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• Even with the oddities of Verilog the actual writing of HDL code
is relatively quick
– General sensitivity lists, what were they thinking!!

• Verilog emacs auto-modes (www.ultranet.com/~wsnyder/veripool) key
for removing the worst drudgery

• Real time sink is getting code to work “correctly”

• Problem only gets worse when include interfaces between
multiple designers and multiple standard buses

• Multiple coding standards and strategies adopted to deal with
the issue
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Coding Standards

• Help find problems early by identifying common problems
– Naming conventions

wires vs registers, clock domain suffix, module prefix, etc

– Lint checking software

– Limits on module size

– Standards for case statements

• Very beneficial but taken to an extreme can be painful
– Prefix requirements leading to very long names

• Limits to what coding standards can accomplish
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Verification Medicine

• Modular Design

• Reference Designs

• Bus Checkers

• Design by Contract - Module Level Assertion Checks
– Add checks to verify key input/output/internal requirements of module

â Approach fundamental part of Eiffel programming language

â Offshoot of formal program verification

– Enhances reusability and debuggability of code

â Acts to limit allowable operating space of the module

â Documents and verifies key requirements of the code

– Unambiguously notifies user/designer when key conditions violated
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Agenda

• Motivate use of module level watchdog logic

• Illustrate how watchdog logic is easy to include
– Synthesizable watchdog logic

– Watchdog logic macros disguised as Verilog system calls

– Verilog preprocessor to expand watchdog macros

– Synopsys’ ability to optimize away unneeded logic

– Synopsys translate on/off pairs elimination

• Guidelines for using watchdog logic

• Conclusions
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Logic

• Add watchdog logic as module is created
– Serves to highlight key requirements during module creation

• Put watchdog logic directly in synthesized code
– Close proximity between checking logic and what is being checked

– No separate module to maintain

• Insert watchdog logic in module in manner which does not
generate any corresponding real hardware
– Check code should only be software modeling artifact

– Needs to be compatible with lint, coverage, and synthesis tools

• Disguise watchdog logic as Verilog system calls
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as Verilog System Calls

• Watchdog logic tends to follow predictable form
– Check condition, and print message if it is invalid

– Want global variable to disable watchdog logic during chip initialization

– Want watchdog logic to be ignored by non-simulation software

• Assertion macros greatly simply writing of watchdog logic
• Discovered over the last few years, are only a few key macros

needed to simplify writing watchdog logic
– Disguising these macros as Verilog system calls causes them to be

ignored by synthesis, lint, and coverage checking software

• For simulation only, macros are expanded to Verilog code
using simple Verilog preprocessor
– Macros expanded into just one long line to keep the absolute line

numbers in the file unchanged
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Five Key Assertion Macros

1) $assert( <condition>, <msg> );
        Checks if condition is true
        Example: $assert(!(rd1 && rd2),"Multiple Reads\n");
2) $assert_onehot( [<variables>], <msg> );
        Checks variable or variable list is one hot
        Example: $assert_onehot(sel_a,sel_b,"mux_selects\");

            $assert_onehot(state_r[7:0],"State_r not one-hot\n");
3) $assert_amone( [<variables>], <msg> );
        Checks variable/variable list contains at most one logically valid condition
        Example: $assert_amone(gnt_a,gnt_b,"Multiple grants active\n");
4) $error( <level>, <msg> );

     Prints out error message and stops the simulation
         Example: $error(0,"Bad counter value=%x\n",count);
5) $info( <level>, <msg> );
         Prints informational message and continues the simulation

    Example: $info(1,"Reading bank -%x\n",mbank_r);
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• Assertion macros expanded by simple Verilog preprocessor
• Example preprocessor at: www.ultranet/~wsnyder/veripool

Run Verilog Preprocessor to
Expand Macros

 vpm --date -o  .vpm  project/

• Traverses the “project/” directory tree and macro-
preprocesses on all the Verilog files in the tree

• Puts all the resultant files in the “.vpm” directory (typically
local to the machine where running simulation)

• The “--date” option indicates only want to preprocess those
files which have be modified since the last time the
preprocessor was run
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/*vpm*/begin

if (( !(rd1 && rd2)) ==0 && `c_esim_subrs.__message_on!=0) begin

$write(“[%0t] %%E:%stest2.v:0070     : Multiple Reads\n %%E in %m\n”,

           $time, idm._id_ascii);

`pli.errors = `pli.errors+1;

end end /*vpm/

Expansion of  $assert()

$assert(!(rd1 && rd2), “Multiple Reads\n”);

Global disable

Module name and line
number added by vpm

Error count used to terminate simulation
a few cycles after error detected

grep of log for %E
will show errors
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case ( {d1,d2,d3} )
   3’b100, 3’b010, 3’b001, 3’bxxx: ;
   3’b000: if (`c_esim_subrs.__message_on!=0) begin
        $write(“[%0t] %%E:%stest2.v:0080   : None Active (%s) --> “,
                   $time,idm._id_ascii,({d1,d2,d3}));
        $write( “Mux Selects\n” );
        `pli.errors = `pli.errors + 1;
   end
   default: if (`c_esim_subrs.__message_on!=0) begin
         $write(“[%0t] %%E:%stest2.v:0080   : Multiple Active (%s) --> “,
                   $time,idm._id_ascii,( {d1,d2,d3} ));
        $write( “Mux Selects\n” ); `pli.errors = `pli.errors + 1;
         `pli.errors = `pli.errors + 1;
   end
endcase

Expansion of $assert_onehot()

Include state of inputs
in error messages

Error: multiple inputs active

Error: no inputs active

No error if only one input active

$assert_onehot(d1,d2,d3, “Mux  Selects\n”);

Construction of case
statement varies
based on number of
variables checking
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/*vpm*/begin
if (__message >= ( 1 )) begin
   $write(“[%0t] -I:%stest2.v:0082     : Reading bank - %x\n”,
               $time,  idm._id_ascii, mbank_r );
end end /*vpm/

Expansion of  $info()

$info(1, “Reading bank - %x\n”,mbank_r);

For all the macros, extra macro
arguments are passed directly to
the $write() system call

Module variable __message
automatically added by vpm
and initialized to 5
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• Temporary variables often needed for watchdog logic
– Delayed version of some logic

• Synopsys aids by aggressively optimizing away unused logic
– Will optimize away logic which has no affect on the outputs of the

module and no affect on the inputs to any user defined module

– Will optimize away the full RTL logic cones

– Will not optimize away user defined modules

• Optimization away of the logic happens in the input stage as
the logic is being mapped to synthetic library elements
– Logic removed independent of the compile options used

• Design Compile will optimize away library elements
– Optimization happens in the compile stage and amount of optimization

is dependant on the compile options used
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Optimized Away

module test3(e,clk,a,a1,a2,a3);
   wire t1 = d3 && a;
   always @(posedge clk) begin
      e <= #1 (a & a2 & a3);
      d1 <= #1 (a || s2);
      d2 <= #1 (d1 & a);
      d3 <= #1 (d2 + a1 + a2);
      $assert(d1==a3,”Inputs Overlap\n”);
   end
endmodule

module test3(e,clk,a,a1,a2,a3);
   an02d1 SG9 ( .a1(a), .a2(a2), .z(n_3) );
   mfntnq1 e_reg (.da(a3), .db(1’b0),
                            .sa(n_3), .cp(clk), .q(e));
endmodule

Original Code

Output from Synopsys

Combinatorial and sequential
logic unrelated to the module
outputs are optimized away
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RTL input Stage

Inferred memory devices in process
          in routine test3 line 36 in file
======================================================
|  Register Name      |    Type     | Width |  Bus |  MB |  AR |  AS | SR
======================================================
|          e_reg             |  Flip-Flop |    1      |   -     |   -    |   N   |  N   |  N
======================================================
Current design is ‘test3’.

Design Compiler Logfile

In initial mapping flip-flops d1
through d3 have already been
optimized away
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Optimized Away

module test3(e1,clk,a,a1,a2,a3);

  inv_m  iv1(.in(a),  .out(a_i));
  inv_m  iv2(.in(a1),.out(e1));
  inv_m  iv3(.in(a1_d1r),.out(a1_i3));
  always @(posedge clk) begin
     a1_d1r <= #1 a1;
  end
endmodule

module test3(e1,clk,a,a1,a2,a3);

  inv_m  iv3(.in(a1_d1r));
  inv_m  iv2(.in(a1), .out(e1));
  inv_m  iv1(.in(a));
  dfptnq0  a_d1r_reg(.d(a), .cp(clk),
                        .sdn(1’b1), .q(a1_d1r));
endmodule

Original Code Output from Synopsys

Inputs to user
modules are not
optimized away

Unused outputs of
user modules are
optimized away
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On/Off Pairs

• Assertion macros and Synopsys’ aggressive optimization away of unused
logic virtually eliminate need for excluding code from synthesis

• Better way to exclude code is use Verilog preprocessor directives
– Allows user more direct control over inclusion of code
– Valid syntax requires closing `endif eliminating dangling “translate off” problem

• In general, we have found only three cases where code really needs to be
excluded from synthesis

1) Model instances want to avoid being compiled by Synopsys
`ifdef synthesis `else
gen_pc_log_pc1_log();     // generate pc logfile
`endif

2) Hierarchical name references in synthesizable code
`ifdef synthesis `else
$write("count=%x\n",`c_buf.count);
`endif

3) Modeling asynchronous set/reset flip-flops correctly

code setup to only
define “synthesis”
during synthesis step
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• Selecting where to use watchdog logic is easy
• Useful in a wide variety of situations but can often be

categorized into five or six basic types

1) Checking that state of a state machine is one hot

always @(posedge clk) begin 
   $assert_onehot(req_sm[7:0],"Req state vector is not one hot\n");
end

2) Taming not fully specified case statements
     (those requiring //synopsys full_case) 

$assert_onehot(adrs_sel==3’b010,adrs_sel=3’b100,adrs_sel==3’b000,
            "Bad adr_sel mux select = %x\n",adr_sel);

Typically in @posedge block to keep
transient values from triggering
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Guidelines Continued

4) Checking counters do not wrap

5) Informing user that something has happened

6) Printing an error message if “default” case is reached

3) Verifying Interface Logic

$assert( !(grant & !req), "Grant without request\n");
$assert_amone(reqa,reqb,reqc,"Multiple Requestors\n");
$assert(!(req & req_d1r),"Back to back request signals\n");

$assert(!(count==4’hf & add_q & !del_q),"Q overflowed\n");
$assert(!(count==4’h0 & !add_q & del_q),"Q underflowed\n");

$info(0,"Just received new event: type=%x\n",event_type);

default: $error(0,"Default xx-yy condition has been reached\n"); 
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Conclusions

• Adding watchdog logic to verify characteristics of a module
remain invariant is a fundamental design strategy improvement

• In our experience, watchdog logic will be readily added by HDL
designer only if these checks can easily and transparently be
added directly to HDL code
– Disguise assertion checks as Verilog system calls

– Utilize Design Compiler’s optimization away of unneeded logic

• This approach allows assertion checks to be freely constructed
without need to add additional directives to HDL code


