Top arXiv papers

sign in to customize
  • PDF
    The relevance of shallow-depth quantum circuits has recently increased, mainly due to their applicability to near-term devices. In this context, one of the main goals of quantum circuit complexity is to find problems that can be solved by quantum shallow circuits but require more computational resources classically. Our first contribution in this work is to prove new separations between classical and quantum constant-depth circuits. Firstly, we show a separation between constant-depth quantum circuits with quantum advice $\mathsf{QNC}^0/\mathsf{qpoly}$, and $\mathsf{AC}^0[p]$, which is the class of classical constant-depth circuits with unbounded-fan in and $\pmod{p}$ gates. In addition, we show a separation between $\mathsf{QAC}^0$, which additionally has Toffoli gates with unbounded control, and $\mathsf{AC}^0[p]$. This establishes the first such separation for a shallow-depth quantum class that does not involve quantum fan-out gates. Secondly, we consider $\mathsf{QNC}^0$ circuits with infinite-size gate sets. We show that these circuits, along with (classical or quantum) prime modular gates, can implement threshold gates, showing that $\mathsf{QNC}^0[p]=\mathsf{QTC}^0$. Finally, we also show that in the infinite-size gateset case, these quantum circuit classes for higher-dimensional Hilbert spaces do not offer any advantage to standard qubit implementations.
  • PDF
    We propose an implementation of bivariate bicycle codes (Nature \bf 627, 778 (2024)) based on long-range Rydberg gates between stationary neutral atom qubits. An optimized layout of data and ancilla qubits reduces the maximum Euclidean communication distance needed for non-local parity check operators. An optimized Rydberg gate pulse design enables $\sf CZ$ entangling operations with fidelity ${\mathcal F}>0.999$ at a distance greater than $12~\mu\rm m$. The combination of optimized layout and gate design leads to a quantum error correction cycle time of $\sim 1.2~\rm ms$ for a $[[144,12,12]]$ code, an order of magnitude improvement over previous designs.
  • PDF
    Geometric locality is an important theoretical and practical factor for quantum low-density parity-check (qLDPC) codes which affects code performance and ease of physical realization. For device architectures restricted to 2D local gates, naively implementing the high-rate codes suitable for low-overhead fault-tolerant quantum computing incurs prohibitive overhead. In this work, we present an error correction protocol built on a bilayer architecture that aims to reduce operational overheads when restricted to 2D local gates by measuring some generators less frequently than others. We investigate the family of bivariate bicycle qLDPC codes and show that they are well suited for a parallel syndrome measurement scheme using fast routing with local operations and classical communication (LOCC). Through circuit-level simulations, we find that in some parameter regimes bivariate bicycle codes implemented with this protocol have logical error rates comparable to the surface code while using fewer physical qubits.
  • PDF
    Quantum error correction is necessary for large-scale quantum computing. A promising quantum error correcting code is the surface code. For this code, fault-tolerant quantum computing (FTQC) can be performed via lattice surgery, i.e., splitting and merging patches of code. Given the frequent use of certain lattice-surgery subroutines (LaS), it becomes crucial to optimize their design in order to minimize the overall spacetime volume of FTQC. In this study, we define the variables to represent LaS and the constraints on these variables. Leveraging this formulation, we develop a synthesizer for LaS, LaSsynth, that encodes a LaS construction problem into a SAT instance, subsequently querying SAT solvers for a solution. Starting from a baseline design, we can gradually invoke the solver with shrinking spacetime volume to derive more compact designs. Due to our foundational formulation and the use of SAT solvers, LaSsynth can exhaustively explore the design space, yielding optimal designs in volume. For example, it achieves 8% and 18% volume reduction respectively over two states-of-the-art human designs for the 15-to-1 T-factory, a bottleneck in FTQC.
  • PDF
    In this paper, we investigate the relationship between entanglement and non-stabilizerness (also known as magic) in matrix product states (MPSs). We study the relation between magic and the bond dimension used to approximate the ground state of a many-body system in two different contexts: full state of magic and mutual magic (the non-stabilizer analogue of mutual information, thus free of boundary effects) of spin-1 anisotropic Heisenberg chains. Our results indicate that obtaining converged results for non-stabilizerness is typically considerably easier than entanglement. For full state magic at critical points and at sufficiently large volumes, we observe convergence with $1/\chi^2$, with $\chi$ being the MPS bond dimension. At small volumes, magic saturation is so quick that, within error bars, we cannot appreciate any finite-$\chi$ correction. Mutual magic also shows a fast convergence with bond dimension, whose specific functional form is however hindered by sampling errors. As a by-product of our study, we show how Pauli-Markov chains (originally formulated to evaluate magic) resets the state of the art in terms of computing mutual information for MPS. We illustrate this last fact by verifying the logarithmic increase of mutual information between connected partitions at critical points. By comparing mutual information and mutual magic, we observe that, for connected partitions, the latter is typically scaling much slower - if at all - with the partition size, while for disconnected partitions, both are constant in size.
  • PDF
    We give a simple description of rectangular matrices that can be implemented by a post-selected stabilizer circuit. Given a matrix with entries in dyadic cyclotomic number fields $\mathbb{Q}(\exp(i\frac{2\pi}{2^m}))$, we show that it can be implemented by a post-selected stabilizer circuit if it has entries in $\mathbb{Z}[\exp(i\frac{2\pi}{2^m})]$ when expressed in a certain non-orthogonal basis. This basis is related to Barnes-Wall lattices. Our result is a generalization to a well-known connection between Clifford groups and Barnes-Wall lattices. We also show that minimal vectors of Barnes-Wall lattices are stabilizer states, which may be of independent interest. Finally, we provide a few examples of generalizations beyond standard Clifford groups.
  • PDF
    The performance of quantum algorithms for eigenvalue problems, such as computing Hamiltonian spectra, depends strongly on the overlap of the initial wavefunction and the target eigenvector. In a basis of Slater determinants, the representation of energy eigenstates of systems with $N$ strongly correlated electrons requires a number of determinants that scales exponentially with $N$. On classical processors, this restricts simulations to systems where $N$ is small. Here, we show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states. This avoids resorting to expensive classical or quantum state preparation heuristics and instead exploits symmetries in the wavefunction. We provide quantum circuits for deterministic preparation of a family of spin eigenfunctions with ${N \choose N/2}$ Slater determinants with depth $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$ local gates. Their use as highly entangled initial states in quantum algorithms reduces the total runtime of quantum phase estimation and related fault-tolerant methods by orders of magnitude. Furthermore, we assess the application of spin-coupled wavefunctions as initial states for a range of heuristic quantum algorithms, namely the variational quantum eigensolver, adiabatic state preparation, and different versions of quantum subspace diagonalization (QSD) including QSD based on real-time-evolved states. We also propose a novel QSD algorithm that exploits states obtained through adaptive quantum eigensolvers. For all algorithms, we demonstrate that using spin-coupled initial states drastically reduces the quantum resources required to simulate strongly correlated ground and excited states. Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
  • PDF
    Nonstabilizerness, or `magic', is a critical quantum resource that, together with entanglement, characterizes the non-classical complexity of quantum states. Here, we address the problem of quantifying the average nonstabilizerness of random Matrix Product States (RMPS). RMPS represent a generalization of random product states featuring bounded entanglement that scales logarithmically with the bond dimension $\chi$. We demonstrate that the $2$-Stabilizer Rényi Entropy converges to that of Haar random states as $N/\chi^2$, where $N$ is the system size. This indicates that MPS with a modest bond dimension are as magical as generic states. Subsequently, we introduce the ensemble of Clifford enhanced Matrix Product States ($\mathcal{C}$MPS), built by the action of Clifford unitaries on RMPS. Leveraging our previous result, we show that $\mathcal{C}$MPS can approximate $4$-spherical designs with arbitrary accuracy. Specifically, for a constant $N$, $\mathcal{C}$MPS become close to $4$-designs with a scaling as $\chi^{-2}$. Our findings indicate that combining Clifford unitaries with polynomially complex tensor network states can generate highly non-trivial quantum states.
  • PDF
    Optimization is one of the keystones of modern science and engineering. Its applications in quantum technology and machine learning helped nurture variational quantum algorithms and generative AI respectively. We propose a general approach to design variational optimization algorithms based on generative models: the Variational Generative Optimization Network (VGON). To demonstrate its broad applicability, we apply VGON to three quantum tasks: finding the best state in an entanglement-detection protocol, finding the ground state of a 1D quantum spin model with variational quantum circuits, and generating degenerate ground states of many-body quantum Hamiltonians. For the first task, VGON greatly reduces the optimization time compared to stochastic gradient descent while generating nearly optimal quantum states. For the second task, VGON alleviates the barren plateau problem in variational quantum circuits. For the final task, VGON can identify the degenerate ground state spaces after a single stage of training and generate a variety of states therein.
  • PDF
    Multiphoton indistinguishability is a central resource for quantum enhancement in sensing and computation. Developing and certifying large scale photonic devices requires reliable and accurate characterization of this resource, preferably using methods that are robust against experimental errors. Here, we propose a set of methods for the characterization of multiphoton indistinguishability, based on measurements of bunching and photon number variance. Our methods are robust in a semi-device independent way, in the sense of being effective even when the interferometers are incorrectly dialled. We demonstrate the effectiveness of this approach using an advanced photonic platform comprising a quantum-dot single-photon source and a universal fully-programmable integrated photonic processor. Our results show the practical usefulness of our methods, providing robust certification tools that can be scaled up to larger systems.
  • PDF
    Quantum subsystem codes have been shown to improve error-correction performance, ease the implementation of logical operations on codes, and make stabilizer measurements easier by decomposing stabilizers into smaller-weight gauge operators. In this paper, we present two algorithms that produce new subsystem codes from a "seed" CSS code. They replace some stabilizers of a given CSS code with smaller-weight gauge operators that split the remaining stabilizers, while being compatible with the logical Pauli operators of the code. The algorithms recover the well-known Bacon-Shor code computationally as well as produce a new $\left[\left[ 9,1,2,2 \right]\right]$ rotated surface subsystem code with weight-$3$ gauges and weight-$4$ stabilizers. We illustrate using a $\left[\left[ 100,25,3 \right]\right]$ subsystem hypergraph product (SHP) code that the algorithms can produce more efficient gauge operators than the closed-form expressions of the SHP construction. However, we observe that the stabilizers of the lifted product quantum LDPC codes are more challenging to split into small-weight gauge operators. Hence, we introduce the subsystem lifted product (SLP) code construction and develop a new $\left[\left[ 775, 124, 20 \right]\right]$ code from Tanner's classical quasi-cyclic LDPC code. The code has high-weight stabilizers but all gauge operators that split stabilizers have weight $5$, except one. In contrast, the LP stabilizer code from Tanner's code has parameters $\left[\left[ 1054, 124, 20 \right]\right]$. This serves as a novel example of new subsystem codes that outperform stabilizer versions of them. Finally, based on our experiments, we share some general insights about non-locality's effects on the performance of splitting stabilizers into small-weight gauges.
  • PDF
    Nonlinear processes with individual quanta beyond bilinear interactions are essential for quantum technology with bosonic systems. Diverse coherent splitting and merging of quanta in them already manifest in the estimation of their nonlinear coupling from observed statistics. We derive non-trivial, but optimal strategies for sensing the basic and experimentally available trilinear interactions using non-classical particle-like Fock states as a probe and feasible measurement strategies. Remarkably, the optimal probing of nonlinear coupling reaches estimation errors scaled down with $N^{-1/3}$ for overall $N$ of quanta in specific but available high-quality Fock states in all interacting modes. It can reveal unexplored aspects of nonlinear dynamics relevant to using such nonlinear processes in bosonic experiments with trapped ions and superconducting circuits and opens further developments of quantum technology with them.
  • PDF
    Atomicity is a ubiquitous assumption in distributed computing, under which actions are indivisible and appear sequential. In classical computing, this assumption has several theoretical and practical guarantees. In quantum computing, although atomicity is still commonly assumed, it has not been seriously studied, and a rigorous basis for it is missing. Classical results on atomicity do not directly carry over to distributed quantum computing, due to new challenges caused by quantum entanglement and the measurement problem from the underlying quantum mechanics. In this paper, we initiate the study of atomicity in distributed quantum computing. A formal model of (non-atomic) distributed quantum system is established. Based on the Dijkstra-Lamport condition, the system dynamics and observable dynamics of a distributed quantum system are defined, which correspond to the quantum state of and classically observable events in the system, respectively. Within this framework, we prove that local actions can be regarded as if they were atomic, up to the observable dynamics of the system.
  • PDF
    In quantum thermodynamics, entropy production is usually defined in terms of the quantum relative entropy between two states. We derive a lower bound for the quantum entropy production in terms of the mean and variance of quantum observables, which we will refer to as a thermodynamic uncertainty relation (TUR) for the entropy production. In the absence of coherence between the states, our result reproduces classic TURs in stochastic thermodynamics. For the derivation of the TUR, we introduce a lower bound for a quantum generalization of the $\chi^2$ divergence between two states and discuss its implications for stochastic and quantum thermodynamics, as well as the limiting case where it reproduces the quantum Cramér-Rao inequality.
  • PDF
    We propose a quantum information processing platform that utilizes the ultrafast time-bin encoding of photons. This approach offers a pathway to scalability by leveraging the inherent phase stability of collinear temporal interferometric networks at the femtosecond-to-picosecond timescale. The proposed architecture encodes information in ultrafast temporal bins processed using optically induced nonlinearities and birefringent materials while keeping photons in a single spatial mode. We demonstrate the potential for scalable photonic quantum information processing through two independent experiments that showcase the platform's programmability and scalability, respectively. The scheme's programmability is demonstrated in the first experiment, where we successfully program 362 different unitary transformations in up to 8 dimensions in a temporal circuit. In the second experiment, we show the scalability of ultrafast time-bin encoding by building a passive optical network, with increasing circuit depth, of up to 36 optical modes. In each experiment, fidelities exceed 97\%, while the interferometric phase remains passively stable for several days.
  • PDF
    In the realm of invertible symmetry, the topological approach based on classifying spaces dominates the classification of 't Hooft anomalies and symmetry protected topological phases. In contrast, except for discrete 0-form symmetry, a systematic algebraic approach based on cochains remains poorly explored. In this work, we investigate the systematic algebraic approach for discrete higher-form symmetry with a trivial higher-group structure. Studying the discrete formulation of invertible field theories in arbitrary dimension, we extract a purely algebraic structure that we call extended group cohomology, which directly characterizes and classifies the lattice lagrangian of invertible field theories and the behavior of anomalous topological operators. Using techniques from simplicial homotopy theory, we prove the isomorphism between extended group cohomology and cohomology of classifying spaces. The proof is based on an explicit construction of Eilenberg-MacLane spaces and their products. Our findings also clarify the discrete formulation of a class of generalized Dijkgraaf-Witten-Yetter models.
  • PDF
    Constrained optimization plays a crucial role in the fields of quantum physics and quantum information science and becomes especially challenging for high-dimensional complex structure problems. One specific issue is that of quantum process tomography, in which the goal is to retrieve the underlying quantum process based on a given set of measurement data. In this paper, we introduce a modified version of stochastic gradient descent on a Riemannian manifold that integrates recent advancements in numerical methods for Riemannian optimization. This approach inherently supports the physically driven constraints of a quantum process, takes advantage of state-of-the-art large-scale stochastic objective optimization, and has superior performance to traditional approaches such as maximum likelihood estimation and projected least squares. The data-driven approach enables accurate, order-of-magnitude faster results, and works with incomplete data. We demonstrate our approach on simulations of quantum processes and in hardware by characterizing an engineered process on quantum computers.
  • PDF
    Gaussian quantum information processing with continuous-variable (CV) quantum information carriers holds significant promise for applications in quantum communication and quantum internet. However, applying Gaussian state distillation and quantum error correction (QEC) faces limitations imposed by no-go results concerning local Gaussian unitary operations and classical communications. This paper introduces a Gaussian QEC protocol that relies solely on local Gaussian resources. A pivotal component of our approach is CV gate teleportation using entangled Gaussian states, which facilitates the implementation of the partial transpose operation on a quantum channel. Consequently, we can efficiently construct a two-mode noise-polarized channel from two noisy Gaussian channels. Furthermore, this QEC protocol naturally extends to a nonlocal Gaussian state distillation protocol.
  • PDF
    Parameterised quantum circuits (PQCs) hold great promise for demonstrating quantum advantages in practical applications of quantum computation. Examples of successful applications include the variational quantum eigensolver, the quantum approximate optimisation algorithm, and quantum machine learning. However, before executing PQCs on real quantum devices, they undergo compilation and optimisation procedures. Given the inherent error-proneness of these processes, it becomes crucial to verify the equivalence between the original PQC and its compiled or optimised version. Unfortunately, most existing quantum circuit verifiers cannot directly handle parameterised quantum circuits; instead, they require parameter substitution to perform verification. In this paper, we address the critical challenge of equivalence checking for PQCs. We propose a novel compact representation for PQCs based on tensor decision diagrams. Leveraging this representation, we present an algorithm for verifying PQC equivalence without the need for instantiation. Our approach ensures both effectiveness and efficiency, as confirmed by experimental evaluations. The decision-diagram representations offer a powerful tool for analysing and verifying parameterised quantum circuits, bridging the gap between theoretical models and practical implementations.
  • PDF
    Network coordination is considered in three basic settings, characterizing the generation of separable and classical-quantum correlations among multiple parties. First, we consider the simulation of a classical-quantum state between two nodes with rate-limited common randomness (CR) and communication. Furthermore, we study the preparation of a separable state between multiple nodes with rate-limited CR and no communication. At last, we consider a broadcast setting, where a sender and two receivers simulate a classical-quantum-quantum state using rate-limited CR and communication. We establish the optimal tradeoff between communication and CR rates in each setting.
  • PDF
    A matrix can be converted into a doubly stochastic matrix by using two diagonal matrices. And a doubly stochastic matrix can be written as a sum of permutation matrices. In this paper, we describe a method to write a given generic matrix in terms of quantum gates based on the block encoding. In particular, we first show how to convert a matrix into doubly stochastic matrices and by using Birkhoff's algorithm, we express that matrix in terms of a linear combination of permutations which can be mapped to quantum circuits. We then discuss a few optimization techniques that can be applied in a possibly future quantum compiler software based on the method described here.
  • PDF
    We give a new algorithm for learning mixtures of $k$ Gaussians (with identity covariance in $\mathbb{R}^n$) to TV error $\varepsilon$, with quasi-polynomial ($O(n^{\text{poly log}\left(\frac{n+k}{\varepsilon}\right)})$) time and sample complexity, under a minimum weight assumption. Unlike previous approaches, most of which are algebraic in nature, our approach is analytic and relies on the framework of diffusion models. Diffusion models are a modern paradigm for generative modeling, which typically rely on learning the score function (gradient log-pdf) along a process transforming a pure noise distribution, in our case a Gaussian, to the data distribution. Despite their dazzling performance in tasks such as image generation, there are few end-to-end theoretical guarantees that they can efficiently learn nontrivial families of distributions; we give some of the first such guarantees. We proceed by deriving higher-order Gaussian noise sensitivity bounds for the score functions for a Gaussian mixture to show that that they can be inductively learned using piecewise polynomial regression (up to poly-logarithmic degree), and combine this with known convergence results for diffusion models. Our results extend to continuous mixtures of Gaussians where the mixing distribution is supported on a union of $k$ balls of constant radius. In particular, this applies to the case of Gaussian convolutions of distributions on low-dimensional manifolds, or more generally sets with small covering number.
  • PDF
    Tomographic reconstruction of quantum states plays a fundamental role in benchmarking quantum systems and retrieving information from quantum computers. Among the informationally complete sets of quantum measurements the tight ones provide a linear reconstruction formula and minimize the propagation of statistical errors. However, implementing tight measurements in the lab is challenging due to the high number of required measurement projections, involving a series of experimental setup preparations. In this work, we introduce the notion of cyclic tight measurements, that allow us to perform full quantum state tomography while considering only repeated application of a single unitary-based quantum device during the measurement stage process. This type of measurements significantly simplifies the complexity of the experimental setup required to retrieve the quantum state of a physical system. Additionally, we design feasible setup preparation procedure that produce well-approximated cyclic tight measurements, in every finite dimension.
  • PDF
    We introduce Harmonic Robustness, a powerful and intuitive method to test the robustness of any machine-learning model either during training or in black-box real-time inference monitoring without ground-truth labels. It is based on functional deviation from the harmonic mean value property, indicating instability and lack of explainability. We show implementation examples in low-dimensional trees and feedforward NNs, where the method reliably identifies overfitting, as well as in more complex high-dimensional models such as ResNet-50 and Vision Transformer where it efficiently measures adversarial vulnerability across image classes.
  • PDF
    In this paper we shall use the abstract bifurcation theorems developed by the author in previous papers to study bifurcations of solutions for Lagrangian systems on manifolds linearly or nonlinearly dependent on parameters under various boundary value conditions. As applications, many bifurcation results for geodesics on Finsler and Riemannian manifolds are derived.
  • PDF
    To realize large-scale quantum information processes, an ideal scheme for two-qubit operations should enable diverse operations with given hardware and physical interaction. However, for spin qubits in semiconductor quantum dots, the common two-qubit operations, including CPhase gates, SWAP gates, and CROT gates, are realized with distinct parameter regions and control waveforms, posing challenges for their simultaneous implementation. Here, taking advantage of the inherent Heisenberg interaction between spin qubits, we propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types as well as reduce the requirements for device properties. Apart from the formerly proposed CPhase (controlled-phase) gates and SWAP gates, theoretical results indicate that the iSWAP-family gate and Fermionic simulation (fSim) gate set are additionally available for spin qubits. Meanwhile, our gate scheme limits the parameter requirements of all essential two-qubit gates to a common J~∆E_Z region, facilitate the simultaneous realization of them. Furthermore, we present the preliminary experimental demonstration of the composite gate scheme, observing excellent match between the measured and simulated results. With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources, helping accelerate and broaden the scope of the upcoming noise intermediate-scale quantum (NISQ) computing.
  • PDF
    To make practical quantum algorithms work, large-scale quantum processors protected by error-correcting codes are required to resist noise and ensure reliable computational outcomes. However, a major challenge arises from defects in processor fabrication, as well as occasional losses or cosmic rays during the computing process, all of which can lead to qubit malfunctions and disrupt error-correcting codes' normal operations. In this context, we introduce an automatic adapter to implement the surface code on defective lattices. Unlike previous approaches, this adapter leverages newly proposed bandage-like super-stabilizers to save more qubits when defects are clustered, thus enhancing the code distance and reducing super-stabilizer weight. For instance, in comparison with earlier methods, with a code size of 27 and a random defect rate of 2\%, the disabled qubits decrease by $1/3$, and the average preserved code distance increases by 63\%. This demonstrates a significant reduction in overhead when handling defects using our approach, and this advantage amplifies with increasing processor size and defect rates. Our work presents a low-overhead, automated solution to the challenge of adapting the surface code to defects, an essential step towards scaling up the construction of large-scale quantum computers for practical applications.
  • PDF
    To realize a global quantum Internet, there is a need for communication between quantum subnetworks. To accomplish this task, there have been multiple design proposals for a quantum backbone network and quantum subnetworks. In this work, we elaborate on the design that uses entanglement and quantum teleportation to build the quantum backbone between packetized quantum networks. We design a network interface to interconnect packetized quantum networks with entanglement-based quantum backbone networks and, moreover, design a scheme to accomplish data transmission over this hybrid quantum network model. We analyze the use of various implementations of the backbone network, focusing our study on backbone networks that use satellite links to continuously distribute entanglement resources. For feasibility, we analyze various system parameters via simulation to benchmark the performance of the overall network.
  • PDF
    The emergence of quantum sensor networks has presented opportunities for enhancing complex sensing tasks, while simultaneously introducing significant challenges in designing and analyzing quantum sensing protocols due to the intricate nature of entanglement and physical processes. Supervised learning assisted by an entangled sensor network (SLAEN) [Phys. Rev. X 9, 041023 (2019)] represents a promising paradigm for automating sensor-network design through variational quantum machine learning. However, the original SLAEN, constrained by the Gaussian nature of quantum circuits, is limited to learning linearly separable data. Leveraging the universal quantum control available in cavity-QED experiments, we propose a generalized SLAEN capable of handling nonlinear data classification tasks. We establish a theoretical framework for physical-layer data classification to underpin our approach. Through training quantum probes and measurements, we uncover a threshold phenomenon in classification error across various tasks -- when the energy of probes exceeds a certain threshold, the error drastically diminishes to zero, providing a significant improvement over the Gaussian SLAEN. Despite the non-Gaussian nature of the problem, we offer analytical insights into determining the threshold and residual error in the presence of noise. Our findings carry implications for radio-frequency photonic sensors and microwave dark matter haloscopes.
  • PDF
    In the current landscape of noisy intermediate-scale quantum (NISQ) computing, the inherent noise presents significant challenges to achieving high-fidelity long-range entanglement. Furthermore, this challenge is amplified by the limited connectivity of current superconducting devices, necessitating state permutations to establish long-distance entanglement. Traditionally, graph methods are used to satisfy the coupling constraints of a given architecture by routing states along the shortest undirected path between qubits. In this work, we introduce a gradient boosting machine learning model to predict the fidelity of alternative--potentially longer--routing paths to improve fidelity. This model was trained on 4050 random CNOT gates ranging in length from 2 to 100+ qubits. The experiments were all executed on ibm_quebec, a 127-qubit IBM Quantum System One. Through more than 200+ tests run on actual hardware, our model successfully identified higher fidelity paths in approximately 23% of cases.
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF
  • PDF

Recent comments

Jason Saied Apr 24 2024 21:45 UTC

UPDATE: The error mentioned below has been fixed, and in fact a stronger result has been proven. We will update the paper in the near future with the new proof.

Please note that we have found an error in version 1 of our paper that does not affect any of the theorems regarding distillation. The er

...(continued)
Frank Wappler Apr 10 2024 20:31 UTC

My comment (10.04.2024) on https://scirate.com/arxiv/2302.12209

A. V. Nenashev, S. D. Baranovskii

"How to detect the spacetime curvature without rulers and clocks"

(1) Nenashev and Baranovskii introduce an innovative and relevant notion; they even give it a unique name : "well-stitchedness" of (

...(continued)
Andreas Winter Apr 02 2024 21:11 UTC

Dear Dr. Stark, thank you for your kind words. Your remarks, obviously somewhat complementary to our point of view, are well-taken. Most of all we appreciate your pointers to the literature, which we hope to incorporate in a future revision of our paper, to be released at a suitable point in time.

Ned Stark Apr 01 2024 12:06 UTC

Dear authors, congratulations on your fantastic result! Your key lemma is simultaneously truly unbelievable and ridiculously convincing. Though your literature review is very exhaustive, I would like to point out one of my talks [1], also available on YouTube [2], which you probably missed.

[1]

...(continued)
Jahan Claes Mar 25 2024 03:14 UTC

This is interesting work, and definitely the sort of question I wonder about when trying to evaluate the feasibility of FBEC schemes.

To engage in a little blatant self-promotion, I'd like to point out that the fusion schemes in the original FBEC paper are no longer the best known fusion schemes i

...(continued)
Farrokh Labib Mar 22 2024 09:08 UTC

Thank you for the reply and clarifying that your result is the quantum extension of the second kind. Also great to hear that now both quantum extensions to the converse are complete!

Ning Ning Mar 21 2024 14:17 UTC

Thanks a lot to the colleagues that "Scited" this paper and and to those who introduced me to this site last night! This is a great site that we can exchange new research findings and advance quantum theory. Please feel free to reach me regarding quantum extensions of my expertise areas: stochastic

...(continued)
Ning Ning Mar 21 2024 14:07 UTC

Thank you so much for your message, Farrokh! Clearly, I was not aware of your paper; otherwise, I would have certainly cited it. In fact, we did not work on the same results.

As I mentioned in my paper (pages 2 and 3): "The converse of the expander mixing lemma has been articulated in two distinct

...(continued)
Victory Omole Mar 20 2024 12:48 UTC

> The most obvious open problem is to implement ACES in a near-term experiment.

We've run ACES on IBM Algiers and Osaka: https://scirate.com/arxiv/2403.12857

Farrokh Labib Mar 19 2024 09:54 UTC

Very nice paper! Are you aware of the results in the following paper: https://arxiv.org/pdf/1908.06310.pdf?
I didn't go through all the details of your work, but I think you are proving roughly the same results here with different techniques (which makes it interesting!).