EIGENVALUES AND
EIGENVECTORS

INTRODUCTION TO EIGENVALUES = 6.1

Linear equationsAx = b come from steady state problems. Eigenvalues have their
greatest importance idynamic problems. The solution ofdu/dt = Au is changing
with time—growing or decaying or oscillating. We can't find it by elimination. This
chapter enters a new part of linear algebra. All matrices in this chapter are square.

A good model comes from the powers A2, A3, ... of a matrix. Suppose you need
the hundredth poweA1%. The starting matrixA becomes unrecognizable after a few
steps:

8 3 .70 .45 650 .525 .6000 .6000
2 7 .30 .55 350 475 4000 .4000

A A2 A3 AlOO

A0 \was found by using theigenvalues of A, not by multiplying 100 matrices. Those
eigenvalues are a new way to see into the heart of a matrix.

To explain eigenvalues, we first explain eigenvectors. Almost all vectors change
direction, when they are multiplied byt. Certain exceptional vectorx are in the
same direction asAx. Those are the “eigenvectors”Multiply an eigenvector byA,
and the vectorAx is a number times the originalx.

The basic equationis Ax = Ax. The numbera is the “eigenvalue”. It tells
whether the special vector is stretched or shrunk or reversed or left unchanged—
when it is multiplied byA. We may findA = 2 or % or —1 or 1. The eigenvalue
could be zero! Therix = Ox means that this eigenvectaris in the nullspace.

If A is the identity matrix, every vector hasx = x. All vectors are eigenvectors.
The eigenvalue (the number lambda)is= 1. This is unusual to say the least. Most 2
by 2 matrices havéwo eigenvector directions artevo eigenvalues. This section teaches
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6.1 Introduction to Eigenvalues 275

how to compute tha’s andA’s. It can come early in the course because we only need
the determinant foa 2 by 2 matrix.

For the matrixA in our model above, here are eigenvectsisand x,. Multi-
plying those vectors by givesx; and %xz. The eigenvalues arg; = 1 andiy = %:

2 T1|.4
1 8 3 1 5 .
Xp = [_1} and Axp = [.2 .7] [_1] = [_.5} (this is 3 x2 S0 A2 = 3).

If we again multiplyx; by A, we still getx1. Every power ofA will give
A"x1 = x1. Multiplying x, by A gave 3x,, and if we multiply again we get})%x».
When A is squared, the eigenvectore; and x» stay the same The A's are now 2
and (%)2. The eigenvalues are squaredThis pattern keeps going, because the eigen-
vectors stay in their own directions (Figure 6.1) and never get mixed. The eigenvectors
of A100 are the samer; andx,. The eigenvalues ofi® are £00 =1 and(3)1%° =
very small number.

X1 = [ﬂ and Axq = ['8 '3} [6:| =x1 (Ax =x means that; = 1)

[.e} A%x1 = (1)%xq
Ax1=x1= 4

.25
A%x5 = (5)%xy = [_ 25]
5 :
Axo = loxp = |:_ 5]

=[]

Figure 6.1 The eigenvectors keep their directions? has eigenvalues?land (.5)2.

Other vectors do change direction. But all other vectors are combinations of the
two eigenvectors. The first column of is the combinatiorne; + (.2)x2:

[g} is x1+(2x2 = [2} + [_;} ) 1)

Multiplying by A gives the first column ofA2. Do it separately forr; and(.2)x,. Of
courseAxy = x1. And A multiplies x» by its eigenvalue:

A [:g} - [;} s x1+ (2= [ﬂ + [_ﬂ

Each eigenvector is multiplied by its eigenvaluezhen we multiply byA. We didn't
need these eigenvectors to fisf. But it is the good way to do 99 multiplications.
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At every stepx1 is unchanged ana is multiplied by (3), so we have(3)%°:

8 1 6 very
Agg[' } is really x1+4 (.2)(Z)%%2 = [ } + | small

2 2 4
vector

This is the first column ofA1%, The number we originally wrote a$000 was not
exact. We left 0ut(.2)(%)99 which wouldn’'t show up for 30 decimal places.

The eigenvectox is a “steady state” that doesn’'t change (because- 1). The
eigenvectorx; is a “decaying mode” that virtually disappears (because- .5). The
higher the power ofd, the closer its columns approach the steady state.

We mention that this particulad is a Markov matrix. Its entries are positive
and every column adds to 1. Those facts guarantee that the largest eigenvatgelis
(as we found). Its eigenvectar; = (.6, .4) is the steady state—which all columns of
AX will approach. Section 8.3 shows how Markov matrices appear in applications.

For projections we can spot the steady stdte= 1) and the nullspacéir = 0).

Example 1 The projection matrix P = [-2-2] has eigenvalues 1 and 0.

Its eigenvectors are; = (1, 1) andx2 = (1, —1). For those vectorsPx1 = x1 (steady
state) andPx2> = 0 (nullspace). This example illustrates three things that we mention
now:

1. Each column ofP adds to 1, so. =1 is an eigenvalue.
2. P is singular, so. = 0 is an eigenvalue.
3. P is symmetric, so its eigenvectord, 1) and (1, —1) are perpendicular.

The only possible eigenvalues of a projection matrix are 0 and 1. The eigenvectors
for A = 0 (which meansPx = Ox) fill up the nullspace. The eigenvectors for= 1
(which meansPx = x) fill up the column space. The nullspace is projected to zero.
The column space projects onto itself.

An in-between vector likew = (3, 1) partly disappears and partly stays:

1 2 . 0 2
v= [_1] + [2} projects onto Pv = [0} + [2} .

The projection keeps the column space partwadnd destroys the nullspace part. To

emphasize:Special properties of a matrix lead to special eigenvalues and eigenvectors.

That is a major theme of this chapter (it is captured in a table at the very end).
Projections have. = 0 and 1. Permutations have &lll = 1. The next matrixR

(a reflection and at the same time a permutation) is also special.
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Example 2 The reflection matrix R = [?3] has eigenvalues 1 and-1.

The eigenvectorl, 1) is unchanged byR. The second eigenvector (&, —1)—its signs
are reversed byR. A matrix with no negative entries can still have a negative eigen-
value! The eigenvectors faR are the same as faP, becauseR = 2P — I:

01 5 5 10
ez o [Q[3 Y E) e
Here is the point. IfPx = Ax then 2Px = 2ix. The eigenvalues are doubled when

the matrix is doubled. Now subtraétx = x. The result is2P — I)x = (2» — Dx.
When a matrix is shifted by, each is shifted byl. No change in eigenvectors.

X2 Px1=1x1 X2 Rx1=1x1

Pxo> =0x>
Projection Reflection ® Rxp=—x2

Figure 6.2 Projections have eigenvalues 1 and 0. Reflections haxel and —1.
A typical x changes direction, but not the eigenvectsisand x».

The eigenvalues are related exactly as the matrices are related:

R=2P -1 so the eigenvalues at are A1) —-1=1and20) — 1= -1
The eigenvalues oR? are A%. In this caseR? = I. Check(1)?2 =1 and(-1)? = 1.

The Equation for the Eigenvalues

In small examples we found’s and x’s by trial and error. Now we use determinants
and linear algebraThis is the key calculation in the chapter—to solve Ax = ix.

First moveix to the left side. Write the equatioAx = Ax as(A — Al)x = 0.
The matrix A — Al times the eigenvectat is the zero vectorThe eigenvectors make
up the nullspace of A — 11! When we know an eigenvalug, we find an eigenvector
by solving (A — AI)x = 0.

Eigenvalues first. IftA — AI)x = 0 has a nonzero solutiom — Al is not invertible.
The determinant ofA — AT must be zero.This is how to recognize an eigenvalue

6A The number\ is an eigenvalue ofd if and only if A — Al is singular:

det(A — A1) = 0. @)
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This “characteristic equation” involves only notx. WhenA isn byn, dettA — AI) = 0is
an equation of degree ThenA hasn eigenvalues and eagHeads tox:

For each A solve (A—AI)x =0 or Ax =Ax to find an eigenvectorx. (4)

Example 3 A= [}2] is already singular (zero determinant). Find ifs andx’s.

When A is singular,. = 0 is one of the eigenvalues. The equatidm = Ox has
solutions. They are the eigenvectors foe= 0. But here is the way to findll A's and
x’s! Always subtracti/ from A:

Subtract A from the diagonal to find A — Al = [1 A 2 }

2 4—

Take the determinant &d — bc¢” of this 2 by 2 matrix. From 1— A times 4— A, the
“ad” part is A2 — 51 4+ 4. The ‘bc” part, not containingk, is 2 times 2.

1-2 2 ]_ .,
dEt[ 2 4_A}—<1—k)<4—k)—(2)<2)_x — 5. (5)

Set this determinaniA? — 51 to zera One solution isk = 0 (as expected, sinca is
singular). Factoring intd. times 1 — 5, the other root is. = 5:

det(A —Al) =2?>—5.=0 yields the eigenvalues ;=0 and i, =5.

Now find the eigenvectors. Solved — AI)x = 0 separately for.; =0 andip, = 5:

_ 1 2|y|_ 1|0 . . y| | 2 _
(A—-0Dx = [2 4] [Z}_[O} yields an eigenvecto [z}_[—l} forry =0

-4 2l{y] _[0O] .. . vyl _[1 _
(A—5I)x_[ 5 _1] [z}_[O} yields an eigenvecto |:Zi|_|:21| for Ap = 5.

The matricesA — 01 and A — 5/ are singular (because 0 and 5 are eigenvalues).
The eigenvector$2, —1) and (1, 2) are in the nullspacestA —AI)x =0 is Ax = Ax.

We need to emphasizerhere is nothing exceptional about A = 0. Like every
other number, zero might be an eigenvalue and it might notA i singular, it is.
The eigenvectors fill the nullspaceix = Ox = 0. If A is invertible, zero is not an
eigenvalue. We shiftA by a multiple of I to make it singular. In the example, the
shifted matrixA — 51 was singular and 5 was the other eigenvalue.

Summary To solve the eigenvalue problem for anby » matrix, follow these steps:

1. Compute the determinant ofA — AI. With A subtracted along the diagonal,
this determinant starts with” or —A”". It is a polynomial ini of degreen.

2.  Find the roots of this polynomial by solving detA — A7) = 0. Thern roots
are then eigenvalues ofd. They makeA — Al singular.

3.  For each eigenvalug, solve (A — AI)x = 0 to find an eigenvectorx.
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A note on quick computations, whes is 2 by 2. The determinant off — A/ is a
quadratic (starting with2). >From factoring or the quadratic formula, we find its two
roots (the eigenvalues). Then the eigenvectors come immediately Areri /. This
matrix is singular, so both rows are multiples of a vecterb). The eigenvector is
any multiple of (b, —a). The example had =0 andx = 5:

A =0:rows of A —0I in the direction(1, 2); eigenvector in the directioi2, —1)
A =5:rows of A — 57 in the direction(—4, 2); eigenvector in the directioK2, 4).

Previously we wrote that last eigenvector @s2). Both (1,2) and (2, 4) are correct.
There is a wholdline of eigenvectors—any nonzero multiple ofc is as good ast.
MATLAB s eig(A) divides by the length, to make the eigenvector into a unit vector.
We end with a warning. Some 2 by 2 matrices have amg line of eigenvectors.
This can only happen when two eigenvalues are equal. (On the other Aand/
has equal eigenvalues and plenty of eigenvectors.) Similarly sorbg n matrices
don’t haven independent eigenvectors. Withouteigenvectors, we don’t have a basis.
We can't write everyv as a combination of eigenvectors. In the language of the next
section, we can't diagonalize a matrix withautindependent eigenvectors.

Good News, Bad News

Bad news first: If you add a row ol to another row, or exchange rows, the eigen-
values usually changeElimination does not preserve the A's. The triangularU has

its eigenvalues sitting along the diagonal—they are the pivots. But they are not the
eigenvalues ofA! Eigenvalues are changed when row 1 is added to row 2:

11

11

11 ) B
U:[O O] hasi =0 andA = 1; A_[

] hasi =0 andi = 2.

Good news second: Tharoduct A; times A2 and the sum A1+ 42 can be found quickly
from the matrix. For thisA, the product is O times 2. That agrees with the determinant
(which is 0. The sum of eigenvalues is9 2. That agrees with the sum down the
main diagonal (which is % 1). These quick checks always work:

6B The product of then eigenvalues equals the determinant cf.

6C The sum of then eigenvalues equals the sum of the diagonal entries ofA.
This sum along the main diagonal is called tinece of A:

MAro+---+ A, =trace=arr1+azx+ -+ ap,. (6)
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Those checks are very useful. They are proved in Problems 16-17 and again in the next
section. They don’'t remove the pain of computihg. But when the computation is
wrong, they generally tell us so. To compute correst go back to degtA — A7) = 0.

The determinant test makes tipeoduct of the A's equal to theproduct of the
pivots (assuming no row exchanges). But the sum of itiseis not the sum of the
pivots—as the example showed. The individug have almost nothing to do with
the individual pivots. In this new part of linear algebra, the key equation is really
nonlinear: A multiplies x.

Imaginary Eigenvalues

One more bit of news (not too terrible). The eigenvalues might not be real numbers.

Example 4 The 90° rotation Q = [_9 1] has no real eigenvectors or eigenvalues
No vector Qx stays in the same direction as x (except the zero vector which is useless).
There cannot be an eigenvector, unless we gomaginary numbers Which we do.

To see howi can help, look atQ? which is —1. If Q is rotation through 99
then Q2 is rotation through 180 Its eigenvalues are-1 and —1. (Certainly —/x =
—1x.) SquaringQ is supposed to square its eigenvalueso we must have? = —1.
The eigenvalues of the 90° rotation matrix Q are +i and —i, because? = —1.

Thosei’s come as usual from d@@ — A7) = 0. This equation gives?+1 = 0.
Its roots arer; =i and i, = —i. They add to zero (which is the trace ¢f). The
product is(i)(—i) = 1 (which is the determinant).

We meet the imaginary numberalso in the eigenvectors ap:

0O 1|1 .|1 and O 1y|i|_ .|i

—1 of|i| 7" —1 o||1|T "|1|
Somehow these complex vectars = (1,i) andx2 = (i, 1) keep their direction as
they are rotated. Don’t ask me how. This example makes the all-important point that

real matrices can easily have complex eigenvalues. The particular eigenvanés-i
also illustrate two special properties 6f:

1. Q is an orthogonal matrix so the absolute value of eads |1| = 1.
2. Q is a skew-symmetric matrix so eaghis pure imaginary.

A symmetric matrix(AT = A) can be compared to a real number. A skew-symmetric
matrix (AT = —A) can be compared to an imaginary number. An orthogonal matrix
(ATA =I) can be compared to a complex number with= 1. For the eigenvalues
those are more than analogies—they are theorems to be proved in Sedtioiihe
eigenvectors for all these special matrices are perpendicular. Som@hbwand (1, i)

are perpendicular (in Chapter 10).
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Eigshow

There is aMATLAB demo (just typeeigshow), displaying the eigenvalue problem for
a 2 by 2 matrix. It starts with the unit vectar= (1, 0). The mouse makes this vector
move around the unit circle. At the same time the screen shows, in color and
also moving. Possiblx is ahead ofx. PossiblyAx is behindx. Sometimes Ax is
parallel to x. At that parallel momentAx = Ax (twice in the second figure).

x2 0

/
Axy ='0.5x3 \
0.3.07) '\ ]

/
\( ellipse of Ax’s /
/

\

Ax =(0.8,0.2) P
~__ __ ~(ircle of x’s
x=(1,0)

The eigenvalue. is the length ofAx, when the unit eigenvectar is parallel.
The built-in choices forA illustrate three possibilities:

1. There areno real eigenvectors. Ax stays behind or ahead of x. This means the
eigenvalues and eigenvectors are complex, as they are for the rogation

2.  There is onlyone line of eigenvectors (unusual). The moving directiohs and
x meet but don't cross. This happens for the last 2 by 2 matrix below.

3. There are eigenvectors two independent directions. This is typicalix crosses
x at the first eigenvectory, and it crosses back at the second eigenveetor

SupposeA is singular (rank one). Its column space is a line. The veder
has to stay on that line while circles around. One eigenvectsris along the line.
Another eigenvector appears whaw, = 0. Zero is an eigenvalue of a singular matrix.

You can mentally follonx and Ax for these six matrices. How many eigenvectors
and where? When doe$x go clockwise, instead of counterclockwise witf?

BT
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= REVIEW OF THE KEY IDEAS =

Ax = Jx says thatx keeps the same direction when multiplied By
Ax = \x also says that des — A7) = 0. This determinex eigenvalues.
The eigenvalues oft? and A~1 are A2 and A1, with the same eigenvectors.

The sum and product of the's equal the trace (sum af;;) and determinant.

a r w nNpoE

Special matrices like projectionB8 and rotationsQ have special eigenvalues !

= WORKED EXAMPLES =

6.1 A Find the eigenvalues and eigenvectors4ofaind A2 and A~! and A + 41:

[ 2 -1 2 [ 5 -4
A_[—l 2} andA_[_4 5]

Check the trace.1 + A» and the determinantiis for A and alsoAZ2.

Solution  The eigenvalues oft come from detA — A1) = O:

2—x -1

det(A—;\I):‘ 1 94

‘ =22 -4y +3=0.

This factors into(A — 1)(A — 3) = 0 so the eigenvalues of are iy =1 andiy = 3.
For the trace, the sum 2 2 agrees with 1+ 3. The determinant 3 agrees with the
productiiio = 3. The eigenvectors come separately by solvidg— A7)x = 0 which

is Ax = Ax:

. 1 =1f|x| (O] . . |1
A=1 (A-Dx _[_1 1} [y]_[o] gives the elgenvectorl_[l}

. -1 =1f|x| (O] . . |1
A=3 (A-3Dx = [_1 _1} [y] = [0] gives the eigenvector; = [_1]
A% and A=1 and A + 41 keep thesame eigenvectors. Their eigenvalues arg?, 21,
A+ 4

1 1
A2hasf=1and3 =9 A‘lhasiandé A+4lhas1l+-4=5and3+4=7

The trace ofA? is 5+ 5= 1+ 9= 10. The determinant is 25 16 = 9.

Notes for later sectionsA hasorthogonal eigenvectors (Section 6.4 on symmetric
matrices). A can bediagonalized (Section 6.2).A is similar to any 2 by 2 matrix with
eigenvalues 1 and 3 (Section 6.6). is a positive definite matrix (Section 6.5) since
A = AT and thex’s are positive.
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6.1 B For which real numberg does this matrixA have @) two real eigenvalues
and eigenvectorsbj a repeated eigenvalue with only one eigenvectdriyo complex
eigenvalues and eigenvectors?

| 2 —c T, 5 —2c—-2
A_[—l 2} AA—[—zc—z 4~|—c2:|'

What is the determinant aATA by the product rule? What is its trace? How do you
know that ATA doesn't have a negative eigenvalue?

Solution The determinant ofd is 4— ¢. The determinant ofA — A/ is

2—A —C .2 _
det[ ] 2—x]—)\ — 4+ (4-c)=0.

The formula for the roots of a quadratic is

—b++Vb2—4ac 4++16—16+4c

Check the trace (it is 4) and the determing@t+ /c)(2 — /c) = 4—c. The eigenval-
ues are real and different far > 0. There are two independent eigenvectoy&, 1)
and (—+/c, 1). Both roots become. = 2 for ¢ = 0, and there is only one indepen-
dent eigenvector0, 1). Both eigenvalues are complex for< 0 and the eigenvectors
(4/c,1) and (—+/c, 1) become complex.

The determinant ofATA is det{AT)det(A) = (4 — c)2. The trace ofATA is
5+44c2. If one eigenvalue is negative, the other must be positive to produce this trace
A1+ 22 = 94 ¢2. But then negative times positive would give a negative determinant.

In fact everyAT A has real nonnegative eigenvalues (Section 6.5).

A

Problem Set 6.1

1 The example at the start of the chapter has

(8 3 , [70 45 ~ [6 6
A—[.z .7] and A —[.30 .55} and A —[.4 .4]

The matrix A2 is halfway betweemd and A®°. Explain why A2 = %(A + A®)
from the eigenvalues and eigenvectors of these three matrices.

(@) Show fromA how a row exchange can produce different eigenvalues.
(b) Why is a zero eigenvalueot changed by the steps of elimination?

2 Find the eigenvalues and the eigenvectors of these two matrices:

1 4 2 4
a=[s 4] asia]2 4]

A + I has the eigenvectors ag\. Its eigenvalues are by 1.
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3

10

Compute the eigenvalues and eigenvectorsiaind A—1:

_Jo 2 1 [-3/4 172
_[ ] and A _[ 1/2 O]

A~1 has the eigenvectors agt. When A has eigenvalues; and Ao, its
inverse has eigenvalues .

Compute the eigenvalues and eigenvectorsiadnd A2:

-1 3 2 | 7 =3
A_[Z O} andA_[_2 6]'

A? has the same asA. When A has eigenvalues; and, A2 has eigen-
values .

Find the eigenvalues of and B and A + B:

11 2 1
A=|:1 1] and Bz[o 1] and A+B=[1 2:|.

Eigenvalues ofA+ B (are equal to)(are not equal to) eigenvaluesigblus eigen-
values of B.

Find the eigenvalues oA and B and AB and BA:

1 0 1 1 1 1 2 1
Az[l 1} and B:[0 1] and AB:[1 2] and BA:[1 1]

Eigenvalues ofA B (are equal to)(are not equal to) eigenvaluesAdiimes eigen-
values ofB. Eigenvalues ofA B (are equal to)(are not equal to) eigenvalueBdf.

Elimination producesA = LU. The eigenvalues ot/ are on its diagonal; they
are the . The eigenvalues of. are on its diagonal; they are all .
The eigenvalues oA are not the same as .

(@ If you knowx is an eigenvector, the way to findis to .

(b) If you know A is an eigenvalue, the way to find is to .

What do you do toAx = Ax, in order to prove (a), (b), and (c)?

(@) A2 is an eigenvalue ofi2, as in Problem 4.
(b) 1~ 1is an eigenvalue ofA~1, as in Problem 3.
(c) A+ 1is an eigenvalue ofA + I, as in Problem 2.

Find the eigenvalues and eigenvectors for both of these Markov matticasd
A%, Explain why A1%0 is close toA:

6 2 v [1/3 13
A_|:.4 .8:| and A —[2/3 2/3]
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12

13

14

15

16

17
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Here is a strange fact about 2 by 2 matrices with eigenvalyest Ao: The
columns ofA—A311 are multiples of the eigenvecten. Any idea why this should
be?

Find the eigenvalues and eigenvectors for the projection matfcasd P00

P=

orN
oo
» oo

If two eigenvectors share the same so do all their linear combinations. Find
an eigenvector of? with no zero components.

From the unit vectom = (3, %, 2, 2) construct the rank one projection matrix
P=uu'.

(&) Show thatPu = u. Thenu is an eigenvector with. = 1.

(b) If v is perpendicular tar show thatPv = 0. Theni = 0.

(c) Find three independent eigenvectorsifall with eigenvaluer = 0.
Solve detQ — AI) = 0 by the quadratic formula to reach= cosf +i sing:

0= cosf —sind
| sind  cosf

] rotates thexy plane by the angl®.

Find the eigenvectors of) by solving (Q — Al)x = 0. Usei? = —1.

Every permutation matrix leaves= (1, 1, . . ., 1) unchanged. Thea = 1. Find
two more’s for these permutations:

010 0 01
P=]0 0 1 and P=|0 1 O
1 00 1 00

Prove that the determinant of equals the productiiy---A,. Start with the
polynomial detA — AI) separated into ita factors. Then set = :

det(tA— A =A1—A)A2—A)--- (A, —A) sO detdA =
The sum of the diagonal entries (ttrace) equals the sum of the eigenvalues:
a b 2
A= ¢ d has detA —Al)=A“—(a+d)r+ad —bc=0.

If A hasi1 =3 andi, =4 then detA — Al) = . The quadratic formula
gives the eigenvalues = (a+d++/ )/2 andi = . Their sum is .
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18

19

20

21

22

23

24

25

26

27

If A hasi1 =4 andi, =5 then detA —Al) = (A —4)(A — 5) = A2 — 9 + 20.
Find three matrices that have traget d = 9 and determinant 20 and= 4, 5.

A 3 by 3 matrix B is known to have eigenvalues D 2. This information is
enough to find three of these:

(&) the rank ofB
(b) the determinant oB' B

(c) the eigenvalues oB"B
(d) the eigenvalues ofB + 1)~L.

Choose the second row of = [2 ﬂ so thatA has eigenvalues 4 and 7.

Chooseu, b, ¢, so that detd — A1) = 91 —23. Then the eigenvalues are3, 0, 3:

010
A=10 0 1
a b c

The eigenvalues ofd equal the eigenvalues ofAT. This is because det —AT)
equals detAT — A7). That is true because . Show by an example that the
eigenvectors ofdA and AT arenot the same.

Construct any 3 by 3 Markov matri¥: positive entries down each column add
to 1. If e = (1,1, 1) verify that MTe = e. By Problem 22, = 1 is also an
eigenvalue ofM. Challenge: A 3 by 3 singular Markov matrix with trat%ehas
eigenvalues. =

Find three 2 by 2 matrices that hawe = A, = 0. The trace is zero and the
determinant is zero. The matrix might not be 0 but check that? = 0.

This matrix is singular with rank one. Find threés and three eigenvectors:

1 2 1 2

A=|2[[212]=|4 2 4

1 2 1 2
SupposeA and B have the same eigenvalues, . . ., A, with the same inde-
pendent eigenvectors;,. . .,x,. Then A = B. Reason: Any vectorx is a

combinationcixy +. . . + c,x,. What is Ax? What isBx?

The block B has eigenvalues,2 and C has eigenvalues,3 and D has eigen-
values 57. Find the eigenvalues of the 4 by 4 matux

0130

B cl |-2 3
Az[o D:|= 0 0
0 0

= o O
(200 ol
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Find the rank and the four eigenvalues of

111 1 1010
1111 010 1
A=177 1 1] 3 C=17 451 0
11 1 1 0101

Subtract/ from the previousA. Find thei’s and then the determinant:

0111

1 011
B=A-1= 110 10

1110

When A (all ones) is 5 by 5, the eigenvalues afand B = A — I are
and .

(Review) Find the eigenvalues of, B, andC:

1 2 3 0 0 1 2 2 2
A=]10 4 5 and B=|0 2 O and C=1|2 2 2
0O 0 6 3 00 2 2 2

Whena + b = ¢ +d show that(1, 1) is an eigenvector and find both eigenvalues
of
a b
aefen]

When P exchanges rows 1 and ahd columns 1 and 2, the eigenvalues don't
change. Find eigenvectors df and PAP for » = 11:

1 1 6 3 3
A=1]3 3 and PAP=|2 1 1].
4 4 8 4 4

SupposeA has eigenvalues, 3, 5 with independent eigenvectois v, w.

OOoON

(@) Give a basis for the nullspace and a basis for the column space.

(b) Find a particular solution telx = v + w. Find all solutions.

(c) Show thatAx = u has no solution. (If it did then would be in the
column space.)

Is there a real 2 by 2 matrix (other than/) with A% = I? Its eigenvalues must
satisfy A3 = I. They can bee?"/3 and ¢=2"/3, What trace and determinant
would this give? Construc.



