
in GLSL: 

− statements and declarations 
− function definitions 
− selection (if -else ) 
− iteration (for , while , do-while ) 
− jumps (return , break , continue , 

discard ) 

The grammar defines a shader as a sequence of 
declarations and functions bodies. Each func-
tion in turn consists of statements which may be 
selections, iterations or jumps. 

Each statements is delimited by a semi-
colon. In addition, statements can be grouped 
by curled braces into compound statements. 

All these language feature comply to the 
well-known syntax of C. The only addition is 
the discard  keyword that allows a fragment 
shader to drop a single fragment. 

Later releases of GLSL may add the 
switch  statement which is missed in the ini-
tial version since it is desirable to support float-
ing-point variables but yet still unclear how im-
plement that feature efficiently. By now, the 
switch  statement has to be emulated by re-
peated if  statements. 
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4.7 Preprocessor 
Many of the core features of C can be found in 
GLSL, too. A preprocessor handles almost all 
of the commonly used C pragmas such as #ifdef 
and #error. A few predefined macros, like 
__LINE__, are also expanded. 

/* a very long comment 
that covers several lines */ 
 
// a short annotation 

Pragmas are used to give the compiler hints 
about debug and optimization issues, too. Yet 
there is no standardized set of these compiler 
pragmas so their use may lead to non-portable 
shaders. 

Comments are defined according to the C++ 
standard, which means that they cannot be 
nested, too. The example below give a demon-
stration of both comment styles.  

5 USING SHADERS 

5.1 Integration into the OpenGL 
API 

Objects represent an generalized OpenGL struc-
ture containing a state and some associated 
data. A handle that is shareable across context 
boundaries references them. Prior to the GLSL, 
two kinds of objects existed: texture objects and 
display lists. 

A special kind of objects are shader objects 
that encapsulate the source code of shaders. A 
single shader may consist of many shader ob-
jects and is either a vertex shader or a fragment 
shader. For example, some shader objects con-
tain handy functions repeated called from an-
other shader object and thus serve as a library. 
No more than one vertex shader object and one 
fragment shader object has to provide the main  
function which serves as an entry point like in 
C. 

Program objects aggregate all shader objects 
necessary to form a shader. Technically spoken, 
all required shader objects have to be attached 
to a program object. These program objects 
may be added to the current OpenGL context in 
order to be activated. Only one program object 
is active at a time. 

Compared to the C development model, one 
can think of shader objects as source code being 
compileable while program objects refer to the 

step of linking and generating an actually ex-
ecutable component. 

The following code excerpt demonstrates 
how to setup a plain program object consisting 
of a vertex and a fragment shader: 

GLhandleARB vs, fs, program; 
 
// create vertex shader object 
vs = glCreateShaderObjectARB 
       (GL_VERTEX_SHADER_ARB); 
glShaderSourceARB(vs,1,&vsSource,NULL); 
glCompileShaderARB(vs); 
 
// create fragment shader object 
fs = glCreateShaderObjectARB 
       (GL_FRAGMENT_SHADER_ARB); 
glShaderSourceARB(fs,1,&fsSource,NULL); 
glCompileShaderARB(fs); 
 
// create program object 
program = glCreateProgramObjectARB(); 
 
/* attach both shader object 
   to the program object */ 
glAttachObjectARB(program, vs); 
glAttachObjectARB(program, fs); 
 
// link program object 
glLinkProgramARB(program); 
glUseProgramObjectARB(program); 

Most shaders can be extensively configured 
by various parameters. Passing these uniforms 
to the program objects works via the new API 
extensions, too. After receiving a handle by 
calling glGetUniformLocationARB , you 
can set the corresponding uniform by invoking 
glUniform{1…4}{f,i,b}ARB . There are 
specialized versions of this instruction available 
for pointers and matrices as well. 

Glint hParamFloat, 
      hParamVector, 
      hParamMatrix; 
 
// get locations of parameters 
hParamFloat = 
 glGetUniformLocationARB(program, “f”); 
hParamVector = 
 glGetUniformLocationARB(program, “v”); 
hParamMatrix = 
 glGetUniformLocationARB(program, “m”); 
 
// set parameters 
glUniform1fARB(hParamFloat, 0.42); 
glUniform3fARB(hParamVector, 
               0.5, 1.0, 0.0); 
glUniformMatrix3fvARB(hParamMatrix, 
               9, false, pMatrix); 

Calling glDeleteObjectARB  frees all re-
sources associated to an object, no matter 
whether it is shader of program object. 
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Since setting up and enabling a shader modi-
fies the current OpenGL context it cannot be 
done between glBegin  and glEnd . 

6 CG AND HLSL 
NVIDIA designed Cg with the intention in 
mind to provide a very abstract and extensible 
shading language based on C (therefore Cg is 
an abbreviation of “C for Graphics”). Cg is 
available for both major 3D graphics APIs 
OpenGL and DirectX hugely increasing the 
possible application scenarios of shaders fol-
lowing the philosophy “write once, run any-
where”. It introduced the profile concepts that 
gives the compiler some hints how to optimize 
the generated code depending on hardware ca-
pabilities and system features. 

Cg is built around the same vertex shader / 
fragment shader separation as the OpenGL 
Shading Language but gives the developer the 
opportunity to mix assembler and high-level 
shaders arbitrarily. In consequence, Cg requires 
an explicit binding of attributes, uniforms and 
varyings allowing more flexibility at the cost of 
additional API calls. 

HLSL shares lots of concepts and features 
with Cg since both were developed in close co-
operation. It does compile the shaders outside 
the graphic card’s driver, too. Therefore the ap-
plication is aware of the actually executed as-
sembler code which is not the case and even 
impossible for the OpenGL Shading Language. 

Because HLSL and Cg come with a com-
piler already written it is easier for a hardware 
vendor to deliver drivers for both languages. 
The long delay for stable GLSL drivers is 
mainly caused by insufficiently working GLSL 
compilers and not by hardware limitations (fig-
ure 4). 

7 EXPERIENCES 
Shess, a shader based chess game supports 
three kinds of shaders available for OpenGL: 
ARB assembler, NVIDIA’s Cg and GLSL (see 
figure 5). All three languages follow similar 
strategies of integrating themselves in the 
OpenGL environment. They offer extensions 
that may be invoked at any time (except within 
glBegin  and glEnd  blocks) but not all 
graphics accelerators fully support them. 

I often missed a proper debug mechanism. 
Although GLSL by default provides access to 
its error log via the glGetInfoLogARB  and 
glValidateProgramObjectARB  inter-
faces, the returned messages were not always 
clear and sometimes even misleading. 

To bypass driver insufficiencies, I had to 
write short shaders consisting of basic opera-
tions. The drivers had no problems to optimize 
them properly and there was no noticeable loss 
of performance compared to ARB assembler. 
Unfortunately, it is not possible to retrieve the 
assembler code generated by the GLSL com-
piler which would be interesting to examine. 
However, the code may differ depending on the 
actual hardware and the installed graphics 
driver.  
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Figure 4. Shader compilation of HLSL and GLSL 

 
Figure 5. Screenshot of Shess 
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8 CONCLUSION 
The OpenGL Shading Language proved to be 
quite effective and comfortable in its applica-
tion. The effort to integrate it in modern graph-
ics engine is low and does not require substan-
tial changes of existing designs. 

The insufficient support of GLSL by the ma-
jor graphics hardware vendors defers a satisfac-
tory usage in current applications. It is to expect 
that NVIDIA and ATI will officially release 
adequate driver in early 2004 opening the con-
sumer market for GLSL. A beta version of 
GLSL for ATI R300 chips is yet available but 
still very instable. Even ATI’s offline GLSL 
test suite called Ashli cannot handle all well-
formed GLSL shaders. 

The latest computer games tend to heavily 
utilize shaders to achieve various effects and 
improve the overall rendering performance. Up 
to now, none of the major game engines, like 
Unreal Warfare or Doom 3, directly supports 
GLSL. On the other side, the importance of 
DirectX 9 compliance in the field of marketing 
led to a market where nearly all hardware ven-
dors support HLSL. Cg does not play an impor-
tant role as of today and there are rumors that 
Cg may be obsolete in the near future. 

There are severe compiler and hardware im-
provements required to bring shaders’ perform-
ance closer to the goal of providing an interac-
tive real-time experience. Especially expensive 
fragment operations known from high quality 
images rendered by programs like Maya are 
still unrealistic today.  
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11 APPENDIX 

11.1 Today’s GLSL Availability 
The OpenGL Shading Language has been de-
signed in early 2001 by 3Dlabs [3Dlabs02] who 
eagerly push OpenGL 2.0, too. Until now, 
3Dlabs remains the only vendor actively pro-
moting and supporting GLSL. 

Since OpenGL 2.0 has not been published, 
GLSL was accepted as an ARB extension 
known as ARB_shading_language_100  
for OpenGL 1.5 to underline the importance of 
GLSL. Recent drivers of ATI also expose this 
extension and one should expect the same for 
NVIDIA within a few months. 

ATI published for free a neat tool called 
Ashli (Advanced SHading Language Interface, 
figure 6) translating Renderman and GLSL 
shaders to native OpenGL ARB or DirectX 9 
assembler. Almost all modern graphics accel-
erators are able to execute these assembler 
shaders. Not all features are supported by Ashli, 
though, one gains remarkable insights into the 
general ideas and concepts behind these two 
languages. A basic optimizer helps to achieve 
real-time performance in most cases, which is 
interesting especially for Renderman shaders as 
there not designed to run in real-time by de-
fault. 

 
Figure 6. Ashli GLSL test suite [ATI] 



The OpenGL Shading Language  - 14 - 

 
 

11.2 Exemplary Shader 

11.2.1 Vertex Shader 
The following vertex shader computed the 
model-view projection formerly done by the 
fixed functionality pipeline of OpenGL. It does 
the same for the normals and the incident vec-
tor. 

// modified vertex shader of Ashli 
 
// vertex to fragment shader io 
varying vec3 N; 
varying vec4 I; 
 
void  main() 
{ 
  // position in eye space 
  P = gl_ModelViewMatrix * gl_Vertex ; 
 
  // position in clip space 

  gl_Position =  
     gl_ModelViewProjectionMatrix  *   
     gl_Vertex ; 
 
  // normal transform 
  N = gl_NormalMatrix  * gl_Normal ; 
 
  // incident vector 
  I = P - gl_ModelViewMatrix [3]; 
} 

11.2.2 Fragment Shader 
The fragment uses the normal to generate a 
color and sets a random alpha value (generated 
by Perlin noise). The resulting image is shown 
in figure 7. 

// vertex to fragment shader io 
varying vec3  N; 
varying vec4  I; 
 
// entry point 
void  main() 
{ 
    gl_FragColor  = N; 
    gl_FragColor [3] = noise1 (N); 
} 

 
Figure 7. Running an exemplary shader 

 


