

08/00

34-10-04
SYSTEMS DEVELOPMENT MANAGEMENT

SIZING SOFTWARE WITH
TESTABLE REQUIREMENTS

Peter B. Wilson

I N S I D E

Software Sizing Measures; Definition of Requirements; Testable Requirements;
Testable Requirements as Metric; Testable Requirements and Test Cases;

Application of Testable Requirements

According to a survey conducted by Mosaic, Inc., and the Quality Assur-
ance Institute, only 23 percent of project managers measure the progress,
effectiveness, and productivity of their software development efforts.1

Since one cannot effectively manage what one cannot measure, why do
so few software developers measure? Why, when the costs to develop,
maintain, and fix software are so great, do software developers ignore
this important activity? One important reason is that current software siz-
ing measures are not flexible enough to meet the needs of today’s soft-
ware developers.

The purpose of this article is to describe a software sizing measure —
testable requirements — first proposed by this author.2 Testable require-
ments implies a new software measurement paradigm. As such, it has
some very interesting attributes and applications.

SOFTWARE SIZING MEASURES
Sizing measures are used to normalize other measures so that valid com-
parisons can be made across (or within) systems. Without a sizing mea-
sure, productivity statistics cannot be
computed. For example, barrels of
oil and square feet are used by the
oil and the real estate industries, re-
spectively, to size their products.

A software sizing measure is fun-
damental to any software measure-
ment program. While estimating cost
and schedule is probably the most

P A Y O F F I D E A

The two commonly used metrics for sizing soft-
ware are lines of code and function points. How-
ever, these measures are not flexible enough to
meet today’s needs. Testable requirements offer
a new paradigm for measuring the size of a sys-
tem. Appl icat ions inc lude measur ing system
scope and earned value, measuring changes in
system size, and measuring the thoroughness of
test cases.
Auerbach Publications
© 2000 CRC Press LLC

common use of a sizing measure, there are many other potentially valu-
able applications, including progress measurement, earned value, risk
identification, and change management.

There are only two software sizing measures widely used today: lines
of code (LOC) and function points (FP). And, although each is a sizing
measure, the two actually measure different things and have very differ-
ent characteristics.

LOC is a measure of the size of the system that is built. It is highly de-
pendent on the technology used to build the system, the system design,
and how the programs are coded. There are many well-documented
problems and issues with LOC.3,4 In fact, Capers Jones has stated5 that
anyone using LOC is “committing professional malpractice.” Despite
these problems, LOC is still frequently used by very reputable and pro-
fessional organizations.

In contrast to LOC, function points (FP) is a measure of delivered
functionality that is relatively independent of the technology used to de-
velop the system. While FP addresses many of the problems inherent in
LOC, and has developed a loyal following, it has its own set of issues.2,4

Because LOC and FP have been the only widely accepted ways to size
a system, a software developer’s measurement choices have been very
limited. Most have opted not to measure at all.

REQUIREMENTS
For this article, a “requirement” is defined as a condition or capability
that is necessary for a system to meet its objectives. This definition is
purposely broad. Many software developers mean the “user require-
ments” when they use the term “requirements.” The above definition
purposely includes the traditional user requirements as well as other
categories such as technical design and operational requirements. The
IEEE Standard Glossary of Software Engineering Terminology includes
definitions of six different types of requirements: functional, design,
implementation, interface, performance, and physical. Thus, it is im-
portant to size the user requirements and any other meaningful cate-
gory of requirement.

It should be emphasized that frequently there are important differenc-
es between various types of requirements. Many problems occur, for ex-
ample, when developers do not properly distinguish between user
requirements and technical design requirements. For purposes of sizing,
however, there is value in being able to size each type of requirement
with the same measure. The above definition of requirements thus in-
cludes all types.
Auerbach Publications
© 2000 CRC Press LLC

TESTABLE REQUIREMENTS
Most methodologies (e.g., requirements, design, etc.) specify functional-

ity in increasing levels of detail. This is illustrated in Exhibit 1. The high-
est level is generally a major user requirement (e.g., order entry or claims
processing). Once identified, high-level requirements can be decom-
posed into the next — ”intermediate” — level of user requirements (e.g.,
reports or screens/windows). This level, and succeeding levels, can be
further decomposed. Decomposition stops (usually after three or four
levels) when the requirement is precisely defined; that is, when there is
no ambiguity in the specification of the requirement.

The criterion that the requirement be precisely defined and unambigu-
ous will be met only if the requirement is testable. A requirement is test-
able if someone is able to write one or more test cases that would validate
whether the requirement has or has not been implemented correctly. This
is the source of the term “testable requirement.” For most requirements, a
testable requirement can be described in terms of the (see Exhibit 2):

• state of the system
• data elements that are inputs (e.g., customer number or product

number)
• condition or action that invokes the requirement (e.g., upon entry

from the user, when the order is validated, or when the check is pro-
cessed)

• expected result is described in terms of data elements (e.g., the cus-
tomer number must be eight-digit numeric, or the product quantity
must be greater than zero)

EXHIBIT 1 — Requirements Decomposition
Auerbach Publications
© 2000 CRC Press LLC

TESTABLE REQUIREMENTS AS A SIZING MEASURE
The concept of a testable requirement has been used for years as a test
of the quality and detail of system specifications. The main assertion of
this article is that the number of testable requirements is a measure of the
size of the system. This in turn has many practical applications for the
measurement of the software development process. The “testability” at-
tribute of a requirement is the key concept that normalizes the require-
ment, and makes the measure meaningful.

Because the above definition of requirements includes not only the
traditional user requirements, but also other types of requirements, there
is considerable flexibility to “size” either a complete system or selected
aspects of a system. For example:

• user requirements
• design requirements
• requirements for a particular program
• portion of the system that is being changed by a maintenance release
• size of a software package
• size of modifications required to a software package

This raises the question: what do we really mean by the size of a system?
The answer depends on one’s perspective:

• for an end user, the size is the number of user requirements (e.g.,
FP)

• for a programmer, the size is the number of program requirements
(e.g., LOC)

• for an estimator trying to project costs, the size is the total of all types
of requirements

A NEW PARADIGM FOR SIZING SOFTWARE SYSTEMS
Testable requirements offers a new paradigm for measuring the size of a
system. One way to illustrate the differences between lines of code, func-
tion points, and testable requirements is to consider how each would look
at the differences between a system developed using a character-based

EXHIBIT 2 — Testable Requirements
Auerbach Publications
© 2000 CRC Press LLC

user interface (e.g., DOS or a 3270 mainframe) and the equivalent system
developed using a graphical user interface (GUI) such as Windows.

• LOC perspective: It would be very difficult to make a comparison using
LOC here because of the differences in the way the interfaces are de-
veloped. Because the “language” used to code screen or window func-
tionality is not procedural, it is very difficult to measure LOC, let alone
make valid comparisons between two different technical platforms.

• FP perspective: Function points would consider the interfaces equiv-
alent because they provide the same functionality to the user (e.g.,
the same number of logical inputs and outputs). The value adjust-
ment factor could be used to make the GUI a higher function point
count. (The value adjustment factor is essentially a complexity factor
used to adjust a raw function point count because of factors related
to the complexity of the system.)

• Testable requirements perspective: Testable requirements would give
a much higher count to a GUI than its character-based equivalent.
There are simply more conditions (i.e., testable requirements) that
are supported by a GUI than are supported by a character-based in-
terface. For example, there is usually only one way to enter a com-
mand in a character-based interface: through the menu. In the
equivalent GUI interface, there are usually at least three: the menu,
the keyboard, and the icon.

Testable requirements can also be used to measure and analyze a sys-
tem in ways that are not possible with other measures. Because testable
requirements can measure external user requirements as well as internal
technical requirements, it is possible not only to size the user require-
ments, but also to quantify their impact on the technical design. Perfor-
mance requirements, for example, may contribute relatively few testable
requirements when viewed from an end-user perspective. However,
when viewed from a technical perspective, meeting the performance re-
quirements may require a complex, real-time technical design, which in
turn requires many testable requirements.

Similarly, some types of systems such as process control and scientific
systems may have relatively few external requirements, but have a very
complicated internal technical design. The testable requirement para-
digm does not require a complexity factor to account for this. Rather, the
complexity will manifest itself in the size of the design, or the size of in-
dividual programs. Complexity, in essence, means that there are more
testable requirements somewhere.
Auerbach Publications
© 2000 CRC Press LLC

TESTABLE REQUIREMENTS VERSUS TEST CASES
While the testability of a requirement is fundamental to the concept of
sizing with testable requirements, it should be noted that sizing a system
using testable requirements is not the same as counting test cases. The
number of testable requirements may be very different from the number
of test cases. There are a number of reasons for this, including:

• A testable requirement may require more than one test case to vali-
date it.

• Not all testable requirements will have associated test cases. (Most
systems test less than half the testable requirements.)

• Some test cases may be designed to validate more than one testable
requirement.

APPLICATIONS OF TESTABLE REQUIREMENTS
The following examples, which are based on this author’s experience,
show a few of the ways testable requirements can be used tactically by
software developers.

EXHIBIT 3 — System Size

High-Level Requirement Testable Requirements

Business
Accounting 942
Administration 120
Audit and control 225
Editing functions 526
Update functions 450
Maintenance 789
Conversion 2500
Security 569
Reporting 3590

Subtotal 9711
Technical

Communication 1500
Interface1 225
Interface2 369
Interface3 235
Interface4 436

Subtotal 2765
Operations

Backup 2340
Recovery 3589
Installation 890

Subtotal 6819
Total: 19,295
Auerbach Publications
© 2000 CRC Press LLC

Measuring System Scope and Earned Value
Exhibit 3 illustrates how the size of a system can be summarized. It
also shows how the relative size of high-level requirements can be
communicated.

Earned value is a measure of completed work expressed in terms of
the budget assigned to that work. Although it is widely used on large
government procurement projects, its application to software projects
has been limited. In large part, this is due to the difficulty in determining
the relative size (i.e., value) of the deliverables required to develop a sys-
tem. Testable requirements appear to have the granularity and flexibility
to make earned value a practical tool for software developers.

Measuring Changes In System Size
Understanding, controlling, managing, and communicating system scope
is critical to the success of many projects. Exhibit 4 illustrates how chang-
es in a system’s size were tracked using testable requirements. The shape
of this curve is typical, and illustrates the dynamics of measuring the sys-
tem size over time. At first, the size will be significantly underestimated,
in part because the size estimate will only include what is known by the
people sizing the system, and in part because the complexity of some
components will be underestimated. As more is learned about the sys-
tem, the size estimate will grow. Eventually, management will become
concerned about scope and some of the requirements will be eliminated.
After that, the usual scope creep will cause the size to grow again.

Test Case Coverage Measurements
Testable requirements can also be used to measure the thoroughness of
test cases, as illustrated in Exhibit 5. In this example, the first column lists

EXHIBIT 4 — System Size over Time
Auerbach Publications
© 2000 CRC Press LLC

the high-level requirements; the second column lists the number of test-
able requirements associated with the corresponding high-level require-
ment; the third column lists the number of requirements in the second
column that are validated by test cases; and the fourth column lists the
percentage of testable requirements that are “covered” by test cases. This
measure of requirements coverage is very powerful and offers important
management insight into the adequacy of the testing.

Experience Using Testable Requirements
Mosaic has found testable requirements to be an intuitive, flexible mea-
sure that is a very useful tool for communicating issues to users and man-
agement. Difficulties using the measure center around two issues:

1. The newness of the measure. There is not a large body of industry
data and experience with the measure. It is very easy to underesti-
mate the size of a system because certain types of requirements are
not properly incorporated in the size. For example, in contrast to tra-
ditional mainframe systems, client/server systems can introduce sig-
nificant new complexity in the user interface (e.g., the GUI), the
database technology (e.g., the need to synchronize a database on a

EXHIBIT 5 — Coverage Status

High-Level Requirement Testable Requirements Number Tested Percent Covered

Business
Accounting 942 222 24
Administration 120 24 20
Audit and Control 225 98 44
Editing Functions 526 89 17
Update Functions 450 54 12
Maintenance 789 234 30
Conversion 2500 1200 48
Security 569 0 0
Reporting 3590 2400 67

Subtotal 9711 4321 44
Technical

Communication 1500 17 1
Interface1 225 180 80
Interface2 369 200 54
Interface3 235 175 74
Interface4 436 220 50

Subtotal 2765 792 29
Operations

Backup 2340 250 11
Recovery 3589 200 6
Installation 890 350 39

Subtotal 6819 800 12
Total: 19,295 5913 31
Auerbach Publications
© 2000 CRC Press LLC

server with a database on the mainframe system), or numerous other
ways. World Wide Web applications are introducing other types of
requirements. With experience, we are learning how to identify and
size these types of requirements.

2. Understanding the requirements. System specifications are frequently
vague and incomplete. This can make it difficult to size a system with
any sizing measure. Sizing with testable requirements will quickly fo-
cus attention on areas of the system that are not well-understood or
well-specified. While this can be frustrating from a sizing perspective,
it provides a valuable early warning of potential problems if the
specifications are not corrected.

SUMMARY
The high development, maintenance, and repair costs of software are
well-known. Managing software requires measuring it, but too few soft-
ware developers measure the progress, effectiveness, and productivity of
their system development efforts. One reason is that the current software
sizing measures are not flexible enough for today’s systems. The two most
common measures — lines of code and function points — fall far short.

Still, a more quantitative approach to developing software is essential.
To achieve this, the software profession needs a sizing measure that is
understood and accepted by software developers, users, and executive
management. A practical, flexible sizing measure is needed not only to
develop more reliable estimates, but also to better communicate with
technical and nontechnical management on issues of scope, change,
complexity, and the like.

This article shows that the concept of testable requirements meets this
need. While the testable requirements measure has been used for years
to test the quality and detail of system specifications, the number of test-
able requirements is also a measure of the size of the system. This new
paradigm for measuring the size of a system enables system analysis in
ways not possible with other measures. Some applications include mea-
suring system scope and earned value, measuring changes in system
size, and measuring the thoroughness of test cases. Difficulties in using
testable requirements as a sizing metric include the newness of the mea-
sure and understanding the requirements.

© 2000 Mosaic, Inc. Printed with permission.

Peter B. Wilson is executive vice president of Mosaic, Inc., Naperville, Illinois.

Notes
1. Quality Assurance Institute, Establishing a Software Defect Management Process, Quality Assurance In-

stitute Research Report #8, 1995.
Auerbach Publications
© 2000 CRC Press LLC

2. Wilson, P., Testable requirements — An alternative software sizing measure, Journal of the Quality As-
surance Institute, October 1995, 3–11.

3. Jones, C., Applied Software Measurement, McGraw-Hill, New York, 1991.
4. Jones, C., Sizing up software, Scientific American, December 1998.
5. Chicago Quality Assurance Association presentation, November 22, 1996, Chicago, IL.
Auerbach Publications
© 2000 CRC Press LLC

	SYSTEMS DEVELOPMENT MANAGEMENT
	Contents
	Sizing Software with Testable Requirements
	SOFTWARE SIZING MEASURES
	REQUIREMENTS
	TESTABLE REQUIREMENTS
	TESTABLE REQUIREMENTS AS A SIZING MEASURE
	A NEW PARADIGM FOR SIZING SOFTWARE SYSTEMS
	TESTABLE REQUIREMENTS VERSUS TEST CASES
	APPLICATIONS OF TESTABLE REQUIREMENTS
	Measuring System Scope and Earned Value
	Measuring Changes In System Size
	Test Case Coverage Measurements
	Experience Using Testable Requirements

	SUMMARY

