
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

Toward Exception-Handling
Best Practices and Patterns

Rebecca J. Wirfs-Brock

Vol. 23, No. 5

September/October 2006

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E S e p t e m b e r / O c t o b e r 2 0 0 6 I E E E S O F T W A R E 1 1

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k ! W i r f s - B r o c k A s s o c i a t e s ! r e b e c c a @ w i r f s - b r o c k . c o m

P
oor exception-handling implementa-
tions can thwart even the best design.
It’s high time we recognize exception
handling’s importance to an implemen-
tation’s overall quality. I’m not com-
fortable relegating exception handling

to a minor programming detail.
Agreeing on a reasonable ex-
ception-handling style for your
application and following a
consistent set of exception-han-
dling practices is crucial to im-
plementing software that’s easy
to comprehend, evolve, and
refactor. The longer you avoid
exceptions, the harder it is to
wedge cleanly designed excep-

tion-handling code into working software.
To demystify exception-handling design,

we must write about—and more widely dis-
seminate—proven techniques, guidelines, and
patterns.

Exception basics
First, let’s review the basics. An exception

condition occurs when an object or compo-
nent, for some reason, can’t fulfill a responsi-
bility. Or, in programming parlance, an excep-
tion condition occurs when some piece of code
can’t continue on its expected path. This could
be owing to malformed arguments, an incon-

sistent state, bad data, unavailable resources,
or coding or logic errors.

As a general rule, I don’t explicitly design my
software to detect and recover from logic or
coding errors. It’s better to find these errors us-
ing unit testing, treating the errors as bugs you
must fix. But I do design my objects to explic-
itly verify argument values and check the avail-
ability of a shared resource. If the state of things
isn’t as expected, then an exception condition
has been detected. Most popular programming
languages explicitly support built-in exception
mechanisms. In these languages, when you de-
tect some condition that prevents your code
from continuing on its normal execution path,
you can signal an exception condition explicitly.
For example, in Java and C#, you can create an
exception object and write an expression to
throw it. In addition to explicit exceptions that
are raised by your code, the program execution
environment can raise other exceptions, such as
divide-by-zero errors or arrays indexed out of
bounds. Regardless, at that point, your code
can’t continue on its normal path. Raising an
exception breaks the normal execution flow.

When an exception is raised, the call stack
unwinds until exception-handling code is en-
countered (in Java and C#, this is a catch block
that identifies what class of exception it will
handle). You’re free to design your own ex-
ception classes or use preexisting exception

Toward Exception-Handling
Best Practices and Patterns

Rebecca J. Wirfs-Brock

I have long (but quietly) advocated dealing with exception handling issues early in the
design of a system.

—John Goodenough, Advances in Exception Handling Techniques

1 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

classes. Your newly designed exception
classes fit into and extend the existing
exception class hierarchy.

By handling an exception and per-
forming some sensible recovery action,
you can put your software back into a
known, predictable state. An alternative
to raising an exception is to signal an ex-
ception condition via a return code or re-
sult object. In this case, instead of catch-
ing exceptions, your code either tests a
return code and branches based on the
value or queries the result object and
makes decisions accordingly. A result ob-
ject, just like an instance of an exception
class, can also include extra information.

Exception-handling
guidelines

Let’s review some basic exception de-
sign guidelines, summarized from Object
Design: Roles, Responsibilities, and Col-
laborations (Rebecca Wirfs-Brock and
Alan McKean, Addison-Wesley, 2003).

Don’t try to handle coding errors.
Code that’s designed for highly fault-
tolerant systems might go to extraordi-
nary efforts to detect and recover from
exceptions. But unless your software is
required to take such extraordinary
measures, don’t spend a lot of time de-
signing it to detect and recover from
programming errors. In the case of an
out-of-bounds array index, divide-by-
zero error, or any other programming
error, the best strategy is to fail fast
(and leave an audit trail of the problem
that can be used to troubleshoot it).

Avoid declaring lots of exception
classes. Create a new exception class
when you expect it to be handled differ-
ently. Outside the world of exceptions,
you wouldn’t normally create two distinct
classes to simply represent two different
state values, so why create multiple ex-
ception classes? Create a new exception
class when you expect some handling of
the code to take a significantly different
action, based on the exception type.

Name an exception after what went
wrong, not who raised it. This makes it
easier to associate the situation with
the required action. If you name an ex-
ception after who threw it, it becomes
less clear why the handler is perform-
ing the specific action.

Recast lower-level exceptions to
higher-level ones whenever you raise an
abstraction level. Don’t let implementa-
tion details leak out of a method invoca-
tion as exceptions. Otherwise, your users
might think your software is broken.
When low-level exceptions percolate up
to a high-level handler, there’s little con-
text to assist the handler in making in-
formed decisions or reporting conditions
that are traceable to any obvious cause.
Recasting an exception whenever you
cross an abstraction boundary enables
exception handlers higher up in the call
chain to make more informed decisions.
If you want to include a problem trace
when recasting them, you can always cre-
ate a chained exception. A chained ex-
ception provides added context and
holds a reference to the original lower-
level exception. You can repeatedly chain
exceptions.

I know of an application that re-
ported a low-level I/O error and quit
when it ran out of file space. The users
thought the application had a bug. In
fact, it had encountered an unrecover-
able exception—there wasn’t enough
file space to continue. To correct cus-
tomers’ misimpressions and eliminate
service calls, in a later release, the de-
signers recast the low-level exception to
a more meaningful one before passing it
along. Customers still occasionally ran
out of space (when the application cre-
ated enormous temp files), but as a re-
sult of this slight coding change, they
got an informative error message and
knew to free up disk space before trying
again.

Provide context along with an ex-
ception. What’s most important in ex-
ception handling is information that
helps create an informed response. Ex-
ception classes hold information. You
can design them to be packed with in-
formation in addition to the bare-bones
stack trace information provided by de-
fault. You might include values of para-
meters that raised the exception, spe-
cific error text, or detailed information
that could be useful to plan a recovery.

Handle exceptions as close to the
problem as you can. As a first line of de-
fense, consider the initial requestor. If
the caller knows enough to perform a

corrective action, you can rectify the
condition on the spot. If you propagate
an exception far away from the source,
it can be difficult to trace the source. Of-
ten objects further away from the prob-
lem can’t make meaningful decisions.

Assign exception-handling responsi-
bilities to objects that can make deci-
sions. Although this seems to contra-
dict the previous guideline, it doesn’t.
Often, the object best equipped to
make a decision is the immediate caller.
The caller asks this object to do X and
it can’t, but maybe it can jigger some-
thing and retry (see “Designing for Re-
covery,” IEEE Software, July/August
2006, for a discussion of other recov-
ery strategies). But sometimes the most
able object is one that has been explic-
itly designed to make decisions and
control the action. Controllers are nat-
urals for handling exceptions as well as
directing the normal flow of events.

Use exceptions only to signal emer-
gencies. Exceptions shouldn’t be raised
to indicate normal branching condi-
tions that will alter the flow in the call-
ing code. For example, a find operation
may return zero, one, or many objects,
so I wouldn’t raise an exception in this
case. Instead, I’d design my find()
method to return a null object or an
empty collection. A dropped database
connection, on the other hand, is a real
emergency. There’s nothing that can be
done to continue as planned.

Don’t repeatedly rethrow the same
exception. Although exceptions don’t
cost anything until they’re raised, pro-
grams that frequently raise exceptions
run more slowly. A designer of a Web-
based transactional system recounted
how his team’s convention of catching
each exception, logging it, and then re-
peatedly rethrowing that same excep-
tion until some object in the call chain
actually handled it slowed their appli-
cation by 10 percent. An excess of fid-
gety catch-and-rethrow code can also
confound efforts to track down a prob-
lem’s source.

Patterns in progress
In writing this column, I researched

other sources of exception-handling ad-
vice. The most wide-ranging discussion

S e p t e m b e r / O c t o b e r 2 0 0 6 I E E E S O F T W A R E 1 3

DESIGN

I found online was at the Portland Pat-
tern Repository (http://c2.com/cgi/wiki?
ExceptionPatterns). Pattern descriptions
are works in progress that can be freely
extended and discussed by anyone who
cares to chip in with knowledge, experi-
ence, examples, or counter-examples.
Exception advice is currently organized
into these pattern categories: defining
exception types, raising exceptions, han-
dling exceptions, exceptions and testing,
when to use exceptions, alternatives to
using exceptions, C++ idioms, C idioms,
Java idiom, and discussion (a catchall
category).

The “defining exception types” cat-
egory includes Name the Problem not
the Thrower, Exception per Context,
Refine Exceptions, Homogenize Ex-
ceptions, and Generalize on Exception
Behavior. For readability, I unrolled the
jammed-together Portland Pattern
Repository wiki name into a word
phrase with spaces. So expect to see a
slightly different form of the online
name (the first exception pattern’s wiki
page is actually titled “NameTheProb-
lemNotTheThrower”).

Let me present one pattern to give
you a taste. In the discussion of Name
the Problem not the Thrower, java.
lang.ClassNotFoundException is
cited as an example of a well-named ex-
ception. This exception is thrown when
an application tries to load it in a class
that can’t be found. Personally, I’ve
found isolating the source of the prob-
lem to still be difficult, even if the excep-
tion is well- named (because class path
problems can be confounding). Interest-
ingly, java.lang.NoSuchMethodEx-
ception, which at first blush seems rea-
sonable, is cited as an example of a
poorly named class. One place where
this exception is raised is in the Java-
Beans framework if a programmer fails
to include an empty constructor for a
bean class. I think this exception is aptly
named. However, the exception class is
poorly designed. Exception class design-
ers can always choose to pack exception
objects with facts useful in deciphering,
troubleshooting, or recovering from an
exception. In this case, the exception-
class designer failed to include the miss-
ing method name.

From patterns in progress to
full-blown exception patterns

Pattern descriptions in the Portland
Pattern Repository range from terse to
chatty. Because pattern hatching in this
venue is a community process, advice
accretes when someone takes interest
and chips in. A pattern-in-progress
reader must be patient and accepting of
incomplete discussions and not fully
validated ideas. It reminds me of stand-
ing around the proverbial water cooler
with fellow developers, chatting about
what works and why.

Just as important are discussions of
what not to do, so-called antipatterns.
For a brief discussion of some exception
practices to avoid, look at Tim Mc-
Cune’s article, “Exception-Handling
Antipatterns” (see http://today.java.
net/pub/a/today/2006/04/06/exception-
handling-antipatterns.html). Two of my
favorites (having been repeatedly frus-
trated by them) are the Catch and Re-
turn Null and Throwing Exception an-
tipatterns. The first is a sneaky way of
obfuscating an exception condition. The
second is a lazy way of declaring that a
method might throw one or more ex-
ceptions without being explicit about
which one (Java programmers are
forced to declare all checked exceptions
that are thrown in a method’s signa-
ture). Another antipattern mentioned
was Log and Throw. It seems more ap-
propriate to me that Repeatedly Log
and Rethrow is a better name for this
antipattern. The first time you detect an
exception, there might be a valid reason
to log it to identify the point source. Re-
peatedly logging and rethrowing just
adds clutter.

I n truth, much work is needed to turn
various sources of exception-han-
dling advice and proto-patterns into

an exception pattern design handbook.
Design Patterns (Erich Gamma,
Richard Helm, Ralph Johnson, and
John Vlissides, Addison-Wesley, 1995)
established a high bar for design pat-
terns, and there is no reason to lower
the standard in the case of exceptions.

First and foremost, a pattern must
be well-established. Gamma, Helm,

Johnson, and Vlissides considered a de-
sign pattern only if it had been applied
more than once in different systems.
And although many other pattern au-
thors have written about patterns less
formally, these authors stated that they
view the essential ingredients of a pat-
tern to include its name, when to apply
it, a general description of the solution,
and the consequences—the results and
tradeoffs a designer must make when
applying the pattern. Consequences in
their estimation could include impact
on a system’s flexibility, programming
language-specific issues, or time and
space considerations.

This basic structure and criteria seem
quite appropriate for exception-han-
dling patterns. The time is ripe for con-
solidating exception-handling knowl-
edge into a set of polished best practices
and patterns.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates and an adjunct professor at Oregon Health & Science
University. She’s also a board member of the Agile Alliance. Con-
tact her at rebecca@wirfs-brock.com.

WABASH ALLOYS is hiring a Senior
Systems Analyst in Wabash, IN. Position
requires a Master's degree in Management
Systems Engineering, Computer
Engineering or Computer Science with 30
months experience in the job offered or in
software development and programming.
Qualified applicants must have skill/expe-
rience with: J.D. Edwards/PeopleSoft/
Oracle supply chain, fixed assets and
financial systems with C++ programming
for database design. J.D. Edwards/
PeopleSoft/Oracle ERP 8.0 development/
support. J.D. Edwards/PeopleSoft/Oracle
integration with third party software appli-
cations. Mail a resume to 4252 W. Old 24,
Wabash, IN 76992, attention R. Pressler.

Classified Advertising

SUBMISSION DETAILS: Rates are
$110.00 per column inch ($125 mini-
mum). Eight lines per column inch and
average five typeset words per line.
Send copy at least one month prior to
publication date to: Marian Anderson,
Classified Advertising, IEEE Software,
10662 Los Vaqueros Circle, PO Box
3014, Los Alamitos, CA 90720-1314;
(714) 821-8380; fax (714) 821-4010.
Email: manderson@computer.org.

