
SNUG Boston 2000

1

1Duane Galbi

Conexant
System, Inc

Synthesizable Watchdog Logic:
A Key Coding Strategy for

Managing Complex Designs

Duane Galbi
Wilson Snyder

Conexant Systems, Inc.

SNUG Boston 2000

2

2Duane Galbi
Conexant

Systems, IncThe Fundamental
Design Issue

• Even with the oddities of Verilog the actual writing of HDL code
is relatively quick
– General sensitivity lists, what were they thinking!!

• Verilog emacs auto-modes (www.ultranet.com/~wsnyder/veripool) key
for removing the worst drudgery

• Real time sink is getting code to work “correctly”

• Problem only gets worse when include interfaces between
multiple designers and multiple standard buses

• Multiple coding standards and strategies adopted to deal with
the issue

SNUG Boston 2000

3

3Duane Galbi
Conexant

Systems, Inc

Coding Standards

• Help find problems early by identifying common problems
– Naming conventions

wires vs registers, clock domain suffix, module prefix, etc

– Lint checking software

– Limits on module size

– Standards for case statements

• Very beneficial but taken to an extreme can be painful
– Prefix requirements leading to very long names

• Limits to what coding standards can accomplish

SNUG Boston 2000

4

4Duane Galbi
Conexant

Systems, IncCoding Strategy - Powerful
Verification Medicine

• Modular Design

• Reference Designs

• Bus Checkers

• Design by Contract - Module Level Assertion Checks
– Add checks to verify key input/output/internal requirements of module

â Approach fundamental part of Eiffel programming language

â Offshoot of formal program verification

– Enhances reusability and debuggability of code

â Acts to limit allowable operating space of the module

â Documents and verifies key requirements of the code

– Unambiguously notifies user/designer when key conditions violated

SNUG Boston 2000

5

5Duane Galbi
Conexant

Systems, Inc

Agenda

• Motivate use of module level watchdog logic

• Illustrate how watchdog logic is easy to include
– Synthesizable watchdog logic

– Watchdog logic macros disguised as Verilog system calls

– Verilog preprocessor to expand watchdog macros

– Synopsys’ ability to optimize away unneeded logic

– Synopsys translate on/off pairs elimination

• Guidelines for using watchdog logic

• Conclusions

SNUG Boston 2000

6

6Duane Galbi
Conexant

Systems, IncSynthesizable Watchdog
Logic

• Add watchdog logic as module is created
– Serves to highlight key requirements during module creation

• Put watchdog logic directly in synthesized code
– Close proximity between checking logic and what is being checked

– No separate module to maintain

• Insert watchdog logic in module in manner which does not
generate any corresponding real hardware
– Check code should only be software modeling artifact

– Needs to be compatible with lint, coverage, and synthesis tools

• Disguise watchdog logic as Verilog system calls

SNUG Boston 2000

7

7Duane Galbi
Conexant

Systems, IncAssertion Macros Disguised
as Verilog System Calls

• Watchdog logic tends to follow predictable form
– Check condition, and print message if it is invalid

– Want global variable to disable watchdog logic during chip initialization

– Want watchdog logic to be ignored by non-simulation software

• Assertion macros greatly simply writing of watchdog logic
• Discovered over the last few years, are only a few key macros

needed to simplify writing watchdog logic
– Disguising these macros as Verilog system calls causes them to be

ignored by synthesis, lint, and coverage checking software

• For simulation only, macros are expanded to Verilog code
using simple Verilog preprocessor
– Macros expanded into just one long line to keep the absolute line

numbers in the file unchanged

SNUG Boston 2000

8

8Duane Galbi
Conexant

Systems, Inc

Five Key Assertion Macros

1) $assert(<condition>, <msg>);
 Checks if condition is true
 Example: $assert(!(rd1 && rd2),"Multiple Reads\n");
2) $assert_onehot([<variables>], <msg>);
 Checks variable or variable list is one hot
 Example: $assert_onehot(sel_a,sel_b,"mux_selects\");

 $assert_onehot(state_r[7:0],"State_r not one-hot\n");
3) $assert_amone([<variables>], <msg>);
 Checks variable/variable list contains at most one logically valid condition
 Example: $assert_amone(gnt_a,gnt_b,"Multiple grants active\n");
4) $error(<level>, <msg>);

 Prints out error message and stops the simulation
 Example: $error(0,"Bad counter value=%x\n",count);
5) $info(<level>, <msg>);
 Prints informational message and continues the simulation

 Example: $info(1,"Reading bank -%x\n",mbank_r);

SNUG Boston 2000

9

9Duane Galbi
Conexant

Systems, Inc

• Assertion macros expanded by simple Verilog preprocessor
• Example preprocessor at: www.ultranet/~wsnyder/veripool

Run Verilog Preprocessor to
Expand Macros

 vpm --date -o .vpm project/

• Traverses the “project/” directory tree and macro-
preprocesses on all the Verilog files in the tree

• Puts all the resultant files in the “.vpm” directory (typically
local to the machine where running simulation)

• The “--date” option indicates only want to preprocess those
files which have be modified since the last time the
preprocessor was run

SNUG Boston 2000

10

10Duane Galbi
Conexant

Systems, Inc

/*vpm*/begin

if ((!(rd1 && rd2)) ==0 && `c_esim_subrs.__message_on!=0) begin

$write(“[%0t] %%E:%stest2.v:0070 : Multiple Reads\n %%E in %m\n”,

 $time, idm._id_ascii);

`pli.errors = `pli.errors+1;

end end /*vpm/

Expansion of $assert()

$assert(!(rd1 && rd2), “Multiple Reads\n”);

Global disable

Module name and line
number added by vpm

Error count used to terminate simulation
a few cycles after error detected

grep of log for %E
will show errors

SNUG Boston 2000

11

11Duane Galbi
Conexant

Systems, Inc

case ({d1,d2,d3})
 3’b100, 3’b010, 3’b001, 3’bxxx: ;
 3’b000: if (`c_esim_subrs.__message_on!=0) begin
 $write(“[%0t] %%E:%stest2.v:0080 : None Active (%s) --> “,
 $time,idm._id_ascii,({d1,d2,d3}));
 $write(“Mux Selects\n”);
 `pli.errors = `pli.errors + 1;
 end
 default: if (`c_esim_subrs.__message_on!=0) begin
 $write(“[%0t] %%E:%stest2.v:0080 : Multiple Active (%s) --> “,
 $time,idm._id_ascii,({d1,d2,d3}));
 $write(“Mux Selects\n”); `pli.errors = `pli.errors + 1;
 `pli.errors = `pli.errors + 1;
 end
endcase

Expansion of $assert_onehot()

Include state of inputs
in error messages

Error: multiple inputs active

Error: no inputs active

No error if only one input active

$assert_onehot(d1,d2,d3, “Mux Selects\n”);

Construction of case
statement varies
based on number of
variables checking

SNUG Boston 2000

12

12Duane Galbi
Conexant

Systems, Inc

/*vpm*/begin
if (__message >= (1)) begin
 $write(“[%0t] -I:%stest2.v:0082 : Reading bank - %x\n”,
 $time, idm._id_ascii, mbank_r);
end end /*vpm/

Expansion of $info()

$info(1, “Reading bank - %x\n”,mbank_r);

For all the macros, extra macro
arguments are passed directly to
the $write() system call

Module variable __message
automatically added by vpm
and initialized to 5

SNUG Boston 2000

13

13Duane Galbi
Conexant

Systems, IncSynopsys Aids the
Watchdog Logic Writer

• Temporary variables often needed for watchdog logic
– Delayed version of some logic

• Synopsys aids by aggressively optimizing away unused logic
– Will optimize away logic which has no affect on the outputs of the

module and no affect on the inputs to any user defined module

– Will optimize away the full RTL logic cones

– Will not optimize away user defined modules

• Optimization away of the logic happens in the input stage as
the logic is being mapped to synthetic library elements
– Logic removed independent of the compile options used

• Design Compile will optimize away library elements
– Optimization happens in the compile stage and amount of optimization

is dependant on the compile options used

SNUG Boston 2000

14

14Duane Galbi
Conexant

Systems, IncUnused Logic Cones
Optimized Away

module test3(e,clk,a,a1,a2,a3);
 wire t1 = d3 && a;
 always @(posedge clk) begin
 e <= #1 (a & a2 & a3);
 d1 <= #1 (a || s2);
 d2 <= #1 (d1 & a);
 d3 <= #1 (d2 + a1 + a2);
 $assert(d1==a3,”Inputs Overlap\n”);
 end
endmodule

module test3(e,clk,a,a1,a2,a3);
 an02d1 SG9 (.a1(a), .a2(a2), .z(n_3));
 mfntnq1 e_reg (.da(a3), .db(1’b0),
 .sa(n_3), .cp(clk), .q(e));
endmodule

Original Code

Output from Synopsys

Combinatorial and sequential
logic unrelated to the module
outputs are optimized away

SNUG Boston 2000

15

15Duane Galbi
Conexant

Systems, IncLogic Optimized Away in
RTL input Stage

Inferred memory devices in process
 in routine test3 line 36 in file
==
| Register Name | Type | Width | Bus | MB | AR | AS | SR
==
| e_reg | Flip-Flop | 1 | - | - | N | N | N
==
Current design is ‘test3’.

Design Compiler Logfile

In initial mapping flip-flops d1
through d3 have already been
optimized away

SNUG Boston 2000

16

16Duane Galbi
Conexant

Systems, IncUser Modules Not
Optimized Away

module test3(e1,clk,a,a1,a2,a3);

 inv_m iv1(.in(a), .out(a_i));
 inv_m iv2(.in(a1),.out(e1));
 inv_m iv3(.in(a1_d1r),.out(a1_i3));
 always @(posedge clk) begin
 a1_d1r <= #1 a1;
 end
endmodule

module test3(e1,clk,a,a1,a2,a3);

 inv_m iv3(.in(a1_d1r));
 inv_m iv2(.in(a1), .out(e1));
 inv_m iv1(.in(a));
 dfptnq0 a_d1r_reg(.d(a), .cp(clk),
 .sdn(1’b1), .q(a1_d1r));
endmodule

Original Code Output from Synopsys

Inputs to user
modules are not
optimized away

Unused outputs of
user modules are
optimized away

SNUG Boston 2000

17

17Duane Galbi
Conexant

Systems, IncAvoid Synopsys Translate
On/Off Pairs

• Assertion macros and Synopsys’ aggressive optimization away of unused
logic virtually eliminate need for excluding code from synthesis

• Better way to exclude code is use Verilog preprocessor directives
– Allows user more direct control over inclusion of code
– Valid syntax requires closing `endif eliminating dangling “translate off” problem

• In general, we have found only three cases where code really needs to be
excluded from synthesis

1) Model instances want to avoid being compiled by Synopsys
`ifdef synthesis `else
gen_pc_log_pc1_log(); // generate pc logfile
`endif

2) Hierarchical name references in synthesizable code
`ifdef synthesis `else
$write("count=%x\n",`c_buf.count);
`endif

3) Modeling asynchronous set/reset flip-flops correctly

code setup to only
define “synthesis”
during synthesis step

SNUG Boston 2000

18

18Duane Galbi
Conexant

Systems, IncGuidelines for Including
Watchdog Logic

• Selecting where to use watchdog logic is easy
• Useful in a wide variety of situations but can often be

categorized into five or six basic types

1) Checking that state of a state machine is one hot

always @(posedge clk) begin
 $assert_onehot(req_sm[7:0],"Req state vector is not one hot\n");
end

2) Taming not fully specified case statements
 (those requiring //synopsys full_case)

$assert_onehot(adrs_sel==3’b010,adrs_sel=3’b100,adrs_sel==3’b000,
 "Bad adr_sel mux select = %x\n",adr_sel);

Typically in @posedge block to keep
transient values from triggering

SNUG Boston 2000

19

19Duane Galbi
Conexant

Systems, Inc

Guidelines Continued

4) Checking counters do not wrap

5) Informing user that something has happened

6) Printing an error message if “default” case is reached

3) Verifying Interface Logic

$assert(!(grant & !req), "Grant without request\n");
$assert_amone(reqa,reqb,reqc,"Multiple Requestors\n");
$assert(!(req & req_d1r),"Back to back request signals\n");

$assert(!(count==4’hf & add_q & !del_q),"Q overflowed\n");
$assert(!(count==4’h0 & !add_q & del_q),"Q underflowed\n");

$info(0,"Just received new event: type=%x\n",event_type);

default: $error(0,"Default xx-yy condition has been reached\n");

SNUG Boston 2000

20

20Duane Galbi
Conexant

Systems, Inc

Conclusions

• Adding watchdog logic to verify characteristics of a module
remain invariant is a fundamental design strategy improvement

• In our experience, watchdog logic will be readily added by HDL
designer only if these checks can easily and transparently be
added directly to HDL code
– Disguise assertion checks as Verilog system calls

– Utilize Design Compiler’s optimization away of unneeded logic

• This approach allows assertion checks to be freely constructed
without need to add additional directives to HDL code

