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Abstract

Radial basis function (RBF) methods have shown the potential to be a universal
grid free method for the numerical solution of partial differential equations. Both
global and compactly supported basis functions may be used in the methods to
achieve a higher order of accuracy. In this paper, we take advantage of the grid free
property of the methods and use an adaptive algorithm to choose the location of
the collocation points. The RBF methods produce results similar to the more well
known and analyzed spectral methods, but while allowing greater flexibility in the
choice of grid point locations. The adaptive RBF methods are most successful when
the basis functions are chosen so that the PDE solution can be approximated well
with a small number of the basis functions.

1 Introduction

Ultimately, we are interested in adaptive radial basis function (RBF) PDE
algorithms in two and three spatial dimensions. In this paper, we gain insight
in one dimension before proceeding to higher dimensions. The implementation
and complexity of RBF methods in higher dimensions are essentially the same
as in one dimension. Only the adaptive algorithm will need to be different.

RBF methods for time dependent PDEs enjoy large advantages in accuracy
over other flexible, but low order methods, such finite differences, finite vol-
umes, and finite elements. However, RBF methods share the ease of implemen-
tation and flexibility of these lower order methods. Moving grid RBF methods
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are easily implemented, potentially even in complex computational domains in
several space dimensions. Other highly accurate spatial discretization schemes
such as pseudospectral methods do not have the inherent flexibility of the
RBF methods and adaptation and complex geometries are more difficult to
deal with. We have applied a modification of a simple moving grid algorithm,
which was developed for use with low order finite difference methods, to RBF
methods for time dependent PDEs. The adaptive RBF algorithm produces
excellent results.

The numerical solution of PDEs by RBF methods is based on a scattered data
interpolation problem which we review in this section. Let x0, x1, . . . , xN ∈
Ω ⊂ Rn be a given set of centers. A radial basis function is a function φi(x) =
φ(‖x− xi‖2), which depends only on the distance between x ∈ Rd and a fixed
point xj ∈ Rd. Each function φj is radially symmetric about the center xj.
The radial basis function interpolation problem may be described as, given
data fi = f(xi), i = 0, 1, . . . , N , the interpolating RBF approximation is

s(x) =
N∑

i=0

λiφi(x) (1)

where the expansion coefficients, λi, are chosen so that s(xi) = fi. That is,
they are obtained by solving the linear system

Hλ = f (2)

where the elements of the interpolation matrix are Hi,j = φ(‖xi − xj‖2), λ =
[λ0, . . . , λN ]T , and f = [f0, . . . , fN ]T . For the RBFs that we have considered in
this work (table 1 and equation (8)), the interpolation matrix can be shown
to be invertible for distinct interpolation points [21,26].

A generalized interpolation problem also may be considered. The generalized
interpolation problem is

s(x) =
N∑

i=0

λiφi(x) +
M∑

k=1

bkpk(x) (3)

in which a finite number of d−variate polynomials of at most order M are
added to the RBF basis. The polynomials pk(x) are the polynomials spanning
πM , that is they are the polynomials of degree at most M . The extra equa-
tion(s) needed to complete the generalized interpolation problem are chosen
to be

N∑

j=0

λjpk(xj) = 0 (4)
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for k = 1, . . . , M . Interpolation problem (3) must be considered when using
RBFs, such as the cubics φ(r) = r3, as the basic interpolation problem (1)
does not lead to a guaranteed invertible interpolation matrix [22]. Also, the
generalized interpolation problem may lead to an approximation with some
desirable properties that an approximation from the standard interpolation
problem may lack, such as a degree of polynomial accuracy. This is the case
with the multiquadric RBF [13].

Despite the fact that H can be shown to be invertible for all φ of the inter-
est, the linear system (2) may often be very ill-conditioned and it may be
impossible to solve accurately using standard floating point arithmetic. The
conditioning of H is measured by the condition number defined as

κ(H) = ‖H‖
∥∥∥H−1

∥∥∥ = σmax/σmin (5)

where σ are the singular values of H. The condition number of H is influenced
by the number of centers, the minimum separation distance of the centers, as
well as values of parameters, defined below, such as the shape parameter and
the support.

2 Radial Basis Functions

The choice of basis function is another of the flexible features of RBF methods.
We will review some properties of the RBFs that we use in the numerical ex-
amples. RBFs can be globally supported, infinitely differentiable, and contain
a free parameter, ε, called the shape parameter. Representatives of this type
of RBF are listed in table 1. The global nature of RBFs of this type leads to
a dense interpolation matrix. Global, infinitely differentiable RBFs typically
interpolate smooth data with spectral accuracy. Details can be found in the
references [5,6,19,20].

The shape parameter affects both the accuracy of the approximation and the
conditioning of the interpolation matrix. In general, for a fixed number of cen-
ters N , smaller shape parameters produce the more accurate approximations,
but also are associated with a poorly conditioned H. The condition number
also grows with N for fixed values of the shape parameter ε. In practice, the
shape parameter must be adjusted with the number of centers in order to pro-
duce a interpolation matrix which is well conditioned enough to be inverted
in finite precision arithmetic. Many researchers (e.g. [8,23]) have attempted
to develop algorithms for selecting optimal values of the shape parameter. By
optimal, we mean the value of the shape parameter that produces the most
accurate interpolant. However, results in this area have been limited by the re-
alities of floating point arithmetic. The optimal choice of the shape parameter
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is still an open question. In practice it is most often selected by brute force.
Recently, Fornberg et. al. [12] developed a Contour-Padé algorithm which is
capable of stably computing the RBF approximation for all ε ≥ 0. The re-
sults of using the Contour-Padé algorithm have shown that the optimal value
of the shape parameter may not be reachable in standard floating point pre-
cision when applying traditional algorithms such as Gaussian elimination to
solve the system (2). Several different strategies [17] have been somewhat
successful in reducing the ill-conditioning problem when using RBF methods
in PDE problems. The strategies include: variable shape parameters, domain
decomposition, preconditioning the interpolation matrix, and optimizing the
center locations. Often, more than one of these strategies are used together.

In our numerical examples, we have used the multiquadric (MQ) RBF which is
defined in table 1. Alternatively, the MQ may be defined as φ(r, c) =

√
r2 + c2.

This is seen to be equivalent to our definition with ε = 1/c. It seems more
natural to define the MQ in this way rather than in the traditional way, as
the shape parameter now behaves in the same way it does in other infinitely
smooth RBFs. The behavior as ε → 0 is that the interpolant becomes more
accurate, the condition number of the interpolation matrix gets larger, and
the shape of the RBF becomes flatter.

For approximation with the MQ RBF we consider the generalized interpolation
problem (3) with M = 1. The interpolation problem with M = 1 takes the
form

s(x) =
N∑

i=0

λiφi(x) + b (6)

where b is a constant and the auxiliary equation is

N∑

i=0

λi = 0. (7)

The resulting interpolation matrix will be of the form

H =




φ(‖x0 − x0‖2) · · · φ(‖x0 − xN‖2) 1
...

. . .
...

...

φ(‖xN − x0‖2) · · · φ(‖xN − xN‖2) 1

1 · · · 1 0




For the MQ the interpolation matrix constructed from the generalized interpo-
lation problem with M = 1 is guaranteed to be invertible for distinct centers
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Name of RBF Definition

Multiquadric (MQ) φ(r, ε) =
√

1 + (εr)2

Inverse Quadratics (IQ) φ(r, ε) = 1/(1 + (εr)2)

Inverse Multiquadric (IMQ) φ(r, ε) = 1/
√

1 + (εr)2

Gaussian (GA) φ(r, ε) = e−(εr)2

Table 1
Global, infinitely smooth RBFs

[22]. For a discussion of the merits of using the MQ RBF with an appended
constant see references [13] and [22].

An alternative to the global, infinitely smooth RBFs are compactly supported
RBFs (CSRBFs). Wendland’s CSRBFs [26] are representative of this class.
The Wendland functions, φ`,κ, are strictly positive definite in Rd for all d ≤ d0

and can be constructed to have any desired amount of smoothness 2κ, i.e.,
φ ∈ C2κ. The parameter ` is ` = bd

2
c + κ + 1. For κ = 0, 1, 2, 3, the functions

can be computed by an explicit formulae [10]. The Wendland functions are
defined to have compact support on the interval [0, 1] but may be scaled to
have compact support on [0, δ] by replacing r with r/δ for δ > 0. The scaling
factor δ can be constant or it can be variable at different centers. A way
to specify the optimal value of δ is currently not known. In our numerical
experiments we have used the Wendland CSRBF

φ4,2 = (1− r)6
+(3 + 18r + 35r2) (8)

where

(1− r)6
+ =





(1− r)6
+ 0 ≤ r < 1

0 r ≥ 1
(9)

which are in C4 and are positive definite in up to three space dimensions. Since
φ4,2 (W42) is positive definite we need only consider the standard interpolation
problem (1) and the matrix H will be nonsingular for a distinct set of centers.
If the support of the basis functions are small compared to the size of the
computational domain of the PDE, banded matrix algorithms can be used
to invert the interpolation matrix. Error estimates [27] for approximations of
f ∈ Hs(Rd) by Wendland’s CSRBFs are of the form

‖f − sf‖L∞(Ω) ≤ Chk+ 1
2 ‖f‖Hs(Rd) (10)

where h denotes the “meshsize”, i.e., the separation distance of the centers,
h = supx∈Ω min ‖x− xj‖ for xj ∈ Rd. Hs(Rd) is the usual Sobolev space
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of functions with s derivatives bounded in L2 and s = d
2

+ k + 1
2

gives the
regularity of the data.

3 RBF methods for time dependent PDEs

Derivatives of the interpolant (1) or (3) may be calculated in a straightforward
manner. For instance, using the interpolant (1) in R, the derivatives at the
centers xj can be calculated as

s(n)(xj) =
N∑

i=0

λiφ
(n)
i (xj). (11)

for n = 1, 2, . . .. The spatial derivatives can be written compactly in matrix
form as

s(n) = H(n)λ (12)

where the elements of H(n) are φ(n)(‖xi − xj‖2).

In the context of a time dependent PDE method, where derivatives may need
to be evaluated thousands of times, it is often more efficient to form the
derivative matrix

D(n) = H(n)H−1. (13)

Then spatial derivatives can be approximated by a single matrix by vector
multiplication

s(n) = D(n)s. (14)

To describe how to implement a RBF method for solving a time dependent
PDE on a fixed grid, we use Burgers’ equation (23) as an example. A fixed
time step has been used, but variable time stepping is possible. The PDE is
discretized in space with radial basis functions to get the semi-discrete system

st = F (s). (15)

The system of ODEs (15) is then advanced in time with any ODE method. In
the numerical examples, we have used an explicit fourth-order Runge-Kutta
method. At time t = 0 the derivative matrixes, D(1) and D(2), are constructed.
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At each internal Runge-Kutta stage, we calculate s(1) = D(1)s, s(2) = D(2)s,
and then for i = 0, . . . , N , Fi = νs(2)(xi)− s(xi)s

(1)(xi). The implementation
of the method is extremely simple.

4 Adaptive Grids

It has generally been accepted, at least for problems in one space dimension,
that adaptive grid methods are capable of resolving PDE solutions that con-
tain regions of rapid variation with acceptable accuracy and without using an
excessive number of grid points. Adaptive grid methods and applications in
one space dimension, have been extensively studied. Many one-dimensional
adaptive grid algorithms for time-dependent PDEs in the context of finite
difference, finite element, and pseudospectral methods have been described.
Details and further references may be found in [1,2,4,14–16]. The adaptive grid
algorithm that we have used is a slightly modification of the equidistribution
of arclength algorithm for one dimensional systems of PDEs described in [24].
We have modified the interpolation step, which used cubic polynomials at in-
terior nodes and quadratic polynomials at the nodes next to the boundary, to
instead use the same RBFs used in the PDE solution at all nodes. Thus, the
method does not require any modifications near the boundaries.

This allows the adaptive RBF methods to maintain an overall high order of
accuracy. When we apply the adaptive algorithm with second-order finite dif-
ferences, we have retained the cubic interpolation step. The algorithm is simple
and computationally inexpensive in that it is not necessary to transform the
original PDE into a new coordinate system, or is it necessary to solve an
additional companion PDE to choose the coordinate system and node distri-
bution. Other algorithms may result in different, and possibly “better” grids
being used, but for our purposes, the features of the RBF methods we wish to
examine will remain very similar, regardless of particular adaptive algorithm
used.

In the adaptive algorithm, we start at time t0 with a uniform grid x0
j . To

advance the PDE in time with the adaptive grid algorithm, we start by as-
suming that at time level tn we have computed approximate solutions sn

j , by
a radial basis function method, to the true solution u(xn

j , t
n) on a grid xn

j ,
where j = 0, . . . , N . Then, the RBF method is used on the grid xn

j to obtain

approximations sn+1
j to u(xn

j , t
n+1). Next, the points (xn

j , s
n+1
j ) are joined by

straight lines and the length θn+1 of the resulting polygon is computed. Then
the points P n+1

j on the polygon are found which divide its total length into
N equal parts. The new nodes xn+1

j are found as the projection of P n+1
j onto

the x-axis. Finally, sn+1
j , the approximation to u(xn+1

j , tn+1), is computed by
using RBFs to interpolate the values (xn

j , s
n+1
j ) to (xn+1

j , sn+1
j ).
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The adaptive algorithm contains two parameters that control the adaptation.
The parameter µ causes the adaptation to be performed every µ time steps.
The parameter β controls the relative size of the largest and smallest grid
spacings by ensuring that

max
i

hi ≤
√

1 + β min
i

hi (16)

where hi = xi − xi−1. When using the adaptive algorithm with CSRBFs, the
bandwidth, b, of the interpolation matrix H will be

b =

⌊
δ

minihi

⌋
. (17)

The computational cost of choosing a new grid is relatively small. However,
setting up the RBF method on the new grid involves constructing derivative
matrices for the new grid. Thus, the setup costs of the adaptive method may
be prohibitive, unless the PDE solution can be approximated with a relatively
small number of centers or unless CSRBFs are used which lead to a narrowly
banded interpolation matrix that can be efficiently inverted.

To obtain an accurate numerical approximation with RBFs and the adaptive
grid algorithm, we have found that a good strategy is to monitor the condition
number of the interpolation matrix H that is used to form new derivative
matrices and to interpolate to the new set of centers each time the solution
is re-gridded. The condition number of H should not exceed 5 × 1010 during
any stage of the time evolution of the solution. If the condition number does
become too large, the stage should be rejected and recalculated with a smaller
value of β, which decreases the minimum separation distance of the centers.
Another option to reduce the condition number of H for a rejected stage is
to decrease the number of centers used. Both the values of β and N may be
adapted when a re-gridding takes place. If it is not possible to achieve small
enough condition numbers in a single domain, domain decomposition will be
necessary.

5 Numerical Results

First, we have applied the adaptive algorithm described in section 4 to select a
computational grid for a single derivative calculation. Then we have applied it
to two PDE problems with solutions containing regions of rapid variation. The
results are compared with pseudospectral and finite difference approximations.

The simple adaptive algorithm can be used in RBF methods to achieve an
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accuracy goal, but with significantly fewer centers than a fixed grid method
would require. In order to get a point of reference for the accuracy of RBF
function methods on fixed grids, we compare the accuracy of the RBF function
methods on fixed grids with the well known Chebyshev pseudospectral (CPS)
method [7]. Additionally, we compare the RBF methods with a centered second
order finite difference method (FD2) on both fixed and adaptive grids. We
illustrate the fact that the simple adaptive algorithm that we have applied in
the RBF and FD2 methods is not able to be applied in CPS method since the
method is restricted to a fixed grid or to mappings of that grid. This feature
of the CPS method adds to the complexity of CPS adaptive algorithms and
limits the possible positioning of grid points.

For all the PDE methods we have taken small uniform time steps with a fourth-
order explicit Runge-Kutta method in order to make the temporal errors small.
In this way, we have isolated the effects of the spatial approximations as much
as possible. However, algorithms which adaptively adjust the time step could
be used in conjunction with the adaptive spatial schemes to reduce the number
of time steps taken.

Two types of errors were measured, the max error

E∞ = max
0≤i≤N

|f(xi)− s(xi)| (18)

where f(x) is the exact value and s(x) is the RBF approximation, and the
rms error

E2 =

√√√√ 1

N

∑

0≤i≤N

|f(xi)− s(xi)|2. (19)

5.1 Single Derivative

Our first numerical experiment compares the accuracy of the RBF methods
and the CPS method for calculating a single derivative of a function with a
region of rapid variation. The comparison is made on both fixed base grids
and on grids adapted based on qualities on the function being approximated.
The function being differentiated is the exact solution to Burgers’ equation
(23) from our second numerical example. We have used the solution at time
t = 1.1 with ν = 0.01. In both the base grid and adapted grid calculations
we have used 50 grid points. RBF methods are not tied to a fixed grid, but
we take an evenly spaced grid as the “base” grid of the methods. We can not
do the same for the CPS method since methods that are based on high order
global polynomial interpolation are unstable on uniform grids. This situation
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method E2 error

MQ base 0.056371

MQ adaptive 0.000087

CPS base 0.319269

CPSα = 0.99 0.109765

CPS adaptive 0.000093
Table 2
Single derivative results, N = 49

is often described by the term Runge phenomenon. Among several choices,
the base grid for the CPS method is usually chosen to be

xj = −cos(
πj

N
), j = 0, 1, ..., N. (20)

The grid clusters nodes quadratically around the boundaries. The results of
the base grid calculations are listed in table 2. The lack of resolution in center
of the domain caused by the boundary clustering of nodes leads to a large
error in the CPS method. Often, the grid (20) is redistributed via a mapping
of this grid in order to lessen stable explicit time stepping limits in a time
dependent PDE method or to provide greater resolution in regions other than
near the boundaries. Perhaps the most used map is [18]

x =
arcsin(αξ)

arcsin(α)
(21)

which can produce a nearly evenly distributed set of grid points as α → 1,
but is singular for α = 1. The results of using this map with α = 0.99 are
listed in the CPSα=0.99 row of table 2. The results are better than the CPS
base grid results, but not as good as the MQ RBF results on the uniform grid.
For the MQ RBF, the shape parameter was selected as ε = 15. A remarkable
fact about radial basis functions is that they can produce spectrally accurate
results to non-periodic problems on a uniform grid.

The simple adaptive algorithm that we have described in section 4 is applicable
to both the RBF and FD2 methods, but can not be applied in the framework of
the CPS method since the CPS method must be applied on its base grid (20),
or on mapping of that grid. The simple adaptive algorithm does not account
for this restriction, and more complex grid adaptation algorithms must be
used for the CPS method.

Even though the adaptive algorithm we have used in the FD and RBF methods
can not be used in the CPS method, adaptive algorithms have been developed
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for the CPS method. The adaptive CPS methods typically write the PDE in
a transformed variable ξ through a mapping x = f(ξ, p1, p2) where p1 is a pa-
rameter that describes the location of the rapid variation and p2 is a parameter
that controls the magnitude of the coordinate contraction near x = p1. The
values of p1 and p2, and thus the grid point locations, are selected by mini-
mizing a functional of the solution that is connected with the approximation
error. The functional is typically taken to be the norm of a weighted Sobolev
space such as H2

w, but other choices are possible [3]. The possible grids are
limited to mappings of the grid (20). This grid dependence makes the CPS
adaptive algorithms difficult to apply to problems with multiple regions of
rapid variation and hinders extension to higher space dimensions. Although
the mapping used may redistribute the grid points (20) to the interior of the
domain and to regions of rapid variation, some boundary clustering will still
be present. Additionally, the CPS adaptive algorithms require a multidimen-
sional optimization step which adds to the complexity of the methods. The
full description of the adaptive CPS algorithm for PDEs is beyond the scope
of this work and the interested reader is referred to [2] for details and for an
application of the adaptive CPS methods to Burgers’ equation. Here we only
apply to method to a single derivative calculation. A map that is commonly
used in the CPS adaptive algorithms is

x = f(ξ, p1, p2) = p1 + p2 tan[ω(ξ − ξ0)] (22)

where ξ0 = (κ − 1)/(κ + 1), κ = tan−1([1 + p1]/p2)/ tan−1([1 − p1]/p2), and
ω = tan−1([1 − p1]/p2)/(1 − ξ0). The adaptive grid results are given in table
2. The MQ RBF grid was produced by the algorithm described in section 4.
The shape parameter used was ε = 15 and the grid adaption parameter was
β = 18. The CPS adaptive grid was produced by minimizing a functional
based on the H2

w norm to select the parameters p1 and p2 in map (22). The
method selects the parameters as p1 ≈ 0 and p2 ≈ 5.3. The base and adapted
grids for the single derivative test are shown in figure 1.

The results of this simple test of calculating a single derivative illustrate sev-
eral features of RBF methods. One is that they can be as accurate as spectral
methods. RBF methods are grid free which allows center locations to be se-
lected without restriction. Additionally, and important feature of RBF meth-
ods that is sometimes overlooked is that they can produce spectral accuracy
on a uniform grid.
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method N E2 E∞ supp ε

MQ 103 0.00196 0.0092 - 11

W42 103 0.00159 0.0129 2 -

W42 103 0.00183 0.0159 0.6 -

FD2 340 0.00198 0.01889 - -

CPSα=0.99 113 0.00181 0.0068 - -

MQα=0.99 113 0.00173 0.0082 - 10

W42α=0.99 111 0.00172 0.0144 2 -
Table 3
Fixed grid Burgers’ results, ν = 0.0035.

5.2 Burgers’ Equation

Our first PDE problem is Burgers’ equation

ut + uux = νuxx (23)

on the interval [−1, 1]. The exact solution to the test problem is

u(x, t) =
0.1ea + 0.5eb + ec

ea + eb + ec
. (24)

where a = −(x + 0.5 + 4.95t)/(20ν), b = −(x + 0.5 + 0.75t)/(4ν), and c =
−(x+0.625)/(2ν). The initial condition, u(x, 0), and the boundary conditions
u(−1, t) = gl(t) and u(1, t) = gr(t) are specified using the exact solution. We
have taken ν = 0.0035 which makes the viscous term small and allows a steep
front to develop in the solution. The exact solution is illustrated in the left
image of figure 2. In our numerical results we seek an E2 error less than 0.002
at time t = 1.1. At this time the steep front has completely developed. The
time step used was ∆t = 0.002. Fixed grid results for Burgers’ equation are in
table 3. Non-subscripted results are on uniformly spaced grids, while methods
with subscripts of α indicate that the fixed, but non-uniformly spaced grid has
been formed using equation (21). For the CPS method, we used a grid formed
with (21) with α = 0.99 to get a grid with spacing closer to uniform than
the base grid (20). Without adaptation, both the global MQ and compactly
supported W42 RBF methods perform better than the CPS method on this
problem. The W42 RBF does this with support ranging from supp = 0.6 to a
full support of supp = 2.0. The uniform distribution of grid points in the RBF
methods allow better interior resolution of the steep front in the center of the
domain. In problems lacking inherent dissipative mechanisms such as our next
example, the advection equation, the clustering of centers near the boundary
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method N β µ E2 E∞ supp ε

MQ 47 35 12 0.00191 0.00947 - 52

W42 60 30 10 0.00175 0.00670 2 -

W42 60 30 10 0.00129 0.00489 1.25 -
Table 4
Adaptive Burgers’ results, ν = 0.0035.

can reduce errors in the RBF methods that occur in the boundary regions.
However, in problems such as Burgers’ equation with build in dissipation, there
does not seem to be any benefit to clustering centers around the boundary,
unless regions of rapid variation are near the boundary.

The adaptive grid Burgers’ results are shown in table 4. Using the MQ RBF
method, the adaptive algorithm was able to meet the accuracy goal using
less than half as many centers as the fixed grid methods. The solution at
t = 1.1 using the adaptive MQ algorithm is shown in figure 3. The condition
numbers of the interpolation matrix that must be inverted each time a new
grid is chosen ranged from 8.4 × 103 to 1.7 × 106 for the MQ RBFs and
2 × 107 to 4.6 × 1010 for the W42 RBFs. Throughout the time stepping, the
matrix condition numbers were monitored to ensure that they did not exceed
5.0× 1010.

It is interesting to note that the adaptive FD2 algorithm was not able to
achieve the accuracy goal with any number of grid points. It is suspected
that the third order interpolation stage was not capable of producing a sharp
enough edge at the steep front. The FD2 adaptive solution was smeared in
this area.

Finally, we consider an extreme version of the previous test problem in which
we use only a fourth as much viscosity, ν = 0.000875. The solutions to the
problems are nearly piecewise constant as is illustrated in the right image of
figure 2. The fixed grid results are shown in table 5. Without adaptation,
the Chebyshev pseudospectral method needs a large number of nodes due
to Gibbs-like oscillations around the steep fronts unless a spectral filter [25]
is applied. The large number of grid points used by the CPS method also
required that a very small time step be used for stability in the explicit RK4
method. The RBF methods perform better than the CPS method without
adaptation and significantly better than the finite difference method. For the
adaptive RBF method, several combinations of β, µ, supp, and ε resulted in
the accuracy goal being met, two of which are listed in table 6. With such steep
fronts to be resolved, it is difficult to place enough centers in the vicinity of
the fronts without the interpolation matrix becoming very poorly conditioned.
This necessitated a very large shape parameter being used in the adaptive MQ
method. Using the MQ method with a large shape parameter often results
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method N E2 E∞ supp ε ∆t

MQ 299 0.00179 0.01543 - 21 0.001

W42 339 0.00191 0.02696 0.8 - 0.002

FD2 1000 0.00193 0.0369 - - 0.0005

CPSα=0.99 429 0.00157 0.0206 - - 0.000025
Table 5
Fixed grid Burgers’ results, ν = 0.000875,

method N β µ E2 E∞ supp ε ∆t

MQ 139 100 20 0.00196 0.007455 - 110 0.0005

W42 149 20 10 0.00177 0.00938 0.8 - 0.002
Table 6
Adaptive Burgers’ results, ν = 0.000875.

in accuracy comparable to lower order finite difference methods. However,
despite the large shape parameter, the MQ method produced good results
while the adaptive FD2 algorithm was unable to meet the accuracy goal with
any number of grid points.

5.3 Advection Equation

Our next numerical experiment is with the advection equation

ut + ux = 0 (25)

with initial condition u(x, 0) = e−2000(x+1)2 and boundary condition u(−1, t) =
g(t) = e−2000t2 . In our numerical results we seek an E2 error less than 0.002
at time t = 1.0 when the thin pulse has moved to the center of the domain.
Table 7 gives results on fixed grids. A small time step of ∆t = 0.001 was used.
Non-subscripted results are on uniformly spaced grids, while methods with
subscripts of α indicate that the fixed, but non-uniformly spaced grid has been
formed using equation (21). It is well known that the largest errors in RBF
methods occur near boundaries [11], especially in non-dissipative wave type
problems such as the advection equation. The reduction of boundary errors in
this type of problem has become an active area of research. One possible way
to lessen the boundary errors is to cluster centers around the boundaries as
pseudospectral methods do. The results of the boundary clustering of centers
can be seen in the MQα=0.99 and MQα=0.9975 results. With a properly chosen
grid, both the CPS and the MQ RBF method can meet the accuracy goal
with N = 111. As expected, the second order finite difference method was not
competitive with the RBF or CPS methods.
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method N E2 E∞ supp ε

MQ 169 0.00193 0.01825 - 24

W42 267 0.00195 0.01934 2 -

W42 229 0.00192 0.01818 0.1 -

FD2 3700 0.00199 0.01716 - -

CPSα=0.99 111 0.00178 0.00621 - -

MQα=0.99 125 0.00189 0.00721 - 8.5

MQα=0.9975 111 0.00167 0.00198 - 6.4
Table 7
Fixed grid Advection results

method N β µ E2 E∞ supp ε

MQ 61 48 2 0.00197 0.00805 - 31

W42 49 500 2 0.00141 0.00395 0.07 -

FD2* 1250 150 10 0.00150 0.00925 - -
Table 8
Adaptive Advection results

Table 8 gives the adaptive grid results. A small time step of ∆t = 0.001
was used except for the FD2, which required a smaller time step for stability
and ∆t = 0.00025 was used. With the grid parameter β = 500 in the W42
calculation, the largest grid spacing may be as much as 22 times larger than
the smallest grid spacing. In figure 4 this wide grid spacing can be observed
in the flat regions of the solution. Despite the fact that the MQ interpolant is
spectrally accurate and that the W42 approximation has only a fixed algebraic
convergence rate, the W42 RBF was able to attain the accuracy goal with less
nodes than the MQ RBF. Heuristically, this can be explained by the fact that
with a support of 0.07 the W42 RBFs have a shape similar to the features in the
PDE solution, while the MQ does not mimic the features of the PDE solution
as well. This is in agreement with one of the basic tenants of approximation
theory - choose a basis in which a function can be well represented by a small
number of basis functions.

The condition numbers of the interpolation matrix that must be inverted each
time a new grid is chosen ranged from 9.5× 107 to 3.4× 109 for the MQ basis
functions and 1.0×102 to 2.1×106 for the W42 basis functions. The structure
and sparse nature of the interpolation matrix for the adaptive W42 calculation
at t = 1.0 with δ = 0.07 is shown in figure 5.
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6 Conclusions

Radial Basis Function methods were used to solve two PDEs with solutions
containing regions of rapid variation. Without the use of grid adaptation,
the RBF methods were competitive in both accuracy and computational cost
with the Chebyshev pseudospectral method. The inherent flexility of the RBF
methods allowed the node location to be chosen adaptively in a way that re-
tained the desired accuracy, but used significantly fewer centers. This complete
freedom choice of center location is lacking in pseudospectral methods, since
adaptations are limited to mappings of a fixed, non-uniformly spaced grid.
The gridless feature of RBF methods will allow PDEs with solutions having
multiple regions of rapid variation, and problems in higher dimensions, to be
handled equally as well. The ability of the RBF methods to use a fixed uni-
formly space grid is another advantage of the RBF methods over the CPS
method.

The choice of basis function is another flexible feature of RBF methods. Basis
functions may have global or compact support and may have varying degrees
of smoothness. It was found in our numerical results that the “best” choice
of basis function for a particular problem was one in which the shapes of the
basis functions best matched the shapes or features of the PDE solution. This
allowed the solution to be approximated well with a small number of basis
functions.

Our future research will be concerned with adaptive grid RBF methods in two
and three space dimensions. We will be concerned with both existing adaptive
algorithms and new algorithms specifically tailored to RBF methods. The close
connection between RBFs and wavelets [9] will be explored with the goal of
using wavelets to guide the adaptation.

References

[1] S. Adjerid and J. E. Flaherty. A moving finite element method with
error estimation and refinement for one-dimensional time dependent partial
differential equations. SIAM Journal on Numerical Analysis, 23:778–796, 1986.

[2] J.M. Augenbaum. An adaptive pseudospectral method for discontinuous
problems. Applied Numerical Mathematics, 5:459–480, 1989.

[3] A. Bayliss, D. Gottlieb, B. J. Matkowsky, and M. Minkoff. An adaptive pseudo-
spectral method for reaction-diffusion problems. Journal of Computational
Physics, 81:421–443, 1989.

[4] G. Beckett, J. Mackenzie, A. Ramage, and D. Sloan. On the numerical solution

16



of one-dimensional PDEs using adaptive methods based on equidistribution.
Journal of Computational Physics, 167:372–392, 2001.

[5] M. D. Buhmann. Spectral convergence of multiquadric interpolation.
Proceedings of the Edinburgh Mathematical Society, 36:319–333, 1993.

[6] Martin D. Buhmann. Radial Basis Functions. Cambridge University Press,
2003.

[7] Claudio Canuto, M. Y. Hussaini, Alfio Quarteroni, and Thomas A. Zang.
Spectral Methods for Fluid Dynamics. Springer-Verlag, New York, 1988.

[8] R. E. Carlson and T. A. Foley. The parameter r2 in multiquadric interpolation.
Computers and Mathematics with Applications, 21(9):29–42, 1991.

[9] C. K. Chui, J. Stockler, and J. D. Ward. Analytic wavelets generated by radial
function. Advances in computational mathematics, 5:95–123, 1996.

[10] G. E. Fasshauer. On smoothing for multilevel approximation with radial basis
functions. In Charles Chui and Lary Schumaker, editors, Approximation Theory
IX. Vanderbilt University Press, 1998.

[11] B. Fornberg, T. Dirscol, G. Wright, and R. Charles. Observations on the
behavior of radial basis function approximations near boundaries. Computers
and Mathematics with Applications, 43:473–490, 2002.

[12] B. Fornberg and G. Wright. Stable computation of multiquadric interpolants
for all values of the shape parameter. To appear in Computers and Mathematics
with Applications, 2004.

[13] R. L. Hardy. Theory and applications of the multiquadric-biharmonic method.
Computers and Mathematics with Applications, 19(8/9):163–208, 1990.

[14] D. Hawken, J. Gottlieb, and J. Hansen. Review of some adaptive node-
movement techniques in finite element and finite difference solutions of PDEs.
Journal of Computational Physics, 95:254, 1991.

[15] W. Huang and R.D. Russell. A moving collocation method for solving time
dependent partial differential equations. Applied Numerical Mathematics,
20:101–116, 1996.

[16] Leland Jameson. A wavelet-optimized, very high order adaptive grid and order
numerical method. SIAM Journal on Scientific Computing, 19(6):1980–2013,
1998.

[17] E. Kaansa and Y.C. Hon. Circumventing the ill-conditioning problem with
multiquadric radial basis fuctions: Applications to elliptic partial differential
equations. Computers and Mathematics with Applications, 39(7/8):123–137,
2000.

[18] R. Kosloff and H. Tal-Ezer. A modified Chebyshev pseudospectral method with
an O(1/N) time step restriction. Journal of Computational Physics, 104:457–
469, 1993.

17



[19] W. R. Madych and S. A. Nelson. Error bounds for multiquadric interpolation.
In C. Chui, L. Schumaker, and J. Ward, editors, Approximation Therory VI,
pages 413–416. Academic Press, 1989.

[20] W. R. Madych and S. A. Nelson. Multivariate interpolation and conditionally
positive definite functions ii. Mathematics of Computation, 4(189):211–230,
1990.

[21] C. Micchelli. Interpolation of scattered data: Distance matrices and
conditionally positive definite functions. Constructive Approximation, 2:11–22,
1986.

[22] M. Powell. The theory of radial basis function approximation in 1990.
In W. Light, editor, Advances in Numerical Analysis, Vol. II: Wavelets,
Subdivision Algorithms and Radial Functions. 1990.

[23] S. Rippa. An algorithm for selecting a good parameter c in radial basis function
interpolation. Advances in Computational Mathematics, 11:193–210, 1999.

[24] J. Sanz-Serna and I. Christie. A simple adaptive technique for nonlinear wave
problems. Journal of Computational Physics, 67:348–360, 1986.

[25] H. Vandeven. Family of spectral filters for discontinuous problems. SIAM
Journal of Scientific Computing, 6:159–192, 1991.

[26] H. Wendland. Piecewise polynomial, positive definite and compactly supported
radial funtions of minimal degree. Advances in Compuational Mathematics,
4:389–396, 1995.

[27] H. Wendland. Error estimates for interpolation by compactly supported radial
basis functions of minimal degree. Journal of Approximation Theory, 93:258–
272, 1998.

18



−1 −0.5 0 0.5 1

−16

−14

−12

−10

−8

−6

−4

−2

0

x

MQ base grid 

MQ adaptive grid 

CPS base grid 

CPS adaptive grid 

Fig. 1. Derivative of the solution of Burgers’ equation (23) with ν = 0.01 at t = 1.1.
Also displayed are the grids from the numerical experiment of section 5.1 which
approximates the derivative of the solution profile on base and adaptive grids using
the MQ RBF method and the Chebyshev pseudospectral method.
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Fig. 2. Exact solution of Burgers’ (23) equation (solid) from section 5.2 at t = 0
and t = 1.1 (dashed). Left: ν = 0.0035. Right ν = 8.75e− 4.
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Fig. 3. Exact solution of Burgers’ equation (solid) at t = 1.1 from section 5.2. Open
circles represent the center locations at time t = 1.1 using the MQ RBF and N = 47.
Results of the numerical experiment are given in table 4.
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Fig. 4. Exact advection equation solution (solid) at t = 1 from section 5.3. Open
circles represent the center locations at time t = 1 using the Wendland W42 RBF
and N = 49. Results of the numerical experiment are given in table 8.
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Fig. 5. Structure of the interpolation matrix H at time t = 1 with N = 49 from the
W42 numerical solution of the advection equation from section 5.3 and figure 4.
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