
6
EIGENVALUES AND

EIGENVECTORS

INTRODUCTION TO EIGENVALUES 6.1

Linear equationsAx = b come from steady state problems. Eigenvalues have their
greatest importance indynamic problems. The solution ofdu/dt = Au is changing
with time—growing or decaying or oscillating. We can’t find it by elimination. This
chapter enters a new part of linear algebra. All matrices in this chapter are square.

A good model comes from the powersA, A2, A3, . . . of a matrix. Suppose you need
the hundredth powerA100. The starting matrixA becomes unrecognizable after a few
steps: [

.8 .3

.2 .7

] [
.70 .45
.30 .55

] [
.650 .525
.350 .475

]
· · ·

[
.6000 .6000
.4000 .4000

]
A A2 A3 A100

A100 was found by using theeigenvalues of A, not by multiplying 100 matrices. Those
eigenvalues are a new way to see into the heart of a matrix.

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change
direction, when they are multiplied byA. Certain exceptional vectorsx are in the
same direction asAx. Those are the “eigenvectors”. Multiply an eigenvector byA,
and the vectorAx is a numberλ times the originalx.

The basic equationis Ax = λx. The numberλ is the “eigenvalue”. It tells
whether the special vectorx is stretched or shrunk or reversed or left unchanged—
when it is multiplied byA. We may findλ = 2 or 1

2 or −1 or 1. The eigenvalueλ
could be zero! ThenAx = 0x means that this eigenvectorx is in the nullspace.

If A is the identity matrix, every vector hasAx = x. All vectors are eigenvectors.
The eigenvalue (the number lambda) isλ = 1. This is unusual to say the least. Most 2
by 2 matrices havetwo eigenvector directions andtwo eigenvalues. This section teaches
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6.1 Introduction to Eigenvalues 275

how to compute thex’s andλ’s. It can come early in the course because we only need
the determinant of a 2 by 2 matrix.

For the matrixA in our model above, here are eigenvectorsx1 and x2. Multi-
plying those vectors byA givesx1 and 1

2x2. The eigenvalues areλ1 = 1 andλ2 = 1
2:

x1 =
[
.6
.4

]
and Ax1 =

[
.8 .3
.2 .7

] [
.6
.4

]
= x1 (Ax = x means thatλ1 = 1)

x2 =
[

1
−1

]
and Ax2 =

[
.8 .3
.2 .7

] [
1
−1

]
=
[

.5
−.5

]
(this is 1

2 x2 so λ2 = 1
2).

If we again multiply x1 by A, we still get x1. Every power ofA will give
Anx1 = x1. Multiplying x2 by A gave 1

2x2, and if we multiply again we get(1
2)2x2.

When A is squared, the eigenvectorsx1 and x2 stay the same. The λ’s are now 12

and (1
2)2. The eigenvalues are squared!This pattern keeps going, because the eigen-

vectors stay in their own directions (Figure 6.1) and never get mixed. The eigenvectors
of A100 are the samex1 and x2. The eigenvalues ofA100 are 1100= 1 and (1

2)100=
very small number.

•
Ax1 = x1 =

[
.6
.4

]

Ax2 = λ2x2 =
[

.5
−.5

]

x2 =
[

1
−1

]

•

A2x1 = (1)2x1

A2x2 = (.5)2x2 =
[

.25
−.25

]

Figure 6.1 The eigenvectors keep their directions.A2 has eigenvalues 12 and (.5)2.

Other vectors do change direction. But all other vectors are combinations of the
two eigenvectors. The first column ofA is the combinationx1+ (.2)x2:[

.8

.2

]
is x1+ (.2)x2 =

[
.6
.4

]
+
[

.2
−.2

]
. (1)

Multiplying by A gives the first column ofA2. Do it separately forx1 and (.2)x2. Of
courseAx1 = x1. And A multiplies x2 by its eigenvalue1

2:

A

[
.8
.2

]
=
[
.7
.3

]
is x1+ 1

2
(.2)x2 =

[
.6
.4

]
+
[

.1
−.1

]
.

Each eigenvector is multiplied by its eigenvalue, when we multiply byA. We didn’t
need these eigenvectors to findA2. But it is the good way to do 99 multiplications.
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At every stepx1 is unchanged andx2 is multiplied by (1
2), so we have(1

2)99:

A99
[
.8
.2

]
is really x1+ (.2)(

1

2
)99x2 =

[
.6
.4

]
+
 very

small
vector

 .

This is the first column ofA100. The number we originally wrote as.6000 was not
exact. We left out(.2)(1

2)99 which wouldn’t show up for 30 decimal places.
The eigenvectorx1 is a “steady state” that doesn’t change (becauseλ1 = 1). The

eigenvectorx2 is a “decaying mode” that virtually disappears (becauseλ2 = .5). The
higher the power ofA, the closer its columns approach the steady state.

We mention that this particularA is a Markov matrix. Its entries are positive
and every column adds to 1. Those facts guarantee that the largest eigenvalue isλ = 1
(as we found). Its eigenvectorx1 = (.6, .4) is the steady state—which all columns of
Ak will approach. Section 8.3 shows how Markov matrices appear in applications.

For projections we can spot the steady state(λ = 1) and the nullspace(λ = 0).

Example 1 The projection matrix P = [
.5 .5
.5 .5

]
has eigenvalues 1 and 0.

Its eigenvectors arex1 = (1, 1) andx2 = (1,−1). For those vectors,Px1 = x1 (steady
state) andPx2 = 0 (nullspace). This example illustrates three things that we mention
now:

1. Each column ofP adds to 1, soλ = 1 is an eigenvalue.

2. P is singular, soλ = 0 is an eigenvalue.

3. P is symmetric, so its eigenvectors(1, 1) and (1,−1) are perpendicular.

The only possible eigenvalues of a projection matrix are 0 and 1. The eigenvectors
for λ = 0 (which meansPx = 0x) fill up the nullspace. The eigenvectors forλ = 1
(which meansPx = x) fill up the column space. The nullspace is projected to zero.
The column space projects onto itself.

An in-between vector likev = (3, 1) partly disappears and partly stays:

v =
[

1
−1

]
+
[

2
2

]
projects onto P v =

[
0
0

]
+
[

2
2

]
.

The projection keeps the column space part ofv and destroys the nullspace part. To
emphasize:Special properties of a matrix lead to special eigenvalues and eigenvectors.
That is a major theme of this chapter (it is captured in a table at the very end).

Projections haveλ = 0 and 1. Permutations have all|λ| = 1. The next matrixR
(a reflection and at the same time a permutation) is also special.
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Example 2 The reflection matrix R = [
0 1
1 0

]
has eigenvalues 1 and−1.

The eigenvector(1, 1) is unchanged byR. The second eigenvector is(1,−1)—its signs
are reversed byR. A matrix with no negative entries can still have a negative eigen-
value! The eigenvectors forR are the same as forP , becauseR = 2P − I :

R = 2P − I or

[
0 1
1 0

]
= 2

[
.5 .5
.5 .5

]
−
[

1 0
0 1

]
. (2)

Here is the point. IfPx = λx then 2Px = 2λx. The eigenvalues are doubled when
the matrix is doubled. Now subtractIx = x. The result is(2P − I )x = (2λ − 1)x.
When a matrix is shifted byI , eachλ is shifted by1. No change in eigenvectors.

x2 Px1 = x1

Px2 = 0x2

Projection

x2 Rx1 = x1

Rx2 = −x2Reflection

Figure 6.2 Projections have eigenvalues 1 and 0. Reflections haveλ = 1 and−1.
A typical x changes direction, but not the eigenvectorsx1 and x2.

The eigenvalues are related exactly as the matrices are related:

R = 2P − I so the eigenvalues ofR are 2(1)− 1= 1 and 2(0)− 1= −1.

The eigenvalues ofR2 are λ2. In this caseR2 = I . Check(1)2 = 1 and (−1)2 = 1.

The Equation for the Eigenvalues

In small examples we foundλ’s and x’s by trial and error. Now we use determinants
and linear algebra.This is the key calculation in the chapter—to solveAx = λx.

First moveλx to the left side. Write the equationAx = λx as (A− λI)x = 0.
The matrixA− λI times the eigenvectorx is the zero vector.The eigenvectors make
up the nullspace ofA− λI ! When we know an eigenvalueλ, we find an eigenvector
by solving (A− λI)x = 0.

Eigenvalues first. If(A − λI)x = 0 has a nonzero solution,A − λI is not invertible.
The determinant ofA − λI must be zero.This is how to recognize an eigenvalueλ:

6A The numberλ is an eigenvalue ofA if and only if A− λI is singular:

det(A− λI) = 0. (3)
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This “characteristic equation” involves onlyλ, notx. WhenA isn byn, det(A− λI) = 0 is
an equation of degreen. ThenA hasn eigenvalues and eachλ leads tox:

For each λ solve (A− λI)x = 0 or Ax = λx to find an eigenvectorx. (4)

Example 3 A = [
1 2
2 4

]
is already singular (zero determinant). Find itsλ’s and x’s.

WhenA is singular,λ = 0 is one of the eigenvalues. The equationAx = 0x has
solutions. They are the eigenvectors forλ = 0. But here is the way to findall λ’s and
x’s! Always subtractλI from A:

Subtract λ from the diagonal to find A− λI =
[

1− λ 2
2 4− λ

]
.

Take the determinant “ad − bc” of this 2 by 2 matrix. From 1− λ times 4− λ, the
“ad” part is λ2− 5λ+ 4. The “bc” part, not containingλ, is 2 times 2.

det

[
1− λ 2

2 4− λ

]
= (1− λ)(4− λ)− (2)(2) = λ2− 5λ. (5)

Set this determinantλ2 − 5λ to zero. One solution isλ = 0 (as expected, sinceA is
singular). Factoring intoλ times λ− 5, the other root isλ = 5:

det(A− λI) = λ2− 5λ = 0 yields the eigenvalues λ1 = 0 and λ2 = 5 .

Now find the eigenvectors. Solve(A− λI)x = 0 separately forλ1 = 0 andλ2 = 5:

(A− 0I )x =
[

1 2
2 4

] [
y

z

]
=
[

0
0

]
yields an eigenvector

[
y

z

]
=
[

2
−1

]
for λ1 = 0

(A− 5I )x =
[−4 2

2 −1

] [
y

z

]
=
[

0
0

]
yields an eigenvector

[
y

z

]
=
[

1
2

]
for λ2 = 5.

The matricesA− 0I and A− 5I are singular (because 0 and 5 are eigenvalues).
The eigenvectors(2,−1) and (1, 2) are in the nullspaces:(A− λI)x = 0 is Ax = λx.

We need to emphasize:There is nothing exceptional about λ = 0. Like every
other number, zero might be an eigenvalue and it might not. IfA is singular, it is.
The eigenvectors fill the nullspace:Ax = 0x = 0. If A is invertible, zero is not an
eigenvalue. We shiftA by a multiple of I to make it singular. In the example, the
shifted matrixA− 5I was singular and 5 was the other eigenvalue.

Summary To solve the eigenvalue problem for ann by n matrix, follow these steps:

1. Compute the determinant ofA − λI . With λ subtracted along the diagonal,
this determinant starts withλn or −λn. It is a polynomial inλ of degreen.

2. Find the roots of this polynomial, by solving det(A − λI) = 0. The n roots
are then eigenvalues ofA. They makeA− λI singular.

3. For each eigenvalueλ, solve (A− λI)x = 0 to find an eigenvectorx.
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A note on quick computations, whenA is 2 by 2. The determinant ofA − λI is a
quadratic (starting withλ2). >From factoring or the quadratic formula, we find its two
roots (the eigenvalues). Then the eigenvectors come immediately fromA − λI . This
matrix is singular, so both rows are multiples of a vector(a, b). The eigenvector is
any multiple of (b,−a). The example hadλ = 0 andλ = 5:

λ = 0 : rows of A− 0I in the direction(1, 2); eigenvector in the direction(2,−1)

λ = 5 : rows of A− 5I in the direction(−4, 2); eigenvector in the direction(2, 4).

Previously we wrote that last eigenvector as(1, 2). Both (1, 2) and (2, 4) are correct.
There is a wholeline of eigenvectors—any nonzero multiple ofx is as good asx.
MATLAB ’s eig(A) divides by the length, to make the eigenvector into a unit vector.

We end with a warning. Some 2 by 2 matrices have onlyone line of eigenvectors.
This can only happen when two eigenvalues are equal. (On the other handA = I

has equal eigenvalues and plenty of eigenvectors.) Similarly somen by n matrices
don’t haven independent eigenvectors. Withoutn eigenvectors, we don’t have a basis.
We can’t write everyv as a combination of eigenvectors. In the language of the next
section, we can’t diagonalize a matrix withoutn independent eigenvectors.

Good News, Bad News

Bad news first: If you add a row ofA to another row, or exchange rows, the eigen-
values usually change.Elimination does not preserve the λ’s. The triangularU has
its eigenvalues sitting along the diagonal—they are the pivots. But they are not the
eigenvalues ofA! Eigenvalues are changed when row 1 is added to row 2:

U =
[

1 1
0 0

]
hasλ = 0 andλ = 1; A =

[
1 1
1 1

]
hasλ = 0 andλ = 2.

Good news second: Theproduct λ1 times λ2 and the sum λ1+λ2 can be found quickly
from the matrix. For thisA, the product is 0 times 2. That agrees with the determinant
(which is 0). The sum of eigenvalues is 0+ 2. That agrees with the sum down the
main diagonal (which is 1+ 1). These quick checks always work:

6B The product of then eigenvalues equals the determinant ofA.

6C The sum of then eigenvalues equals the sum of then diagonal entries ofA.
This sum along the main diagonal is called thetrace of A:

λ1+ λ2+ · · · + λn = trace= a11+ a22+ · · · + ann. (6)



280 Chapter 6 Eigenvalues and Eigenvectors

Those checks are very useful. They are proved in Problems 16–17 and again in the next
section. They don’t remove the pain of computingλ’s. But when the computation is
wrong, they generally tell us so. To compute correctλ’s, go back to det(A− λI) = 0.

The determinant test makes theproduct of the λ’s equal to theproduct of the
pivots (assuming no row exchanges). But the sum of theλ’s is not the sum of the
pivots—as the example showed. The individualλ’s have almost nothing to do with
the individual pivots. In this new part of linear algebra, the key equation is really
nonlinear: λ multiplies x.

Imaginary Eigenvalues

One more bit of news (not too terrible). The eigenvalues might not be real numbers.

Example 4 The 90◦ rotation Q = [
0 1−1 0

]
has no real eigenvectors or eigenvalues.

No vector Qx stays in the same direction as x (except the zero vector which is useless).
There cannot be an eigenvector, unless we go toimaginary numbers. Which we do.

To see howi can help, look atQ2 which is −I . If Q is rotation through 90◦,
then Q2 is rotation through 180◦. Its eigenvalues are−1 and−1. (Certainly−Ix =
−1x.) SquaringQ is supposed to square its eigenvaluesλ, so we must haveλ2 = −1.
The eigenvalues of the 90◦ rotation matrix Q are +i and −i, becausei2 = −1.

Thoseλ’s come as usual from det(Q−λI) = 0. This equation givesλ2+1= 0.
Its roots areλ1 = i and λ2 = −i. They add to zero (which is the trace ofQ). The
product is(i)(−i) = 1 (which is the determinant).

We meet the imaginary numberi also in the eigenvectors ofQ:[
0 1
−1 0

] [
1
i

]
= i

[
1
i

]
and

[
0 1
−1 0

] [
i

1

]
= −i

[
i

1

]
.

Somehow these complex vectorsx1 = (1, i) and x2 = (i, 1) keep their direction as
they are rotated. Don’t ask me how. This example makes the all-important point that
real matrices can easily have complex eigenvalues. The particular eigenvaluesi and−i

also illustrate two special properties ofQ:

1. Q is an orthogonal matrix so the absolute value of eachλ is |λ| = 1.

2. Q is a skew-symmetric matrix so eachλ is pure imaginary.

A symmetric matrix(AT = A) can be compared to a real number. A skew-symmetric
matrix (AT = −A) can be compared to an imaginary number. An orthogonal matrix
(ATA = I ) can be compared to a complex number with|λ| = 1. For the eigenvalues
those are more than analogies—they are theorems to be proved in Section 6.4. The
eigenvectors for all these special matrices are perpendicular. Somehow(i, 1) and (1, i)

are perpendicular (in Chapter 10).
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Eigshow

There is aMATLAB demo (just typeeigshow), displaying the eigenvalue problem for
a 2 by 2 matrix. It starts with the unit vectorx = (1, 0). The mouse makes this vector
move around the unit circle. At the same time the screen showsAx, in color and
also moving. PossiblyAx is ahead ofx. PossiblyAx is behindx. Sometimes Ax is
parallel to x. At that parallel moment,Ax = λx (twice in the second figure).

A =
[

0.8 0.3
0.2 0.7

]
y = (0, 1)

x = (1, 0)

Ax = (0.8, 0.2)

Ay = (0.3, 0.7)

circle of x’s

x2 Ax1 = x1

ellipse of Ax’s

Ax2 = 0.5x2

The eigenvalueλ is the length ofAx, when the unit eigenvectorx is parallel.
The built-in choices forA illustrate three possibilities:

1. There areno real eigenvectors. Ax stays behind or ahead of x. This means the
eigenvalues and eigenvectors are complex, as they are for the rotationQ.

2. There is onlyone line of eigenvectors (unusual). The moving directionsAx and
x meet but don’t cross. This happens for the last 2 by 2 matrix below.

3. There are eigenvectors intwo independent directions. This is typical!Ax crosses
x at the first eigenvectorx1, and it crosses back at the second eigenvectorx2.

SupposeA is singular (rank one). Its column space is a line. The vectorAx

has to stay on that line whilex circles around. One eigenvectorx is along the line.
Another eigenvector appears whenAx2 = 0. Zero is an eigenvalue of a singular matrix.

You can mentally followx andAx for these six matrices. How many eigenvectors
and where? When doesAx go clockwise, instead of counterclockwise withx?

A =
[

2 0
0 1

] [
2 0
0 −1

] [
0 1
1 0

] [
0 1
−1 0

] [
1 1

1 1

] [
1 1
0 1

]
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REVIEW OF THE KEY IDEAS

1. Ax = λx says thatx keeps the same direction when multiplied byA.

2. Ax = λx also says that det(A− λI) = 0. This determinesn eigenvalues.

3. The eigenvalues ofA2 and A−1 are λ2 and λ−1, with the same eigenvectors.

4. The sum and product of theλ’s equal the trace (sum ofaii) and determinant.

5. Special matrices like projectionsP and rotationsQ have special eigenvalues !

WORKED EXAMPLES

6.1 A Find the eigenvalues and eigenvectors ofA and A2 and A−1 and A+ 4I :

A =
[

2 −1
−1 2

]
and A2 =

[
5 −4
−4 5

]
.

Check the traceλ1+ λ2 and the determinantλ1λ2 for A and alsoA2.

Solution The eigenvalues ofA come from det(A− λI) = 0:

det(A− λI) =
∣∣∣∣2− λ −1
−1 2− λ

∣∣∣∣ = λ2− 4λ+ 3= 0.

This factors into(λ − 1)(λ − 3) = 0 so the eigenvalues ofA are λ1 = 1 andλ2 = 3.
For the trace, the sum 2+ 2 agrees with 1+ 3. The determinant 3 agrees with the
productλ1λ2 = 3. The eigenvectors come separately by solving(A− λI)x = 0 which
is Ax = λx:

λ = 1: (A− I )x =
[

1 −1
−1 1

] [
x

y

]
=
[

0
0

]
gives the eigenvectorx1 =

[
1
1

]

λ = 3: (A− 3I )x =
[−1 −1
−1 −1

] [
x

y

]
=
[

0
0

]
gives the eigenvectorx2 =

[
1
−1

]
A2 and A−1 and A + 4I keep thesame eigenvectors. Their eigenvalues areλ2, λ−1,
λ+ 4:

A2 has 12 = 1 and 32 = 9 A−1 has
1

1
and

1

3
A+ 4I has 1+ 4= 5 and 3+ 4= 7

The trace ofA2 is 5+ 5= 1+ 9= 10. The determinant is 25− 16= 9.

Notes for later sections:A hasorthogonal eigenvectors (Section 6.4 on symmetric
matrices).A can bediagonalized (Section 6.2).A is similar to any 2 by 2 matrix with
eigenvalues 1 and 3 (Section 6.6).A is a positive definite matrix (Section 6.5) since
A = AT and theλ’s are positive.



6.1 Introduction to Eigenvalues 283

6.1 B For which real numbersc does this matrixA have (a) two real eigenvalues
and eigenvectors (b) a repeated eigenvalue with only one eigenvector (c) two complex
eigenvalues and eigenvectors?

A =
[

2 −c

−1 2

]
ATA =

[
5 −2c − 2

−2c − 2 4+ c2

]
.

What is the determinant ofATA by the product rule? What is its trace? How do you
know thatATA doesn’t have a negative eigenvalue?

Solution The determinant ofA is 4− c. The determinant ofA− λI is

det

[
2− λ −c

−1 2− λ

]
= λ2− 4λ+ (4− c) = 0.

The formula for the roots of a quadratic is

λ = −b ±
√

b2− 4ac

2
= 4±

√
16− 16+ 4c

2
= 2±√c.

Check the trace (it is 4) and the determinant(2+√c)(2−√c) = 4− c. The eigenval-
ues are real and different forc > 0. There are two independent eigenvectors(

√
c, 1)

and (−√c, 1). Both roots becomeλ = 2 for c = 0, and there is only one indepen-
dent eigenvector(0, 1). Both eigenvalues are complex forc < 0 and the eigenvectors
(
√

c, 1) and (−√c, 1) become complex.
The determinant ofATA is det(AT) det(A) = (4 − c)2. The trace ofATA is

5+4+c2. If one eigenvalue is negative, the other must be positive to produce this trace
λ1+ λ2 = 9+ c2. But then negative times positive would give a negative determinant.

In fact everyATA has real nonnegative eigenvalues (Section 6.5).

Problem Set 6.1

1 The example at the start of the chapter has

A =
[
.8 .3
.2 .7

]
and A2 =

[
.70 .45
.30 .55

]
and A∞ =

[
.6 .6
.4 .4

]
.

The matrixA2 is halfway betweenA and A∞. Explain why A2 = 1
2(A + A∞)

from the eigenvalues and eigenvectors of these three matrices.

(a) Show fromA how a row exchange can produce different eigenvalues.

(b) Why is a zero eigenvaluenot changed by the steps of elimination?

2 Find the eigenvalues and the eigenvectors of these two matrices:

A =
[

1 4
2 3

]
and A+ I =

[
2 4
2 4

]
.

A+ I has the eigenvectors asA. Its eigenvalues are by 1.
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3 Compute the eigenvalues and eigenvectors ofA and A−1:

A =
[

0 2
2 3

]
and A−1 =

[−3/4 1/2
1/2 0

]
.

A−1 has the eigenvectors asA. When A has eigenvaluesλ1 and λ2, its
inverse has eigenvalues .

4 Compute the eigenvalues and eigenvectors ofA and A2:

A =
[−1 3

2 0

]
and A2 =

[
7 −3
−2 6

]
.

A2 has the same asA. WhenA has eigenvaluesλ1 andλ2, A2 has eigen-
values .

5 Find the eigenvalues ofA and B and A+ B:

A =
[

1 0
1 1

]
and B =

[
1 1
0 1

]
and A+ B =

[
2 1
1 2

]
.

Eigenvalues ofA+B (are equal to)(are not equal to) eigenvalues ofA plus eigen-
values ofB.

6 Find the eigenvalues ofA and B and AB and BA:

A =
[

1 0
1 1

]
and B =

[
1 1
0 1

]
and AB =

[
1 1
1 2

]
and BA =

[
2 1
1 1

]
.

Eigenvalues ofAB (are equal to)(are not equal to) eigenvalues ofA times eigen-
values ofB. Eigenvalues ofAB (are equal to)(are not equal to) eigenvalues ofBA.

7 Elimination producesA = LU . The eigenvalues ofU are on its diagonal; they
are the . The eigenvalues ofL are on its diagonal; they are all .
The eigenvalues ofA are not the same as .

8 (a) If you know x is an eigenvector, the way to findλ is to .

(b) If you know λ is an eigenvalue, the way to findx is to .

9 What do you do toAx = λx, in order to prove (a), (b), and (c)?

(a) λ2 is an eigenvalue ofA2, as in Problem 4.

(b) λ−1 is an eigenvalue ofA−1, as in Problem 3.

(c) λ+ 1 is an eigenvalue ofA+ I , as in Problem 2.

10 Find the eigenvalues and eigenvectors for both of these Markov matricesA and
A∞. Explain whyA100 is close toA∞:

A =
[
.6 .2
.4 .8

]
and A∞ =

[
1/3 1/3
2/3 2/3

]
.
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11 Here is a strange fact about 2 by 2 matrices with eigenvaluesλ1 �= λ2: The
columns ofA−λ1I are multiples of the eigenvectorx2. Any idea why this should
be?

12 Find the eigenvalues and eigenvectors for the projection matricesP and P 100:

P =
 .2 .4 0

.4 .8 0
0 0 1

 .

If two eigenvectors share the sameλ, so do all their linear combinations. Find
an eigenvector ofP with no zero components.

13 From the unit vectoru = (1
6, 1

6, 3
6, 5

6

)
construct the rank one projection matrix

P = uuT.

(a) Show thatPu = u. Thenu is an eigenvector withλ = 1.

(b) If v is perpendicular tou show thatP v = 0. Thenλ = 0.

(c) Find three independent eigenvectors ofP all with eigenvalueλ = 0.

14 Solve det(Q− λI) = 0 by the quadratic formula to reachλ = cosθ ± i sinθ :

Q =
[

cosθ − sinθ

sinθ cosθ

]
rotates thexy plane by the angleθ .

Find the eigenvectors ofQ by solving (Q− λI)x = 0. Use i2 = −1.

15 Every permutation matrix leavesx = (1, 1, . . ., 1) unchanged. Thenλ = 1. Find
two moreλ’s for these permutations:

P =
0 1 0

0 0 1
1 0 0

 and P =
0 0 1

0 1 0
1 0 0

 .

16 Prove that the determinant ofA equals the productλ1λ2 · · · λn. Start with the
polynomial det(A− λI) separated into itsn factors. Then setλ = :

det(A− λI) = (λ1− λ)(λ2− λ) · · · (λn − λ) so detA = .

17 The sum of the diagonal entries (thetrace) equals the sum of the eigenvalues:

A =
[
a b

c d

]
has det(A− λI) = λ2− (a + d)λ+ ad − bc = 0.

If A hasλ1 = 3 andλ2 = 4 then det(A− λI) = . The quadratic formula
gives the eigenvaluesλ = (a+d+√ )/2 andλ = . Their sum is .
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18 If A hasλ1 = 4 andλ2 = 5 then det(A− λI) = (λ− 4)(λ− 5) = λ2− 9λ+ 20.
Find three matrices that have tracea + d = 9 and determinant 20 andλ = 4, 5.

19 A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2. This information is
enough to find three of these:

(a) the rank ofB

(b) the determinant ofBTB

(c) the eigenvalues ofBTB

(d) the eigenvalues of(B + I )−1.

20 Choose the second row ofA =
[

0 1
∗ ∗

]
so thatA has eigenvalues 4 and 7.

21 Choosea, b, c, so that det(A−λI) = 9λ−λ3. Then the eigenvalues are−3, 0, 3:

A =
0 1 0

0 0 1
a b c

 .

22 The eigenvalues ofA equal the eigenvalues ofAT . This is because det(A−λI)

equals det(AT − λI). That is true because . Show by an example that the
eigenvectors ofA and AT are not the same.

23 Construct any 3 by 3 Markov matrixM: positive entries down each column add
to 1. If e = (1, 1, 1) verify that MTe = e. By Problem 22,λ = 1 is also an
eigenvalue ofM. Challenge: A 3 by 3 singular Markov matrix with trace12 has
eigenvaluesλ = .

24 Find three 2 by 2 matrices that haveλ1 = λ2 = 0. The trace is zero and the
determinant is zero. The matrixA might not be 0 but check thatA2 = 0.

25 This matrix is singular with rank one. Find threeλ’s and three eigenvectors:

A =
1

2
1

[2 1 2
] =

2 1 2
4 2 4
2 1 2

 .

26 SupposeA and B have the same eigenvaluesλ1, . . ., λn with the same inde-
pendent eigenvectorsx1, . . ., xn. Then A = B. Reason: Any vector x is a
combinationc1x1+ . . .+ cnxn. What isAx? What isBx?

27 The blockB has eigenvalues 1, 2 andC has eigenvalues 3, 4 andD has eigen-
values 5, 7. Find the eigenvalues of the 4 by 4 matrixA:

A =
[
B C

0 D

]
=


0 1 3 0
−2 3 0 4

0 0 6 1
0 0 1 6

 .
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28 Find the rank and the four eigenvalues of

A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 and C =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 .

29 SubtractI from the previousA. Find theλ’s and then the determinant:

B = A− I =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

When A (all ones) is 5 by 5, the eigenvalues ofA and B = A − I are
and .

30 (Review) Find the eigenvalues ofA, B, andC:

A =
1 2 3

0 4 5
0 0 6

 and B =
0 0 1

0 2 0
3 0 0

 and C =
2 2 2

2 2 2
2 2 2

 .

31 Whena+ b = c+ d show that(1, 1) is an eigenvector and find both eigenvalues
of

A =
[
a b

c d

]
.

32 When P exchanges rows 1 and 2and columns 1 and 2, the eigenvalues don’t
change. Find eigenvectors ofA and PAP for λ = 11:

A =
1 2 1

3 6 3
4 8 4

 and PAP =
6 3 3

2 1 1
8 4 4

 .

33 SupposeA has eigenvalues 0, 3, 5 with independent eigenvectorsu, v, w.

(a) Give a basis for the nullspace and a basis for the column space.

(b) Find a particular solution toAx = v + w. Find all solutions.

(c) Show thatAx = u has no solution. (If it did then would be in the
column space.)

34 Is there a real 2 by 2 matrix (other thanI ) with A3 = I? Its eigenvalues must
satisfy λ3 = I . They can bee2πi/3 and e−2πi/3. What trace and determinant
would this give? ConstructA.


